संख्याओं की सूची: Difference between revisions
Line 449: | Line 449: | ||
| hlist = | | hlist = | ||
| bullets = on | | bullets = on | ||
|[[10]], | |[[10]], [[दशमलव]] संख्या प्रणाली में अंकों की संख्या। | ||
|[[12 (number)|12]], | |[[12 (number)|12]], कई सभ्यताओं में समय मापने के लिए [[डुओडेसीमल|संख्या आधार]]। | ||
|[[14 (number)|14]], | |[[14 (number)|14]], [[पखवाड़े]] में दिनों की संख्या। | ||
|[[16 (number)|16]], | |||
|[[24 (number)|24]], | |[[16 (number)|16]], [[हेक्साडेसिमल]] संख्या प्रणाली में अंकों की संख्या। | ||
|[[31 (number)|31]], | |[[24 (number)|24]], एक [[दिन]] में [[घंटे]] की संख्या | ||
|[[60 (number)|60]], | |[[31 (number)|31]], वर्ष के अधिकांश महीनों में दिनों की संख्या। | ||
|[[360 (number)|360]], | |||
|[[365 (number)|365]], | |[[60 (number)|60]], कुछ प्राचीन गिनती प्रणालियों के लिए [[सेक्सजेसिमल|संख्या आधार]], जैसे कि [[बेबीलोनियाई अंक|बेबीलोनियाई']], और कई आधुनिक माप प्रणालियों का आधार। | ||
|[[360 (number)|360]], एक पूर्ण [[सर्कल]] में [[डिग्री (कोण)|सेक्सजेसिमल डिग्री]] की संख्या। | |||
|[[365 (number)|365]], सामान्य वर्ष में दिनों की संख्या, जबकि सौर [[ग्रेगोरियन कैलेंडर]] के [[लीप वर्ष]] में 366 दिन होते हैं। | |||
}} | }} | ||
Line 468: | Line 472: | ||
| hlist = | | hlist = | ||
| bullets = on | | bullets = on | ||
|[[4]], | |[[4]], [[निबल|निबल]] में [[बिट]] की संख्या | ||
|[[8]], | |[[8]], [[ऑक्टेट (कंप्यूटिंग)|ऑक्टेट]] में बिट्स की संख्या और सामान्यतः [[बाइट]] में बिट्स की संख्या | ||
|[[256 (number)|256]], | |[[256 (number)|256]], [[8-बिट|8 बिट्स]], या एक ऑक्टेट के भीतर संभावित संयोजनों की संख्या | ||
|[[1024 (number)|1024]], | |[[1024 (number)|1024]], [[किबिबाइट]] में बाइट्स की संख्या, और [[किबिबाइट]] में बिट्स की संख्या|[[65535 (number)|65535]], 2<sup>16</sup> − 1, [[16-बिट]] अहस्ताक्षरित पूर्णांक का अधिकतम मान | ||
|[[65535 (number)|65535]], 2<sup>16</sup> − 1, | |||
|[[65536 (number)|65536]], 2<sup>16</sup>, | |[[65536 (number)|65536]], 2<sup>16</sup>, संभावित [[16-बिट]] संयोजनों की संख्या | ||
|[[65537 (number)|65537]], 2<sup>16</sup> + 1, | |||
|[[16777216 (number)|16777216]], 2<sup>24</sup>, or 16<sup>6</sup>; | |[[65537 (number)|65537]], 2<sup>16</sup> + 1, वेब/इंटरनेट पर अधिकांश एसएसएल/टीएलएस प्रमाणपत्रों में सबसे लोकप्रिय आरएसए सार्वजनिक कुंजी प्राइम एक्सपोनेंट | ||
|[[2147483647]], 2<sup>31</sup> − 1, | |[[16777216 (number)|16777216]], 2<sup>24</sup>, or 16<sup>6</sup>; हेक्साडेसिमल "मिलियन" (0x1000000), और 24/32-बिट [[24-बिट कलर|ट्रू कलर]] कंप्यूटर ग्राफिक्स में संभावित रंग संयोजनों की कुल संख्या | ||
|[[9223372036854775807]], 2<sup>63</sup> − 1, | |[[2147483647]], 2<sup>31</sup> − 1, [[32-बिट]] [[पूर्णांक (कंप्यूटर विज्ञान)|हस्ताक्षरित पूर्णांक]] का अधिकतम मान [[दो के पूरक]] प्रतिनिधित्व का उपयोग करते हुए | ||
|[[9223372036854775807]], 2<sup>63</sup> − 1, [[64-बिट]] [[पूर्णांक (कंप्यूटर विज्ञान)|हस्ताक्षरित पूर्णांक]] का अधिकतम मान [[दो के पूरक]] प्रतिनिधित्व का उपयोग करते हुए | |||
}} | }} | ||
Line 609: | Line 614: | ||
| 1.0 | | 1.0 | ||
| rowspan="2" style="text-align:center;" |{{sfrac|1|1}} | | rowspan="2" style="text-align:center;" |{{sfrac|1|1}} | ||
| rowspan="2" | | | rowspan="2" |एक गुणात्मक पहचान है. एक तुच्छ रूप से एक परिमेय संख्या है, क्योंकि यह 1/1 के बराबर है। | ||
|- | |- | ||
|1 | |1 | ||
Line 615: | Line 620: | ||
| −0.083 333... | | −0.083 333... | ||
| style="text-align:center;"|{{sfrac|−|1|12}} | | style="text-align:center;"|{{sfrac|−|1|12}} | ||
| | |जीटा फ़ंक्शन नियमितीकरण और रामानुजन योग द्वारा श्रृंखला 1+2+3... को निर्दिष्ट मान। | ||
|- | |- | ||
| 0.5 | | 0.5 | ||
| style="text-align:center;"|{{sfrac|1|2}} | | style="text-align:center;"|{{sfrac|1|2}} | ||
| | | एक आधा सामान्यतः गणितीय समीकरणों और वास्तविक दुनिया के अनुपात में होता है। त्रिभुज के क्षेत्रफल के सूत्र में एक आधा भाग दिखाई देता है: 1/2 × आधार × लंबवत ऊंचाई और आकृति संख्याओं के सूत्रों में, जैसे त्रिकोणीय संख्या और पंचकोणीय संख्या। | ||
|- | |- | ||
|3.142 857... | |3.142 857... | ||
| style="text-align:center;"|{{sfrac|22|7}} | | style="text-align:center;"|{{sfrac|22|7}} | ||
| | |संख्या के लिए व्यापक रूप से प्रयुक्त समीपता 𝜋। यह सिद्ध किया जा सकता है कि यह संख्या अधिक है 𝜋। | ||
|- | |- | ||
|0.166 666... | |0.166 666... | ||
| style="text-align:center;"|{{sfrac|1|6}} | | style="text-align:center;"|{{sfrac|1|6}} | ||
| | |छठवाँ भाग अधिकांश गणितीय समीकरणों में दिखाई देता है, जैसे पूर्णांकों के वर्गों के योग में और बेसल समस्या के समाधान में। | ||
|} | |} | ||
Revision as of 16:39, 12 July 2023
यह उल्लेखनीय संख्याओं और उल्लेखनीय संख्याओं के बारे में लेखों की एक सूची है। सूची में मौजूद सभी संख्याएँ शामिल नहीं हैं क्योंकि अधिकांश संख्या सेट अनंत हैं। संख्याओं को उनकी गणितीय, ऐतिहासिक या सांस्कृतिक उल्लेखनीयता के आधार पर सूची में शामिल किया जा सकता है, लेकिन सभी संख्याओं में ऐसे गुण होते हैं जो उन्हें उल्लेखनीय बना सकते हैं। यहां तक कि सबसे छोटी "अरुचिकर" संख्या भी उसी संपत्ति के लिए विरोधाभासी रूप से दिलचस्प है। इसे दिलचस्प संख्या विरोधाभास के रूप में जाना जाता है।
जिसे संख्या के रूप में वर्गीकृत किया गया है उसकी परिभाषा काफी व्यापक है और ऐतिहासिक भेदों पर आधारित है। उदाहरण के लिए, संख्याओं की जोड़ी (3,4) को सामान्यतः एक संख्या माना जाता है जब यह एक जटिल संख्या (3+4i) के रूप में होती है, लेकिन तब नहीं जब यह वेक्टर (3,4) के रूप में होती है। इस सूची को संख्याओं के प्रकारों की मानक परंपरा के साथ भी वर्गीकृत किया जाएगा।
यह सूची गणितीय वस्तुओं के रूप में संख्याओं पर केंद्रित है और यह अंकों की सूची नहीं है, जो भाषाई उपकरण हैं संज्ञा, विशेषण, या क्रियाविशेषण जो संख्याओं को निर्दिष्ट करते हैं। अंतर संख्या पांच (2+3 के बराबर अमूर्त वस्तु) और अंक पांच (संख्या को संदर्भित करने वाली संज्ञा) के बीच खींचा गया है।
प्राकृतिक संख्या
प्राकृतिक संख्याएँ पूर्णांकों का उपसमूह हैं और ऐतिहासिक और शैक्षणिक मूल्य की हैं क्योंकि इनका उपयोग गिनती के लिए किया जा सकता है और प्रायः इनका जातीय-सांस्कृतिक महत्व होता है (नीचे देखें)। इसके अलावा, प्राकृतिक संख्याओं का व्यापक रूप से पूर्णांक, तर्कसंगत संख्याओं और वास्तविक संख्याओं के निर्माण सहित अन्य संख्या प्रणालियों के लिए बिल्डिंग ब्लॉक के रूप में उपयोग किया जाता है। प्राकृतिक संख्याएँ वे होती हैं जिनका उपयोग गिनती के लिए किया जाता है (जैसे कि "मेज पर छह (6) सिक्के हैं") और क्रमबद्ध करने के लिए (जैसे कि "यह देश का तीसरा (तीसरा) सबसे बड़ा शहर है")। सामान्य भाषा में, गिनती के लिए उपयोग किए जाने वाले शब्द "क्रमसूचक संख्या" होते हैं और क्रमबद्ध करने के लिए प्रयुक्त शब्द "क्रमसूचक संख्या" होते हैं। पीनो अभिगृहीतों द्वारा परिभाषित, प्राकृतिक संख्याएँ असीम रूप से बड़े समूह का निर्माण करती हैं। प्रायः "प्राकृतिक" के रूप में संदर्भित, प्राकृतिक संख्याओं को सामान्यतः बोल्डफेस N (या ब्लैकबोर्ड बोल्ड , द्वारा दर्शाया जाता है यूनिकोड U+2115 ℕ DOUBLE-STRUCK CAPITAL N).
प्राकृतिक संख्याओं के समुच्चय में शून्य का समावेश अस्पष्ट है और व्यक्तिगत परिभाषाओं के अधीन है। सेट सिद्धांत और कंप्यूटर विज्ञान में, 0 को सामान्यतः एक प्राकृतिक संख्या माना जाता है। संख्या सिद्धांत में, यह सामान्यतः नहीं है। अस्पष्टता को "गैर-नकारात्मक पूर्णांकों" शब्दों के साथ हल किया जा सकता है, और "सकारात्मक पूर्णांक", जिसमें 0 शामिल नहीं है।
प्राकृतिक संख्याओं का उपयोग कार्डिनल संख्याओं के रूप में किया जा सकता है, जिन्हें विभिन्न नामों से जाना जा सकता हैं। प्राकृतिक संख्याओं का उपयोग क्रमिक संख्याओं के रूप में भी किया जा सकता है।
गणितीय महत्व
प्राकृतिक संख्याओं में व्यक्तिगत संख्या के लिए विशिष्ट गुण हो सकते हैं या किसी विशेष गुण के साथ संख्याओं के समूह (जैसे अभाज्य संख्या) का हिस्सा हो सकते हैं।
- 1, गुणक पहचान. साथ ही एकमात्र प्राकृतिक संख्या (0 शामिल नहीं) जो अभाज्य या भाज्य नहीं है।
- 2, बाइनरी नंबर प्रणाली का आधार, जिसका उपयोग लगभग सभी आधुनिक कंप्यूटरों और सूचना प्रणालियों में किया जाता है
- 3, 22-1, पहला मेरसेन प्राइम। यह पहला विषम अभाज्य है, और यह 2 बिट पूर्णांक अधिकतम मान भी है।
- 4, प्रथम मिश्रित संख्या
- 6, पूर्ण संख्या की श्रृंखला में से पहला, जिसके उचित गुणनखंडों का योग संख्या से ही होता है।
- 9, पहली विषम संख्या जो मिश्र है
- 11, आधार 10 में पाँचवीं अभाज्य और पहली पैलिंड्रोमिक बहु-अंकीय संख्या।
- 12, पहला उत्कृष्ट संख्या।
- 17, प्रथम 4 अभाज्य संख्याओं का योग, और एकमात्र अभाज्य जो लगातार 4 अभाज्य संख्याओं का योग है।
- 24, सभी डिरिचलेट कैरेक्टरएस मॉड एन हैं वास्तविक यदि और केवल यदि एन 24 का विभाजक है।
- 25, पहली केंद्रित वर्ग संख्या 1 के अलावा वह भी एक वर्ग संख्या है।
- 27, 3 का घन, 33 का मान।
- 28, दूसरा पूर्ण संख्या।
- 30, सबसे छोटी स्फेनिक संख्या।
- 32, सबसे छोटी गैरतुच्छ पांचवीं शक्ति।
- 36, सबसे छोटी संख्या जो एक पूर्ण घात है लेकिन प्रधान घात नहीं है।
- 72, सबसे छोटी अकिलिस संख्या।
- 255, 28 − 1, सबसे छोटी पूर्ण योग संख्या जो न तो तीन की घात है और न ही तीन बार अभाज्य है; यह सबसे बड़ी संख्या भी है जिसे 8-बिट अहस्ताक्षरित पूर्णांक का उपयोग करके दर्शाया जा सकता है
- 341, सबसे छोटा आधार 2 फर्मेट स्यूडोप्राइम।
- 496, तीसरी पूर्ण संख्या।
- 1729, हार्डी-रामानुजन नंबर, जिसे दूसरे टैक्सीकैब नंबर के रूप में भी जाना जाता है; अर्थात्, सबसे छोटा धनात्मक पूर्णांक जिसे दो धनात्मक घनों के योग के रूप में दो अलग-अलग तरीकों से लिखा जा सकता है। [1]
- 8128, चौथी पूर्ण संख्या.
- 142857, सबसे छोटी आधार 10 चक्रीय संख्या।
- 9814072356, सबसे बड़ी परिपूर्ण शक्ति जिसमें आधार दस में कोई दोहराया गया अंक नहीं है।
सांस्कृतिक या व्यावहारिक महत्व
उनके गणितीय गुणों के साथ-साथ, कई पूर्णांकों का सांस्कृतिक महत्व होता है[2] या कंप्यूटिंग और माप में उनके उपयोग के लिए भी उल्लेखनीय हैं। चूंकि गणितीय गुण (जैसे विभाज्यता) व्यावहारिक उपयोगिता प्रदान कर सकते हैं, किसी पूर्णांक के सांस्कृतिक या व्यावहारिक महत्व और उसके गणितीय गुणों के बीच परस्पर क्रिया और संबंध हो सकते हैं।
- 3, ईसाई धर्म में ट्रिनिटी के रूप में महत्वपूर्ण। हिन्दू धर्म (त्रिमूर्ति, त्रिदेवी) में भी महत्वपूर्ण माना जाता है। कई प्राचीन पौराणिक कथाओं में इसका महत्व है।
- 4, आधुनिक चीन, जापान और कोरिया में "मृत्यु" शब्द के साथ इसकी श्रव्य समानता के कारण इसे "दुर्भाग्यपूर्ण" संख्या माना जाता है।
- 7, एक सप्ताह में दिनों की संख्या, और पश्चिमी संस्कृतियों में इसे "भाग्यशाली" संख्या माना जाता है।
- 8, समृद्धि के लिए शब्द के समान होने के कारण इसे चीनी अंकज्योतिष आठ चीनी संस्कृति में "भाग्यशाली" संख्या माना जाता है।
- 12, सामान्य समूह जिसे दर्जन और एक वर्ष में महीनों की संख्या, राशि चक्र और ज्योतिष चिन्ह के नक्षत्रों और प्रेरित के नाम से जाना जाता है। यीशु का।
- 13, पश्चिमी अंधविश्वास में इसे "अशुभ" संख्या माना जाता है। इसे "बेकर्स डज़न" के नाम से भी जाना जाता है।
- 17, इटली और ग्रीक तथा लैटिन मूल के अन्य देशों में इसे दुर्भाग्यपूर्ण माना जाता है।
- 18, यहूदी अंकज्योतिष में जीवन का मूल्य होने के कारण इसे "भाग्यशाली" संख्या माना जाता है।
- 40, टेनग्रिज़्म और तुर्की लोककथाओं में एक महत्वपूर्ण संख्या मानी जाती है। कई रीति-रिवाज, जैसे कि परिवार में किसी की मृत्यु के बाद कितने दिनों तक किसी से मिलना चाहिए, से संबंधित रीति-रिवाजों में चालीस की संख्या शामिल है।
- 42, 1979 की लोकप्रिय विज्ञान कथा कृति द हिचहाइकर गाइड टू द गैलेक्सी में "जीवन, ब्रह्मांड और हर चीज़ के अंतिम प्रश्न का उत्तर"।
- 69, यौन क्रिया को संदर्भित करने के लिए कठबोली के रूप में उपयोग किया जाता है।
- 86, एक कठबोली शब्द जिसका प्रयोग अमेरिकी लोकप्रिय संस्कृति में एक सकर्मक क्रिया के रूप में किया जाता है जिसका अर्थ है बाहर फेंकना या छुटकारा पाना। [3]
- 108, धार्मिक धर्मों द्वारा पवित्र माना जाता है। पृथ्वी से सूर्य की दूरी और सूर्य के व्यास के अनुपात के लगभग बराबर।
- 420, एक कोड-शब्द जो कैनबिस की खपत को संदर्भित करता है।
- 666, रहस्योद्घाटन की पुस्तक से जानवर की संख्या।
- 786, मुस्लिमों में पवित्र माना जाता है अबजद अंकशास्त्र।
- 5040, प्लेटो द्वारा कानून में शहर के लिए सबसे महत्वपूर्ण संख्याओं में से एक के रूप में उल्लेख किया गया है।
- 10, दशमलव संख्या प्रणाली में अंकों की संख्या।
- 12, कई सभ्यताओं में समय मापने के लिए संख्या आधार।
- 14, पखवाड़े में दिनों की संख्या।
- 16, हेक्साडेसिमल संख्या प्रणाली में अंकों की संख्या।
- 24, एक दिन में घंटे की संख्या
- 31, वर्ष के अधिकांश महीनों में दिनों की संख्या।
- 60, कुछ प्राचीन गिनती प्रणालियों के लिए संख्या आधार, जैसे कि बेबीलोनियाई', और कई आधुनिक माप प्रणालियों का आधार।
- 360, एक पूर्ण सर्कल में सेक्सजेसिमल डिग्री की संख्या।
- 365, सामान्य वर्ष में दिनों की संख्या, जबकि सौर ग्रेगोरियन कैलेंडर के लीप वर्ष में 366 दिन होते हैं।
- 4, निबल में बिट की संख्या
- 8, ऑक्टेट में बिट्स की संख्या और सामान्यतः बाइट में बिट्स की संख्या
- 256, 8 बिट्स, या एक ऑक्टेट के भीतर संभावित संयोजनों की संख्या
- 1024, किबिबाइट में बाइट्स की संख्या, और किबिबाइट में बिट्स की संख्या
- 65535, 216 − 1, 16-बिट अहस्ताक्षरित पूर्णांक का अधिकतम मान
- 65536, 216, संभावित 16-बिट संयोजनों की संख्या
- 65537, 216 + 1, वेब/इंटरनेट पर अधिकांश एसएसएल/टीएलएस प्रमाणपत्रों में सबसे लोकप्रिय आरएसए सार्वजनिक कुंजी प्राइम एक्सपोनेंट
- 16777216, 224, or 166; हेक्साडेसिमल "मिलियन" (0x1000000), और 24/32-बिट ट्रू कलर कंप्यूटर ग्राफिक्स में संभावित रंग संयोजनों की कुल संख्या
- 2147483647, 231 − 1, 32-बिट हस्ताक्षरित पूर्णांक का अधिकतम मान दो के पूरक प्रतिनिधित्व का उपयोग करते हुए
- 9223372036854775807, 263 − 1, 64-बिट हस्ताक्षरित पूर्णांक का अधिकतम मान दो के पूरक प्रतिनिधित्व का उपयोग करते हुए
प्राकृतिक संख्याओं के वर्ग
प्राकृतिक संख्याओं के उपसमुच्चय, जैसे अभाज्य संख्याएँ, उदाहरण के लिए, उनके सदस्यों की विभाज्यता के आधार पर, सेटों में समूहीकृत किए जा सकते हैं। ऐसे अनंत अनेक सेट संभव हैं। प्राकृतिक संख्याओं के उल्लेखनीय वर्गों की सूची प्राकृतिक संख्याओं के वर्गों पर पाई जा सकती है।
अभाज्य संख्याएँ
अभाज्य संख्या एक धनात्मक पूर्णांक है जिसमें ठीक दो भाजक होते हैं: 1 और स्वयं।
प्रथम 100 अभाज्य संख्याएँ हैं:
2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 |
31 | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 |
73 | 79 | 83 | 89 | 97 | 101 | 103 | 107 | 109 | 113 |
127 | 131 | 137 | 139 | 149 | 151 | 157 | 163 | 167 | 173 |
179 | 181 | 191 | 193 | 197 | 199 | 211 | 223 | 227 | 229 |
233 | 239 | 241 | 251 | 257 | 263 | 269 | 271 | 277 | 281 |
283 | 293 | 307 | 311 | 313 | 317 | 331 | 337 | 347 | 349 |
353 | 359 | 367 | 373 | 379 | 383 | 389 | 397 | 401 | 409 |
419 | 421 | 431 | 433 | 439 | 443 | 449 | 457 | 461 | 463 |
467 | 479 | 487 | 491 | 499 | 503 | 509 | 521 | 523 | 541 |
अत्यधिक मिश्रित संख्याएँ
एक उच्च भाज्य संख्या (एचसीएन) धनात्मक पूर्णांक है जिसमें किसी भी छोटे धनात्मक पूर्णांक की तुलना में अधिक भाजक होते हैं। इनका उपयोग प्रायः ज्यामिति, समूहीकरण और समय मापन में किया जाता है।
प्रथम 20 अत्यधिक भाज्य संख्याएँ हैं:
1 (संख्या), 2 (संख्या), 4 (संख्या), 6 (संख्या), 12 (संख्या), 24 (संख्या), 36 (संख्या), 48 (संख्या), 60 (संख्या), 120 (संख्या), 180 (संख्या), 240 (संख्या), 360 (संख्या), 720 (संख्या), 840 (संख्या), 1260 (संख्या), 1680 (संख्या), 2520 (संख्या), 5040 (संख्या), 7560 (संख्या)
पूर्ण संख्याएँ
एक पूर्ण संख्या पूर्णांक है जो इसके सकारात्मक उचित भाजक (स्वयं को छोड़कर सभी भाजक) का योग है।
प्रथम 10 पूर्ण संख्याएँ:
पूर्णांकों
पूर्णांक संख्याओं का एक समूह है जो सामान्यतः अंकगणित और संख्या सिद्धांत में सामने आता है। पूर्णांकों के कई उपसमूह होते हैं, जिनमें प्राकृतिक संख्याएँ, अभाज्य संख्याएँ, पूर्ण संख्याएँ आदि शामिल हैं। कई पूर्णांक अपने गणितीय गुणों के लिए उल्लेखनीय हैं। पूर्णांकों को सामान्यतः बोल्डफेस Z (या ब्लैकबोर्ड बोल्ड ) द्वारा दर्शाया जाता है , यूनिकोड U+2124 ℤ डबल-स्ट्रक कैपिटल जेड), यह "संख्याओं" (ज़हलेन) के लिए जर्मन शब्द पर आधारित पूर्णांकों का प्रतीक बन गया।
उल्लेखनीय पूर्णांकों में −1, एकता का योगात्मक व्युत्क्रम, और 0, योगात्मक पहचान शामिल हैं।
प्राकृतिक संख्याओं की तरह, पूर्णांकों का भी सांस्कृतिक या व्यावहारिक महत्व हो सकता है। उदाहरण के लिए, −40 फ़ारेनहाइट और सेल्सियस पैमाने में समान बिंदु है।
एसआई उपसर्ग
पूर्णांकों का महत्वपूर्ण उपयोग परिमाण के क्रम में होता है। 10 की घात एक संख्या 10k है, जहां k एक पूर्णांक है। उदाहरण के लिए, k = 0, 1, 2, 3, ... के साथ, दस की उपयुक्त घातें 1, 10, 100, 1000 हैं, ... दस की घातें आंशिक भी हो सकती हैं उदाहरण के लिए, k = -3 1/1000, या 0.001 देता है। इसका उपयोग वैज्ञानिक संकेतन में किया जाता है, वास्तविक संख्याएँ m × 10n के रूप में लिखी जाती हैं। संख्या 394,000 को इस रूप में 3.94 × 105 के रूप में लिखा जाता है।
पूर्णांकों का उपयोग SI प्रणाली में उपसर्गों के रूप में किया जाता है। मीट्रिक उपसर्ग इकाई उपसर्ग है जो इकाई के गुणक या अंश को निर्दिष्ट करने के लिए माप की मूल इकाई से पहले आता है। प्रत्येक उपसर्ग में एक अद्वितीय प्रतीक होता है जो इकाई प्रतीक से जुड़ा होता है। उदाहरण के लिए, उपसर्ग किलो- को एक हजार से गुणा दर्शाने के लिए ग्राम में जोड़ा जा सकता है एक किलोग्राम एक हजार ग्राम के बराबर होता है। उपसर्ग मिली-, इसी तरह, एक हजार से विभाजन को निर्दिष्ट करने के लिए मीटर में जोड़ा जा सकता है, एक मिलीमीटर एक मीटर के हजारवें हिस्से के बराबर है।
मूल्य | 1000m | नाम | प्रतीक |
---|---|---|---|
1000 | 10001 | किलो | k |
1000000 | 10002 | मेगा | M |
1000000000 | 10003 | गीगा | G |
1000000000000 | 10004 | Tera | T |
1000000000000000 | 10005 | पेटा | P |
1000000000000000000 | 10006 | Exa | E |
1000000000000000000000 | 10007 | ज़ेटा | Z |
1000000000000000000000000 | 10008 | योट्टा | Y |
1000000000000000000000000000 | 10009 | Ronna | R |
1000000000000000000000000000000 | 100010 | क्यूटा | Q |
परिमेय संख्या
परिमेय संख्या कोई भी संख्या होती है जिसे भागफल या भिन्न (गणित) के रूप में व्यक्त किया जा सकता है p/q दो पूर्णांकों का, एक अंश p और एक गैर-शून्य हर q.[4] तब से q 1 के बराबर हो सकता है, प्रत्येक पूर्णांक तुच्छ रूप से परिमेय संख्या है। सभी परिमेय संख्याओं का समुच्चय (गणित), जिसे प्रायः परिमेय कहा जाता है, परिमेय का क्षेत्र या परिमेय संख्याओं का क्षेत्र सामान्यतः बोल्डफेस द्वारा दर्शाया जाता है Q (या ब्लैकबोर्ड बोल्ड , यूनिकोड U+211A ℚ DOUBLE-STRUCK CAPITAL Q);[5] इस प्रकार इसे 1895 में ग्यूसेप पीनो द्वारा विक्ट:क्वोज़िएंटे, इतालवी में भागफल के बाद निरूपित किया गया था।
0.12 जैसी परिमेय संख्याओं को कई तरीकों से अनंत में दर्शाया जा सकता है, जैसे शून्य-बिंदु-एक-दो (0.12), तीन-पच्चीसवाँ (3/25), नौ पचहत्तरवाँ (9/75), आदि। तर्कसंगत संख्याओं को एक अपरिवर्तनीय भिन्न के रूप में विहित रूप में प्रस्तुत करके इसे कम किया जा सकता है।
परिमेय संख्याओं की एक सूची नीचे दिखाई गई है। भिन्नों के नाम अंक (भाषाविज्ञान) पर पाए जा सकते हैं।
दशमलव विस्तार | भिन्न | विशेषता |
---|---|---|
1.0 | 1/1 | एक गुणात्मक पहचान है. एक तुच्छ रूप से एक परिमेय संख्या है, क्योंकि यह 1/1 के बराबर है। |
1 | ||
−0.083 333... | −+1/12 | जीटा फ़ंक्शन नियमितीकरण और रामानुजन योग द्वारा श्रृंखला 1+2+3... को निर्दिष्ट मान। |
0.5 | 1/2 | एक आधा सामान्यतः गणितीय समीकरणों और वास्तविक दुनिया के अनुपात में होता है। त्रिभुज के क्षेत्रफल के सूत्र में एक आधा भाग दिखाई देता है: 1/2 × आधार × लंबवत ऊंचाई और आकृति संख्याओं के सूत्रों में, जैसे त्रिकोणीय संख्या और पंचकोणीय संख्या। |
3.142 857... | 22/7 | संख्या के लिए व्यापक रूप से प्रयुक्त समीपता 𝜋। यह सिद्ध किया जा सकता है कि यह संख्या अधिक है 𝜋। |
0.166 666... | 1/6 | छठवाँ भाग अधिकांश गणितीय समीकरणों में दिखाई देता है, जैसे पूर्णांकों के वर्गों के योग में और बेसल समस्या के समाधान में। |
अपरिमेय संख्या
अपरिमेय संख्याएँ संख्याओं का समूह है जिसमें सभी वास्तविक संख्याएँ शामिल होती हैं जो तर्कसंगत संख्याएँ नहीं हैं। अपरिमेय संख्याओं को बीजगणितीय संख्याओं (जो तर्कसंगत गुणांक वाले बहुपद की जड़ हैं) या अनुवांशिक संख्याओं के रूप में वर्गीकृत किया जाता है, जो नहीं हैं।
बीजगणितीय संख्याएँ
नाम | अभिव्यक्ति | दशमलव विस्तार | विशेषता |
---|---|---|---|
स्वर्णिम अनुपात संयुग्म() | 0.618033988749894848204586834366 | Reciprocal of (और उससे एक कम) the golden ratio. | |
Twelfth root of two | 1.059463094359295264561825294946 | Proportion between the frequencies of adjacent semitones in the 12 tone equal temperament scale. | |
Cube root of two | 1.259921049894873164767210607278 | Length of the edge of a cube with volume two. See doubling the cube for the significance of this number. | |
Conway's constant | (cannot be written as expressions involving integers and the operations of addition, subtraction, multiplication, division, and the extraction of roots) | 1.303577269034296391257099112153 | Defined as the unique positive real root of a certain polynomial of degree 71. |
Plastic number | 1.324717957244746025960908854478 | The unique real root of the cubic equation x3 = x + 1. | |
Square root of two | 1.414213562373095048801688724210 | √2 = 2 sin 45° = 2 cos 45° Square root of two a.k.a. Pythagoras' constant. Ratio of diagonal to side length in a square. Proportion between the sides of paper sizes in the ISO 216 series (originally DIN 476 series). | |
Supergolden ratio | 1.465571231876768026656731225220 | The only real solution of . Also the limit to the ratio between subsequent numbers in the binary Look-and-say sequence and the Narayana's cows sequence (OEIS: A000930). | |
Triangular root of 2 | 1.561552812808830274910704927987 | ||
Golden ratio (φ) | 1.618033988749894848204586834366 | The larger of the two real roots of x2 = x + 1. | |
Square root of three | 1.732050807568877293527446341506 | √3 = 2 sin 60° = 2 cos 30° . A.k.a. the measure of the fish or Theodorus' constant. Length of the space diagonal of a cube with edge length 1. Altitude of an equilateral triangle with side length 2. Altitude of a regular hexagon with side length 1 and diagonal length 2. | |
Tribonacci constant | 1.839286755214161132551852564653 | Appears in the volume and coordinates of the snub cube and some related polyhedra. It satisfies the equation x + x−3 = 2. | |
Square root of five | 2.236067977499789696409173668731 | Length of the diagonal of a 1 × 2 rectangle. | |
Silver ratio (δS) | 2.414213562373095048801688724210 | The larger of the two real roots of x2 = 2x + 1. Altitude of a regular octagon with side length 1. | |
Bronze ratio (S3) | 3.302775637731994646559610633735 | The larger of the two real roots of x2 = 3x + 1. |
पारलौकिक संख्या
Name | Symbol
or Formula |
Decimal expansion | Notes and notability |
---|---|---|---|
Gelfond's constant | 23.14069263277925... | ||
Ramanujan's constant | 262537412640768743.99999999999925... | ||
Gaussian integral | 1.772453850905516... | ||
Komornik–Loreti constant | 1.787231650... | ||
Universal parabolic constant | 2.29558714939... | ||
Gelfond–Schneider constant | 2.665144143... | ||
Euler's number | 2.718281828459045235360287471352662497757247... | Raising e to the power of π will result in . | |
Pi | 3.141592653589793238462643383279502884197169399375... | Pi is an irrational number that is the result of dividing the circumference of a circle by its diameter. | |
Super square-root of 2 | [6] | 1.559610469...[7] | |
Liouville constant | 0.110001000000000000000001000... | ||
Champernowne constant | 0.12345678910111213141516... | ||
Prouhet–Thue–Morse constant | 0.412454033640... | ||
Omega constant | 0.5671432904097838729999686622... | ||
Cahen's constant | 0.64341054629... | ||
Natural logarithm of 2 | ln 2 | 0.693147180559945309417232121458 | |
Gauss's constant | 0.8346268... | ||
Tau | 2π: τ | 6.283185307179586476925286766559... | The ratio of the circumference to a radius, and the number of radians in a complete circle;[8][9] 2 π |
तर्कहीन लेकिन पारलौकिक नहीं माना जाता
कुछ संख्याओं को अपरिमेय संख्याओं के रूप में जाना जाता है, लेकिन उन्हें पारमार्थिक सिद्ध नहीं किया गया है। यह बीजगणितीय संख्याओं से भिन्न है, जिन्हें पारलौकिक नहीं माना जाता है।
नाम | दशमलव विस्तार | Proof of irrationality | Reference of unknown transcendentality |
---|---|---|---|
ζ(3), also known as Apéry's constant | 1.202056903159594285399738161511449990764986292 | [10] | [11] |
Erdős–Borwein constant, E | 1.606695152415291763... | [12][13] | [citation needed] |
Copeland–Erdős constant | 0.235711131719232931374143... | Can be proven with Dirichlet's theorem on arithmetic progressions or Bertrand's postulate (Hardy and Wright, p. 113) or Ramare's theorem that every even integer is a sum of at most six primes. It also follows directly from its normality. | [citation needed] |
Prime constant, ρ | 0.414682509851111660248109622... | Proof of the number's irrationality is given at prime constant. | [citation needed] |
Reciprocal Fibonacci constant, ψ | 3.359885666243177553172011302918927179688905133731... | [14][15] | [16] |
वास्तविक संख्या
वास्तविक संख्याएँ एक सुपरसेट हैं जिसमें बीजगणितीय और पारलौकिक संख्याएँ शामिल हैं। वास्तविक संख्याएँ, जिन्हें कभी-कभी "वास्तविक" कहा जाता है, सामान्यतः बोल्डफेस R (या ब्लैकबोर्ड बोल्ड) द्वारा दर्शायी जाती हैं, यूनिकोड U+211D ℝ डबल-स्ट्रक कैपिटल आर)। कुछ संख्याओं के लिए, यह ज्ञात नहीं है कि वे बीजगणितीय हैं या पारलौकिक। निम्नलिखित सूची में वास्तविक संख्याएँ शामिल हैं जो न तो अपरिमेय संख्या साबित हुई हैं, न ही पारमार्थिक।
वास्तविक लेकिन न तो तर्कहीन जाना जाता है, न ही पारलौकिक
Name and symbol | Decimal expansion | Notes |
---|---|---|
Euler–Mascheroni constant, γ | 0.577215664901532860606512090082...[17] | Believed to be transcendental but not proven to be so. However, it was shown that at least one of and the Euler-Gompertz constant is transcendental.[18][19] It was also shown that all but at most one number in an infinite list containing have to be transcendental.[20][21] |
Euler–Gompertz constant, δ | 0.596 347 362 323 194 074 341 078 499 369...[22] | It was shown that at least one of the Euler-Mascheroni constant and the Euler-Gompertz constant is transcendental.[18][19] |
Catalan's constant, G | 0.915965594177219015054603514932384110774... | It is not known whether this number is irrational.[23] |
Khinchin's constant, K0 | 2.685452001...[24] | It is not known whether this number is irrational.[25] |
1st Feigenbaum constant, δ | 4.6692... | Both Feigenbaum constants are believed to be transcendental, although they have not been proven to be so.[26] |
2nd Feigenbaum constant, α | 2.5029... | Both Feigenbaum constants are believed to be transcendental, although they have not been proven to be so.[26] |
Glaisher–Kinkelin constant, A | 1.28242712... | |
Backhouse's constant | 1.456074948... | |
Fransén–Robinson constant, F | 2.8077702420... | |
Lévy's constant,β | 1.18656 91104 15625 45282... | |
Mills' constant, A | 1.30637788386308069046... | It is not known whether this number is irrational.(Finch 2003) |
Ramanujan–Soldner constant, μ | 1.451369234883381050283968485892027449493... | |
Sierpiński's constant, K | 2.5849817595792532170658936... | |
Totient summatory constant | 1.339784...[27] | |
Vardi's constant, E | 1.264084735305... | |
Somos' quadratic recurrence constant, σ | 1.661687949633594121296... | |
Niven's constant, C | 1.705211... | |
Brun's constant, B2 | 1.902160583104... | The irrationality of this number would be a consequence of the truth of the infinitude of twin primes. |
Landau's totient constant | 1.943596...[28] | |
Brun's constant for prime quadruplets, B4 | 0.8705883800... | |
Viswanath's constant | 1.1319882487943... | |
Khinchin–Lévy constant | 1.1865691104...[29] | This number represents the probability that three random numbers have no common factor greater than 1.[30] |
Landau–Ramanujan constant | 0.76422365358922066299069873125... | |
C(1) | 0.77989340037682282947420641365... | |
Z(1) | −0.736305462867317734677899828925614672... | |
Heath-Brown–Moroz constant, C | 0.001317641... | |
Kepler–Bouwkamp constant,K' | 0.1149420448... | |
MRB constant,S | 0.187859... | It is not known whether this number is irrational. |
Meissel–Mertens constant, M | 0.2614972128476427837554268386086958590516... | |
Bernstein's constant, β | 0.2801694990... | |
Gauss–Kuzmin–Wirsing constant, λ1 | 0.3036630029...[31] | |
Hafner–Sarnak–McCurley constant,σ | 0.3532363719... | |
Artin's constant,CArtin | 0.3739558136... | |
S(1) | 0.438259147390354766076756696625152... | |
F(1) | 0.538079506912768419136387420407556... | |
Stephens' constant | 0.575959...[32] | |
Golomb–Dickman constant, λ | 0.62432998854355087099293638310083724... | |
Twin prime constant, C2 | 0.660161815846869573927812110014... | |
Feller–Tornier constant | 0.661317...[33] | |
Laplace limit, ε | 0.6627434193...[34] | |
Embree–Trefethen constant | 0.70258... |
संख्याएँ उच्च परिशुद्धता के साथ ज्ञात नहीं हैं
पारलौकिक संख्याओं सहित कुछ वास्तविक संख्याएँ, उच्च परिशुद्धता के साथ ज्ञात नहीं हैं।
- बेरी-एसीन प्रमेय में स्थिरांक: 0.4097 <सी <0.4748
- डी ब्रुइज़न-न्यूमैन स्थिरांक: 0 ≤ Λ ≤ 0.2
- चैतिन के स्थिरांक Ω, जो पारलौकिक हैं और जिनकी गणना करना संभवतः असंभव है।
- बलोच का स्थिरांक (दूसरा लैंडौ का स्थिरांक भी): 0.4332 < बी < 0.4719
- प्रथम लैंडौ का स्थिरांक: 0.5 < एल < 0.5433
- तीसरा लैंडौ का स्थिरांक: 0.5 < ए ≤ 0.7853
- ग्रोथेंडिक स्थिरांक: 1.67 <k <1.79
- रोमानोव के प्रमेय में रोमानोव का स्थिरांक: 0.107648 < d < 0.49094093, रोमानोव ने अनुमान लगाया कि यह 0.434 है
हाइपरकॉम्प्लेक्स संख्याएँ
हाइपरकॉम्प्लेक्स संख्या वास्तविक संख्याओं के क्षेत्र में इकाई बीजगणित के तत्व के लिए एक शब्द है। जटिल संख्याओं को प्रायः बोल्डफेस C (या ब्लैकबोर्ड बोल्ड) द्वारा दर्शाया जाता है , यूनिकोड U+2102 ℂ डिस्प्लेस्टाइल मैथबीबी सी), जबकि चतुष्कोणों के समुच्चय को बोल्डफेस H द्वारा दर्शाया जाता है (या ब्लैकबोर्ड बोल्ड , यूनिकोड U+210D ℍ डबल-स्ट्रक कैपिटल एच).
बीजगणितीय सम्मिश्र संख्याएँ
- काल्पनिक इकाई:
- एकता की nवीं जड़ें: , जबकि , सबसे बड़ा सामान्य भाजक (k, n) = 1
अन्य हाइपरकॉम्प्लेक्स संख्याएँ
- चतुर्भुज
- ऑक्टोनियंस
- सेडेनियन्स
- दोहरी संख्याएँ (अतिसूक्ष्म के साथ)
अनंत संख्याएँ
ट्रांसफ़िनिट संख्याएँ वे संख्याएँ हैं जो इस अर्थ में "अनंत" हैं कि वे सभी परिमित समुच्चय संख्याओं से बड़ी हैं, फिर भी आवश्यक नहीं कि वे पूर्णतः अनंत हों।
- एलेफ़-अशक्त: א0: सबसे छोटा अनंत कार्डिनल, और कार्डिनैलिटी , प्राकृतिक संख्याओं का समुच्चय
- एलेफ़-एक: א1: ω1 की कार्डिनैलिटी, सभी गणनीय क्रमसूचक संख्याओं का समुच्चय
- बेथ-एक: ב1 सातत्य की प्रमुखता 2א0
- ℭ या : सातत्य की प्रमुखता 2א0
- पहला अनंत क्रमसूचक: ω, सबसे छोटा अनंत क्रमसूचक
भौतिक राशियों को दर्शाने वाली संख्याएँ
ब्रह्मांड में दिखाई देने वाली भौतिक मात्राओं का वर्णन प्रायः भौतिक स्थिरांक का उपयोग करके किया जाता है।
- अवोगाद्रो स्थिरांक: NA = 6.02214076×1023 mol−1[35]
- इलेक्ट्रॉन का द्रव्यमान: me = 9.1093837015(28)×10−31 kg[36]
- सूक्ष्म-संरचना स्थिरांक: α = 7.2973525693(11)×10−3[37]
- गुरुत्वाकर्षण स्थिरांक: G = 6.67430(15)×10−11 m3⋅kg−1⋅s−2[38]
- मोलर द्रव्यमान स्थिरांक: Mu = 0.99999999965(30)×10−3 kg⋅mol−1[39]
- प्लैंक स्थिरांक: h = 6.62607015×10−34 J⋅Hz−1[40]
- रिडबर्ग स्थिरांक: R∞ = 10973731.568160(21) m−1[41]
- प्रकाश की गति: c = 299792458 m⋅s−1[42]
- वैक्यूम इलेक्ट्रिक परमिटिटिविटी: ε0 = 8.8541878128(13)×10−12 F⋅m−1[43]
भौगोलिक और खगोलीय दूरियों को दर्शाने वाली संख्याएँ
- 6378.137, किलोमीटर में पृथ्वी की औसत भूमध्यरेखीय त्रिज्या (जीआरएस 80 और डब्लूजीएस 84 मानकों के बाद)।
- 40075.0167, भूमध्य रेखा की लंबाई किलोमीटर में (जीआरएस 80 और डब्लूजीएस 84 मानकों के बाद)।
- 384399, चंद्रमा की कक्षा की अर्ध-प्रमुख धुरी, किलोमीटर में, लगभग पृथ्वी के केंद्र और चंद्रमा के बीच की दूरी।
- 149597870700, पृथ्वी और सूर्य या खगोलीय इकाई (एयू) के बीच की औसत दूरी, मीटर में।
- 9460730472580800, प्रकाश वर्ष, एक जूलियन वर्ष में प्रकाश द्वारा तय की गई दूरी, मीटर में।
- 30856775814913673, पारसेक की दूरी, दूसरी खगोलीय इकाई, पूरे मीटर में।
विशिष्ट मानों के बिना संख्याएँ
कई भाषाओं में अनिश्चित और काल्पनिक संख्याओं को व्यक्त करने वाले शब्द होते हैं - अनिश्चित आकार के अचूक शब्द, जिनका उपयोग हास्य प्रभाव के लिए, अतिशयोक्ति के लिए, प्लेसहोल्डर नामों के रूप में, या जब सटीकता अनावश्यक या अवांछनीय हो। ऐसे शब्दों के लिए तकनीकी शब्द "गैर-संख्यात्मक अस्पष्ट परिमाणक" है।[44] बड़ी मात्रा को सूचित करने के लिए डिज़ाइन किए गए ऐसे शब्दों को "अनिश्चित अतिशयोक्तिपूर्ण अंक" कहा जा सकता है।[45]
नामांकित संख्याएँ
- एडिंगटन संख्या, ~1080
- गूगोल, 10100
- गूगोलप्लेक्स, 10(10100)
- ग्राहम का संख्या
- हार्डी-रामानुजन संख्या, 1729
- कापरेकर स्थिरांक, 6174
- मोजर का संख्या
- रेयो का संख्या
- शैनन संख्या
- स्क्यूज़ का संख्या
- वृक्ष(3)
यह भी देखें
- पूर्ण अनंत
- अंग्रेजी अंक
- फ़्लोटिंग-पॉइंट अंकगणित
- अंश
- पूर्णांक क्रम
- दिलचस्प संख्या विरोधाभास
- बड़ी संख्या
- गणितीय स्थिरांकों की सूची
- अभाज्य संख्याओं की सूची
- संख्याओं के प्रकारों की सूची
- गणितीय स्थिरांक
- मीट्रिक उपसर्ग
- बड़ी संख्या के नाम
- छोटी संख्याओं के नाम
- ऋणात्मक संख्या
- अंक (भाषाविज्ञान)
- अंक उपसर्ग
- आदेश का आकार
- परिमाण का क्रम (संख्या)
- क्रमसूचक संख्या
- जिज्ञासु और दिलचस्प संख्याओं का पेंगुइन शब्दकोश
- दो की शक्ति
- 10 की शक्ति
- अवास्तविक संख्या
- अभाज्य कारकों की तालिका
संदर्भ
- ↑ Weisstein, Eric W. "Hardy–Ramanujan Number". Archived from the original on 2004-04-08.
- ↑ Ayonrinde, Oyedeji A.; Stefatos, Anthi; Miller, Shadé; Richer, Amanda; Nadkarni, Pallavi; She, Jennifer; Alghofaily, Ahmad; Mngoma, Nomusa (2020-06-12). "सांस्कृतिक मान्यताओं और व्यवहार में संख्याओं का महत्व और प्रतीकवाद". International Review of Psychiatry. 33 (1–2): 179–188. doi:10.1080/09540261.2020.1769289. ISSN 0954-0261. PMID 32527165. S2CID 219605482.
- ↑ "Eighty-six – Definition of eighty-six by Merriam-Webster". merriam-webster.com. Archived from the original on 2013-04-08.
- ↑ Rosen, Kenneth (2007). पृथक गणित और उसके अनुप्रयोग (6th ed.). New York, NY: McGraw-Hill. pp. 105, 158–160. ISBN 978-0-07-288008-3.
- ↑ Rouse, Margaret. "गणितीय प्रतीक". Retrieved 1 April 2015.
- ↑ Lipscombe, Trevor Davis (2021-05-06), "Super Powers: Calculate Squares, Square Roots, Cube Roots, and More", Quick(er) Calculations, Oxford University Press, pp. 103–124, doi:10.1093/oso/9780198852650.003.0010, ISBN 978-0-19-885265-0, retrieved 2021-10-28
- ↑ "Nick's Mathematical Puzzles: Solution 29". Archived from the original on 2011-10-18.
- ↑ "The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 69
- ↑ Sequence OEIS: A019692.
- ↑ See Apéry 1979.
- ↑ "The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 33
- ↑ Erdős, P. (1948), "On arithmetical properties of Lambert series" (PDF), J. Indian Math. Soc., New Series, 12: 63–66, MR 0029405
- ↑ Borwein, Peter B. (1992), "On the irrationality of certain series", Mathematical Proceedings of the Cambridge Philosophical Society, 112 (1): 141–146, Bibcode:1992MPCPS.112..141B, CiteSeerX 10.1.1.867.5919, doi:10.1017/S030500410007081X, MR 1162938, S2CID 123705311
- ↑ André-Jeannin, Richard; 'Irrationalité de la somme des inverses de certaines suites récurrentes.'; Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, vol. 308, issue 19 (1989), pp. 539-541.
- ↑ S. Kato, 'Irrationality of reciprocal sums of Fibonacci numbers', Master's thesis, Keio Univ. 1996
- ↑ Duverney, Daniel, Keiji Nishioka, Kumiko Nishioka and Iekata Shiokawa; 'Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers';
- ↑ "A001620 - OEIS". oeis.org. Retrieved 2020-10-14.
- ↑ 18.0 18.1 Rivoal, Tanguy (2012). "On the arithmetic nature of the values of the gamma function, Euler's constant, and Gompertz's constant". Michigan Mathematical Journal (in English). 61 (2): 239–254. doi:10.1307/mmj/1339011525. ISSN 0026-2285.
- ↑ 19.0 19.1 Lagarias, Jeffrey C. (2013-07-19). "Euler's constant: Euler's work and modern developments". Bulletin of the American Mathematical Society. 50 (4): 527–628. arXiv:1303.1856. doi:10.1090/S0273-0979-2013-01423-X. ISSN 0273-0979.
- ↑ Murty, M. Ram; Saradha, N. (2010-12-01). "Euler–Lehmer constants and a conjecture of Erdös". Journal of Number Theory (in English). 130 (12): 2671–2682. CiteSeerX 10.1.1.261.753. doi:10.1016/j.jnt.2010.07.004. ISSN 0022-314X.
- ↑ Murty, M. Ram; Zaytseva, Anastasia (2013-01-01). "Transcendence of Generalized Euler Constants". The American Mathematical Monthly. 120 (1): 48–54. doi:10.4169/amer.math.monthly.120.01.048. ISSN 0002-9890. S2CID 20495981.
- ↑ "A073003 - OEIS". oeis.org. Retrieved 2020-10-14.
- ↑ Nesterenko, Yu. V. (January 2016), "On Catalan's constant", Proceedings of the Steklov Institute of Mathematics, 292 (1): 153–170, doi:10.1134/s0081543816010107, S2CID 124903059
- ↑ "Khinchin's Constant".
- ↑ Weisstein, Eric W. "Khinchin's constant". MathWorld.
- ↑ 26.0 26.1 Briggs, Keith (1997). Feigenbaum scaling in discrete dynamical systems (PDF) (PhD thesis). University of Melbourne.
- ↑ OEIS: A065483
- ↑ OEIS: A082695
- ↑ "Lévy Constant".
- ↑ "The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 29.
- ↑ Weisstein, Eric W. "Gauss–Kuzmin–Wirsing Constant". MathWorld.
- ↑ OEIS: A065478
- ↑ OEIS: A065493
- ↑ "Laplace Limit".
- ↑ "2018 CODATA Value: Avogadro constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
- ↑ "2018 CODATA Value: electron mass". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
- ↑ "2018 CODATA Value: fine-structure constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
- ↑ "2018 CODATA Value: Newtonian constant of gravitation". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
- ↑ "2018 CODATA Value: molar mass constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
- ↑ "2018 CODATA Value: Planck constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2021-04-28.
- ↑ "2018 CODATA Value: Rydberg constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
- ↑ "2018 CODATA Value: speed of light in vacuum". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
- ↑ "2018 CODATA Value: vacuum electric permittivity". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
- ↑ "Bags of Talent, a Touch of Panic, and a Bit of Luck: The Case of Non-Numerical Vague Quantifiers" from Linguista Pragensia, Nov. 2, 2010 Archived 2012-07-31 at archive.today
- ↑ Boston Globe, July 13, 2016: "The surprising history of indefinite hyperbolic numerals"
- Finch, Steven R. (2003), "Anmol Kumar Singh", Mathematical Constants (Encyclopedia of Mathematics and its Applications, Series Number 94), Cambridge University Press, pp. 130–133, ISBN 0521818052
- Apéry, Roger (1979), "Irrationalité de et ", Astérisque, 61: 11–13.
अग्रिम पठन
- Kingdom of Infinite Number: A Field Guide by Bryan Bunch, W.H. Freeman & Company, 2001. ISBN 0-7167-4447-3
बाहरी संबंध
- The Database of Number Correlations: 1 to 2000+
- What's Special About This Number? A Zoology of Numbers: from 0 to 500
- Name of a Number
- See how to write big numbers
- About big numbers at the Wayback Machine (archived 27 November 2010)
- Robert P. Munafo's Large Numbers page
- Different notations for big numbers – by Susan Stepney
- Names for Large Numbers, in How Many? A Dictionary of Units of Measurement by Russ Rowlett
- What's Special About This Number? (from 0 to 9999)