मुक्त संवलन: Difference between revisions

From Vigyanwiki
m (12 revisions imported from alpha:मुक्त_संवलन)
(No difference)

Revision as of 12:26, 21 July 2023

मुक्त संवलन संभाव्यता मापों के संवलन की शास्त्रीय धारणा का मुक्त संभाव्यता एनालॉग है। मुक्त संभाव्यता सिद्धांत की गैर-क्रमविनिमेय प्रकृति के कारण, किसी को योगात्मक और गुणक मुक्त संवलन के बारे में अलग से बात करनी होगी, जो कि मुक्त अनियमित चर के जोड़ और गुणन से उत्पन्न होता है (नीचे देखें, शास्त्रीय मामले में, मुक्त का एनालॉग क्या होगा गुणात्मक संवलन को अनियमित चर के लघुगणक में पास करके योगात्मक संवलन में कम किया जा सकता है)।इन परिचालनों में अनियमित आव्यूह के अनुभवजन्य वर्णक्रमीय उपायों के संदर्भ में कुछ व्याख्याएं हैं।[1]

मुक्त संवलन की धारणा डैन-वर्जिल वोइकुलेस्कु द्वारा प्रस्तुत की गई थी।[2][3]

मुक्त योगात्मक संवलन

आज्ञा देना और वास्तविक रेखा पर दो संभाव्यता माप हों, और मान लें कि नियम के साथ गैर क्रमविनिमेय संभाव्यता स्थान में एक अनियमित चर है और नियम के साथ समान गैर क्रमविनिमेय संभाव्यता स्थान में अनियमित चर है अंततः यही मान लीजिए और स्वतंत्र रूप से स्वतंत्रत हैं। फिर मुक्त योगात्मक संवलन का नियम है। अनियमित आव्यूह व्याख्या: यदि और कुछ स्वतंत्र हैं द्वारा हर्मिटियन (सम्मानित वास्तविक सममित) अनियमित आव्यूह जैसे कि उनमें से कम से कम अपरिवर्तनीय है, नियम में, किसी एकात्मक (सम्मानित लंबकोणीय) आव्यूह द्वारा संयुग्मन के तहत और इस तरह के अनुभवजन्य वर्णक्रमीय उपाय और क्रमशः प्रवृत्त होते हैं और जैसा अनंत की ओर प्रवृत्त होता है, फिर अनुभवजन्य वर्णक्रमीय माप की प्रवृत्ति होती है [4]

कई मामलों में, संभाव्यता माप की गणना करना संभव है स्पष्ट रूप से जटिल-विश्लेषणात्मक तकनीकों और उपायों के आर-रूपांतरण का उपयोग करके और

आयताकार मुक्त योगात्मक संवलन

आयताकार मुक्त योगात्मक संवलन (अनुपात के साथ सी) इसे बेनायच-जॉर्जेस द्वारा गैर क्रमविनिमेय संभाव्यता ढांचे में भी परिभाषित किया गया है[5] और निम्नलिखित अनियमित आव्यूह व्याख्या को स्वीकार करता है। , के लिए और कुछ स्वतंत्र हैं द्वारा जटिल (सम्मानित वास्तविक) अनियमित आव्यूह जैसे कि उनमें से कम से कम अपरिवर्तनीय है, नियम में, किसी भी एकात्मक (सम्मानित लंबकोणीय) आव्यूह द्वारा बाईं और दाईं ओर गुणा के तहत और इस तरह कि अनुभवजन्य एकवचन मान वितरण और क्रमशः प्रवृत्त होते हैं और जैसा और इस प्रकार अनंत की ओर प्रवृत्त होता हैं की प्रवृत्ति होती है , फिर अनुभवजन्य एकवचन मूल्यों का वितरण की प्रवृत्ति होती है [6]

कई मामलों में, संभाव्यता माप की गणना करना संभव है स्पष्ट रूप से जटिल-विश्लेषणात्मक तकनीकों और अनुपात के साथ आयताकार आर-रूपांतरण का उपयोग करके उपायों का और

मुक्त गुणात्मक संवलन

होने देना और अंतराल पर दो संभाव्यता माप हों , और मान लीजिये नियम के साथ गैर क्रमविनिमेय संभाव्यता स्थान में अनियमित चर है और नियम के साथ समान गैर क्रमविनिमेय संभाव्यता स्थान में अनियमित चर है अंततः यही मान लीजिए और स्वतंत्र रूप से स्वतंत्रता हैं। फिर मुक्त गुणात्मक संवलन का नियम है (या, समकक्ष, का नियम । अनियमित आव्यूह व्याख्या: यदि और कुछ स्वतंत्र हैं द्वारा गैर-नकारात्मक हर्मिटियन (सम्मानित वास्तविक सममित) अनियमित आव्यूह जैसे कि उनमें से कम से कम अपरिवर्तनीय है, नियम में, किसी एकात्मक (सम्मानित लंबकोणीय) आव्यूह द्वारा संयुग्मन के तहत और इस तरह के अनुभवजन्य वर्णक्रमीय उपाय और क्रमशः प्रवृत्त होते हैं और जैसा अनन्त की ओर प्रवृत्त होता है, फिर अनुभवजन्य वर्णक्रमीय माप की प्रवृत्ति है [7]

नियमों के मामले में भी ऐसी ही परिभाषा बनाई जा सकती है यूनिट सर्कल पर समर्थित , लंबकोणीय या एकात्मक अनियमित आव्यूह व्याख्या के साथ।

जटिल-विश्लेषणात्मक तकनीकों और एस-ट्रांसफॉर्म का उपयोग करके गुणक मुक्त संवलन की स्पष्ट गणना की जा सकती है।

मुक्त संवलन के अनुप्रयोग

  • मुक्त केंद्रीय सीमा प्रमेय का प्रमाण देने के लिए मुक्त संवलन का उपयोग किया जा सकता है।
  • मुक्त संवलन का उपयोग उन अनियमित चरों के योगों या उत्पादों के नियमों और स्पेक्ट्रा की गणना करने के लिए किया जा सकता है जो मुक्त हैं। ऐसे उदाहरणों में सम्मिलित हैं मुक्त समूहों पर अनियमित चाल ऑपरेटर (केस्टन उपाय), और स्वतंत्र अनियमित आव्यूह के योगों या उत्पादों के eigenvalues ​​​​का स्पर्शोन्मुख वितरण।

अनियमित आव्यूह के लिए अपने अनुप्रयोगों के माध्यम से, मुक्त संवलन का गिरको के जी-आकलन पर अन्य कार्यों के साथ कुछ मजबूत संबंध हैं।

वायरलेस संचार, वित्त और जीवविज्ञान में अनुप्रयोगों ने उपयोगी रूपरेखा प्रदान की है जब अवलोकनों की संख्या प्रणाली के आयामों के समान क्रम की होती है।

यह भी देखें

  • संवलन
  • मुक्त संभाव्यता
  • अनियमित आव्यूह

संदर्भ

  1. Anderson, G.W.; Guionnet, A.; Zeitouni, O. (2010). An introduction to random matrices. Cambridge: Cambridge University Press. ISBN 978-0-521-19452-5.
  2. Voiculescu, D., Addition of certain non-commuting random variables, J. Funct. Anal. 66 (1986), 323–346
  3. Voiculescu, D., Multiplication of certain noncommuting random variables, J. Operator Theory 18 (1987), 2223–2235
  4. Anderson, G.W.; Guionnet, A.; Zeitouni, O. (2010). An introduction to random matrices. Cambridge: Cambridge University Press. ISBN 978-0-521-19452-5.
  5. Benaych-Georges, F., Rectangular random matrices, related convolution, Probab. Theory Related Fields Vol. 144, no. 3 (2009) 471-515.
  6. Benaych-Georges, F., Rectangular random matrices, related convolution, Probab. Theory Related Fields Vol. 144, no. 3 (2009) 471-515.
  7. Anderson, G.W.; Guionnet, A.; Zeitouni, O. (2010). An introduction to random matrices. Cambridge: Cambridge University Press. ISBN 978-0-521-19452-5.
  • "Free Deconvolution for Signal Processing Applications", O. Ryan and M. Debbah, ISIT 2007, pp. 1846–1850
  • James A. Mingo, Roland Speicher: Free Probability and Random Matrices. Fields Institute Monographs, Vol. 35, Springer, New York, 2017.
  • D.-V. Voiculescu, N. Stammeier, M. Weber (eds.): Free Probability and Operator Algebras, Münster Lectures in Mathematics, EMS, 2016


बाहरी संबंध