एंस्कोम्बे परिवर्तन: Difference between revisions
m (Abhishek moved page अंसकॉमबे परिवर्तन to एंस्कोम्बे परिवर्तन without leaving a redirect) |
No edit summary |
||
Line 75: | Line 75: | ||
==सामान्यीकरण== | ==सामान्यीकरण== | ||
जबकि एंस्कोम्बे परिवर्तन शुद्ध पॉइसन डेटा के लिए उपयुक्त है, कई अनुप्रयोगों में डेटा एक | जबकि एंस्कोम्बे परिवर्तन शुद्ध पॉइसन डेटा के लिए उपयुक्त है, इसलिए कई अनुप्रयोगों में डेटा एक योगात्मक गॉसियन घटक भी प्रस्तुत करता है। इन स्थितियों का प्रयोग सामान्यीकृत एन्स्कोम्बे परिवर्तन द्वारा किया जाता है<ref> | ||
{{cite book | {{cite book | ||
| last1 = Starck | | last1 = Starck | ||
Line 89: | Line 89: | ||
| isbn = 9780521599146 | | isbn = 9780521599146 | ||
| publisher = Cambridge University Press | | publisher = Cambridge University Press | ||
}}</ref> और इसके स्पर्शोन्मुख रूप से निष्पक्ष या सटीक निष्पक्ष | }}</ref> और इसके स्पर्शोन्मुख रूप से निष्पक्ष या सटीक निष्पक्ष व्युत्क्रमों द्वारा किया जाता है।<ref>{{Citation | ||
| last1 = Mäkitalo | | last1 = Mäkitalo | ||
| first1 = M. | | first1 = M. | ||
Line 105: | Line 105: | ||
| s2cid = 206724566 | | s2cid = 206724566 | ||
}}</ref> | }}</ref> | ||
==यह भी देखें== | ==यह भी देखें== | ||
*विचरण-स्थिरीकरण परिवर्तन | *[[विचरण-स्थिरीकरण परिवर्तन]] | ||
*बॉक्स-कॉक्स परिवर्तन | *[[बॉक्स-कॉक्स परिवर्तन]] | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 15:41, 14 July 2023
आँकड़ों में, एंस्कोम्बे परिवर्तन, जिसका नाम फ्रांसिस एंस्कोम्बे के नाम पर रखा गया है, वह एक विचरण-स्थिरीकरण परिवर्तन है जो एक यादृच्छिक चर को प्वासों वितरण के साथ एक ऐसे चर में परिवर्तित करता है जिसका आँकड़ा सामान्य रूप से मानक गौसियान वितरणहोता है। एंस्कोम्बे परिवर्तन का उपयोग व्यापक रूप से फोटॉन-संकुचित प्रतिबिंबन (खगोल विज्ञान, एक्स-रे) में किया जाता है जहां प्रतिबिम्ब स्वाभाविक रूप से पॉइसन नियम का पालन करते हैं। एंस्कोम्ब परिवर्तन आमतौर पर डेटा को पूर्व-संसाधित करने के लिए प्रयोग किया जाता है ताकि मानक विचलन को लगभग स्थिर बनाया जा सके। फिर योगात्मक सफेद गाउसीय रव की संरचना के लिए प्रारूप किए गए निरूपित कलन विधि का उपयोग किया जाता है, अंतिम अनुमान तब निरूपित डेटा में व्युत्क्रम एंस्कोम्बे परिवर्तन लागू करके प्राप्त किया जाता है।
परिभाषा
प्वासों वितरण के लिए माध्य और विचरण स्वतंत्र नहीं हैं। एंस्कोम्बे परिवर्तन[1]
का लक्ष्य डेटा को रूपांतरित करना है ताकि पर्याप्त बड़े माध्य के लिए विचरण लगभग 1 निर्धारित हो, माध्य शून्य के लिए, प्रसरण अभी भी शून्य है।
यह पॉइसोनियन डेटा को (माध्य के साथ) माध्य और मानक विचलन के लगभग गॉसियन डेटा में परिवर्तित देता है।
यह सन्निकटन बड़े के लिए अधिक सटीक हो जाता है ,[2] जैसा कि चित्र में भी देखा जा सकता है।
प्रपत्र के रूपांतरित चर के लिए , विचरण के लिए व्यंजक में एक अतिरिक्त पद है ; इसे घटाकर शून्य कर दिया गया है , यही कारण है कि यह मान चुना गया।
उलटा
जब एंस्कोम्बे ट्रांसफ़ॉर्म का उपयोग डीनोइज़िंग में किया जाता है (यानी जब लक्ष्य प्राप्त करना हो)। का एक अनुमान ), इसके व्युत्क्रम परिवर्तन की भी आवश्यकता है विचरण-स्थिर और निरूपित डेटा वापस करने के लिए मूल सीमा तक. व्युत्क्रम फलन लागू करना
आम तौर पर माध्य के अनुमान के लिए एक अनुमानक के अवांछित पूर्वाग्रह का परिचय देता है , क्योंकि आगे का वर्गमूल परिवर्तन रेखीय मानचित्र नहीं है. कभी-कभी स्पर्शोन्मुख रूप से निष्पक्ष व्युत्क्रम का उपयोग करना[1]
पूर्वाग्रह के मुद्दे को कम करता है, लेकिन फोटॉन-सीमित इमेजिंग में ऐसा नहीं है, जिसके लिए अंतर्निहित मानचित्रण द्वारा दिया गया सटीक निष्पक्ष व्युत्क्रम[3]
इस्तेमाल किया जाना चाहिए। इस सटीक निष्पक्ष व्युत्क्रम का एक बंद-रूप अभिव्यक्ति|बंद-रूप सन्निकटन है[4]
विकल्प
प्वासों वितरण के लिए कई अन्य संभावित विचरण-स्थिरीकरण परिवर्तन हैं। बार-लेव और एनिस की रिपोर्ट[2]ऐसे परिवर्तनों का एक परिवार जिसमें एन्स्कोम्बे परिवर्तन शामिल है। परिवार का एक अन्य सदस्य फ्रीमैन-टुकी परिवर्तन है[5]
एक सरलीकृत परिवर्तन, जिसे वेरिएंस-स्थिरीकरण परिवर्तन के रूप में प्राप्त किया जाता है
जो, हालांकि विचरण को स्थिर करने में इतना अच्छा नहीं है, इसका लाभ यह है कि इसे अधिक आसानी से समझा जा सकता है। दरअसल, डेल्टा विधि से,
.
सामान्यीकरण
जबकि एंस्कोम्बे परिवर्तन शुद्ध पॉइसन डेटा के लिए उपयुक्त है, इसलिए कई अनुप्रयोगों में डेटा एक योगात्मक गॉसियन घटक भी प्रस्तुत करता है। इन स्थितियों का प्रयोग सामान्यीकृत एन्स्कोम्बे परिवर्तन द्वारा किया जाता है[6] और इसके स्पर्शोन्मुख रूप से निष्पक्ष या सटीक निष्पक्ष व्युत्क्रमों द्वारा किया जाता है।[7]
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 Anscombe, F. J. (1948), "The transformation of Poisson, binomial and negative-binomial data", Biometrika, [Oxford University Press, Biometrika Trust], vol. 35, no. 3–4, pp. 246–254, doi:10.1093/biomet/35.3-4.246, JSTOR 2332343
- ↑ 2.0 2.1 Bar-Lev, S. K.; Enis, P. (1988), "On the classical choice of variance stabilizing transformations and an application for a Poisson variate", Biometrika, vol. 75, no. 4, pp. 803–804, doi:10.1093/biomet/75.4.803
- ↑ Mäkitalo, M.; Foi, A. (2011), "Optimal inversion of the Anscombe transformation in low-count Poisson image denoising", IEEE Transactions on Image Processing, vol. 20, no. 1, pp. 99–109, Bibcode:2011ITIP...20...99M, CiteSeerX 10.1.1.219.6735, doi:10.1109/TIP.2010.2056693, PMID 20615809, S2CID 10229455
- ↑ Mäkitalo, M.; Foi, A. (2011), "A closed-form approximation of the exact unbiased inverse of the Anscombe variance-stabilizing transformation", IEEE Transactions on Image Processing, vol. 20, no. 9, pp. 2697–2698, Bibcode:2011ITIP...20.2697M, doi:10.1109/TIP.2011.2121085, PMID 21356615, S2CID 7937596
- ↑ Freeman, M. F.; Tukey, J. W. (1950), "Transformations related to the angular and the square root", The Annals of Mathematical Statistics, vol. 21, no. 4, pp. 607–611, doi:10.1214/aoms/1177729756, JSTOR 2236611
- ↑ Starck, J.L.; Murtagh, F.; Bijaoui, A. (1998). Image Processing and Data Analysis. Cambridge University Press. ISBN 9780521599146.
- ↑ Mäkitalo, M.; Foi, A. (2013), "Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise", IEEE Transactions on Image Processing, vol. 22, no. 1, pp. 91–103, Bibcode:2013ITIP...22...91M, doi:10.1109/TIP.2012.2202675, PMID 22692910, S2CID 206724566
अग्रिम पठन
- Starck, J.-L.; Murtagh, F. (2001), "Astronomical image and signal processing: looking at noise, information and scale", Signal Processing Magazine, IEEE, vol. 18, no. 2, pp. 30–40, Bibcode:2001ISPM...18...30S, doi:10.1109/79.916319, S2CID 13210703