विकल्पों का मूल्यांकन: Difference between revisions
(Created page with "{{more citations needed|date=October 2021}} वित्त में, विकल्प (वित्त) खरीदने या बेचने के लिए...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{more citations needed|date=October 2021}} | {{more citations needed|date=October 2021}} | ||
[[वित्त]] में, [[विकल्प (वित्त)]] खरीदने या बेचने के लिए एक मूल्य ( | [[वित्त|अर्थव्यवस्था]] में, [[विकल्प (वित्त)|विकल्प (अर्थव्यवस्था)]] खरीदने या बेचने के लिए एक मूल्य (अधिमूल्य) का भुगतान किया जाता है या प्राप्त किया जाता है। यह आलेख सामान्य रूप से इस अधिमूल्य की गणना पर चर्चा करता है। अधिक विवरण के लिए {{slink|गणितीय वित्त|डेरिवेटिव मूल्य निर्धारण}} गणित की चर्चा के लिए क्यू दुनिया; कार्यान्वयन के लिए [[वित्तीय इंजीनियरिंग|अर्थव्यवस्थाीय इंजीनियरिंग]]; साथ ही {{slink|वित्तीय मॉडलिंग §| सामान्यतः मात्रात्मक वित्त}} देखें। | ||
==अधिमूल्य घटक== | |||
इस कीमत को दो घटकों में विभाजित किया जा सकता है: आंतरिक मूल्य और समय मूल्य (जिसे बाहरी मूल्य भी कहा जाता है)।<ref>{{Cite web |title=Extrinsic Value Definition {{!}} Britannica Money |url=https://www.britannica.com/money/extrinsic-value |access-date=2023-05-09 |website=www.britannica.com |language=en}}</ref> | |||
===आंतरिक मूल्य=== | ===आंतरिक मूल्य=== | ||
आंतरिक मूल्य अंतर्निहित स्पॉट मूल्य और स्ट्राइक मूल्य के बीच का अंतर है, इस हद तक कि यह विकल्प धारक के पक्ष में है। कॉल विकल्प के लिए, विकल्प इन-द-मनी है | आंतरिक मूल्य अंतर्निहित स्पॉट मूल्य और स्ट्राइक मूल्य के बीच का अंतर है, इस हद तक कि यह विकल्प धारक के पक्ष में है। कॉल विकल्प के लिए, यदि अंतर्निहित स्पॉट कीमत स्ट्राइक कीमत से अधिक है तो विकल्प इन-द-मनी है तब आंतरिक मूल्य अंतर्निहित मूल्य से स्ट्राइक मूल्य घटाकर होता है। पुट विकल्प के लिए, यदि स्ट्राइक मूल्य अंतर्निहित स्पॉट मूल्य से अधिक है तो विकल्प इन-द-मनी है; तब आंतरिक मूल्य स्ट्राइक मूल्य घटा अंतर्निहित स्पॉट मूल्य है। अन्यथा आंतरिक मूल्य शून्य है. | ||
उदाहरण के लिए, जब [[ डाउ जोन्स औद्योगिक औसत ]] कॉल (बुलिश/लॉन्ग) विकल्प 18,000 है और अंतर्निहित डीजेआई इंडेक्स की कीमत 18,050 है तो $50 का लाभ होता है, भले ही विकल्प आज समाप्त हो रहा हो। यह $50 विकल्प का आंतरिक मूल्य है। | उदाहरण के लिए, जब [[ डाउ जोन्स औद्योगिक औसत |DJI]] कॉल (बुलिश/लॉन्ग) विकल्प 18,000 है और अंतर्निहित डीजेआई इंडेक्स की कीमत 18,050 है तो $50 का लाभ होता है, भले ही विकल्प आज समाप्त हो रहा हो। यह $50 विकल्प का आंतरिक मूल्य है। | ||
संक्षेप में, आंतरिक मूल्य: कॉल विकल्प | संक्षेप में, आंतरिक मूल्य: कॉल विकल्प | ||
Line 19: | Line 17: | ||
===बाह्य (समय) मान=== | ===बाह्य (समय) मान=== | ||
{{Main|Option time value}} | {{Main|Option time value}} | ||
समाप्ति घटना तक विकल्प | समाप्ति घटना तक विकल्प अधिमूल्य हमेशा आंतरिक मूल्य से अधिक होता है। यह अतिरिक्त पैसा उस जोखिम के लिए है जो विकल्प लेखक/विक्रेता उठा रहा है। इसे समय मान कहा जाता है। | ||
समय मूल्य वह राशि है जो विकल्प व्यापारी किसी अनुबंध के लिए उसके आंतरिक मूल्य से ऊपर भुगतान कर रहा है, इस विश्वास के साथ कि समाप्ति से पहले अंतर्निहित परिसंपत्ति की कीमत में अनुकूल बदलाव के कारण अनुबंध मूल्य बढ़ जाएगा। अनुबंध की समाप्ति तक समय की अवधि जितनी अधिक होगी, समय का मूल्य उतना ही अधिक होगा। इसलिए, | समय मूल्य वह राशि है जो विकल्प व्यापारी किसी अनुबंध के लिए उसके आंतरिक मूल्य से ऊपर भुगतान कर रहा है, इस विश्वास के साथ कि समाप्ति से पहले अंतर्निहित परिसंपत्ति की कीमत में अनुकूल बदलाव के कारण अनुबंध मूल्य बढ़ जाएगा। अनुबंध की समाप्ति तक समय की अवधि जितनी अधिक होगी, समय का मूल्य उतना ही अधिक होगा। इसलिए, | ||
: समय मूल्य = विकल्प | : समय मूल्य = विकल्प अधिमूल्य - आंतरिक मूल्य | ||
== | ==अधिमूल्य को प्रभावित करने वाले अन्य कारक== | ||
ऐसे कई कारक हैं जो विकल्प | ऐसे कई कारक हैं जो विकल्प अधिमूल्य को प्रभावित करते हैं। ये कारक अलग-अलग तीव्रता के साथ विकल्प के अधिमूल्य को प्रभावित करते हैं। इनमें से कुछ कारक यहां सूचीबद्ध हैं: | ||
* अंतर्निहित की कीमत: अंतर्निहित (स्टॉक/इंडेक्स/कमोडिटी) की कीमत में किसी भी उतार-चढ़ाव का स्पष्ट रूप से विकल्प अनुबंध के | * अंतर्निहित की कीमत: अंतर्निहित (स्टॉक/इंडेक्स/कमोडिटी) की कीमत में किसी भी उतार-चढ़ाव का स्पष्ट रूप से विकल्प अनुबंध के अधिमूल्य पर सबसे बड़ा प्रभाव पड़ता है। अंतर्निहित कीमत में वृद्धि से कॉल ऑप्शन का अधिमूल्य बढ़ जाता है और पुट ऑप्शन का अधिमूल्य घट जाता है। जब अंतर्निहित कीमत घटती है तो विपरीत सत्य होता है। | ||
* स्ट्राइक मूल्य: स्ट्राइक मूल्य स्पॉट से कितनी दूर है, यह भी विकल्प | * स्ट्राइक मूल्य: स्ट्राइक मूल्य स्पॉट से कितनी दूर है, यह भी विकल्प अधिमूल्य को प्रभावित करता है। मान लीजिए, यदि [[सीएनएक्स निफ्टी|निफ्टी]] 5000 से 5100 तक चला जाता है तो 5000 स्ट्राइक और 5100 स्ट्राइक का अधिमूल्य 5500 या 4700 की स्ट्राइक वाले अनुबंध की तुलना में बहुत बदल जाएगा। | ||
* अंतर्निहित की अस्थिरता: अंतर्निहित सुरक्षा एक निरंतर बदलती इकाई है। जिस डिग्री तक इसकी कीमत में उतार-चढ़ाव होता है उसे अस्थिरता कहा जा सकता है। तो जिस शेयर में दैनिक आधार पर दोनों तरफ 5% का उतार-चढ़ाव होता है, उसे उदाहरण की तुलना में अधिक अस्थिरता कहा जाता है। स्थिर ब्लू चिप शेयर जिनका उतार-चढ़ाव 2-3% पर अधिक सौम्य है। अस्थिरता कॉल और पुट को समान रूप से प्रभावित करती है। उच्च अस्थिरता विकल्प | * अंतर्निहित की अस्थिरता: अंतर्निहित सुरक्षा एक निरंतर बदलती इकाई है। जिस डिग्री तक इसकी कीमत में उतार-चढ़ाव होता है उसे अस्थिरता कहा जा सकता है। तो जिस शेयर में दैनिक आधार पर दोनों तरफ 5% का उतार-चढ़ाव होता है, उसे उदाहरण की तुलना में अधिक अस्थिरता कहा जाता है। स्थिर ब्लू चिप शेयर जिनका उतार-चढ़ाव 2-3% पर अधिक सौम्य है। अस्थिरता कॉल और पुट को समान रूप से प्रभावित करती है। उच्च अस्थिरता विकल्प अधिमूल्य को बढ़ाती है क्योंकि यह विक्रेता के लिए अधिक जोखिम लाता है। | ||
* लाभांश का भुगतान: लाभांश के भुगतान का डेरिवेटिव के मूल्य पर प्रत्यक्ष प्रभाव नहीं पड़ता है, लेकिन स्टॉक मूल्य के माध्यम से इसका अप्रत्यक्ष प्रभाव पड़ता है। हम जानते हैं कि यदि लाभांश का भुगतान किया जाता है, तो स्टॉक लाभांश से बाहर हो जाता है इसलिए स्टॉक की कीमत कम हो जाएगी जिसके परिणामस्वरूप पुट | * लाभांश का भुगतान: लाभांश के भुगतान का डेरिवेटिव के मूल्य पर प्रत्यक्ष प्रभाव नहीं पड़ता है, लेकिन स्टॉक मूल्य के माध्यम से इसका अप्रत्यक्ष प्रभाव पड़ता है। हम जानते हैं कि यदि लाभांश का भुगतान किया जाता है, तो स्टॉक लाभांश से बाहर हो जाता है इसलिए स्टॉक की कीमत कम हो जाएगी जिसके परिणामस्वरूप पुट अधिमूल्य में वृद्धि होगी और कॉल अधिमूल्य में कमी होगी। | ||
उपरोक्त के अलावा, अन्य कारक जैसे परिपक्वता पर उपज (या [[ब्याज दर]]) भी | उपरोक्त के अलावा, अन्य कारक जैसे परिपक्वता पर उपज (या [[ब्याज दर]]) भी अधिमूल्य को प्रभावित करते हैं। ऐसा इसलिए है क्योंकि विक्रेता द्वारा निवेश किया गया पैसा किसी भी स्थिति में जोखिम मुक्त आय अर्जित कर सकता है और इसलिए विकल्प बेचते समय; उसे इससे अधिक कमाना होगा क्योंकि वह अधिक जोखिम उठा रहा है। | ||
==मूल्य निर्धारण मॉडल== | ==मूल्य निर्धारण मॉडल== | ||
{{See also|Option (finance)#Valuation|Mathematical finance #Derivatives pricing: the Q world|Financial modeling #Quantitative finance}} | {{See also|Option (finance)#Valuation|Mathematical finance #Derivatives pricing: the Q world|Financial modeling #Quantitative finance}} | ||
क्योंकि विकल्प ( | क्योंकि विकल्प (अर्थव्यवस्था) अनुबंधों के मूल्य अंतर्निहित परिसंपत्ति के मूल्य के अलावा कई अलग-अलग चर पर निर्भर करते हैं, इसलिए उनका मूल्य जटिल होता है। उपयोग में कई मूल्य निर्धारण मॉडल हैं, यद्यपि सभी अनिवार्य रूप से तर्कसंगत मूल्य निर्धारण # विकल्प (यानी जोखिम तटस्थता), धन, विकल्प समय मूल्य और पुट-कॉल समता की अवधारणाओं को सम्मिलित करते हैं। | ||
मूल्यांकन स्वयं (1) अंतर्निहित मूल्य के व्यवहार के एक मॉडल ( | मूल्यांकन स्वयं (1) अंतर्निहित मूल्य के व्यवहार के एक मॉडल (प्रक्रिया) को (2) एक गणितीय विधि से जोड़ता है जो कल्पित व्यवहार के एक फलन के रूप में अधिमूल्य लौटाता है। | ||
(1) में मॉडल इक्विटी के लिए (प्रोटोटाइपिकल) ब्लैक-स्कोल्स मॉडल से लेकर, ब्याज दरों के लिए हीथ-जारो-मॉर्टन ढांचे तक, [[हेस्टन मॉडल]] तक हैं जहां अस्थिरता को ही स्टोकेस्टिक माना जाता है। यहां विभिन्न मॉडलों की सूची के लिए संपत्ति मूल्य निर्धारण देखें। | (1) में मॉडल इक्विटी के लिए (प्रोटोटाइपिकल) ब्लैक-स्कोल्स मॉडल से लेकर, ब्याज दरों के लिए हीथ-जारो-मॉर्टन ढांचे तक, [[हेस्टन मॉडल]] तक हैं जहां अस्थिरता को ही स्टोकेस्टिक माना जाता है। यहां विभिन्न मॉडलों की सूची के लिए संपत्ति मूल्य निर्धारण देखें। | ||
जहां तक (2) कार्यान्वयन का संबंध है, सबसे आम दृष्टिकोण हैं: | जहां तक (2) कार्यान्वयन का संबंध है, सबसे आम दृष्टिकोण हैं: | ||
* [[बंद-रूप अभिव्यक्ति]] | * [[बंद-रूप अभिव्यक्ति|बंद-रूप]] विश्लेषणात्मक मॉडल: इनमें से सबसे बुनियादी ब्लैक-स्कोल्स फॉर्मूला और [[ काला मॉडल ]] हैं। | ||
* [[जाली मॉडल (वित्त)]] (पेड़): [[द्विपद विकल्प मूल्य निर्धारण मॉडल]]; [[त्रिपद वृक्ष]] | * [[जाली मॉडल (वित्त)|जाली मॉडल]] (पेड़): [[द्विपद विकल्प मूल्य निर्धारण मॉडल]]; [[त्रिपद वृक्ष]] | ||
* [[विकल्प मूल्य निर्धारण के लिए मोंटे कार्लो तरीके]] | * [[विकल्प मूल्य निर्धारण के लिए मोंटे कार्लो तरीके]] | ||
* [[विकल्प मूल्य निर्धारण के लिए सीमित अंतर विधियाँ]] | * [[विकल्प मूल्य निर्धारण के लिए सीमित अंतर विधियाँ]] | ||
* | *हाल ही में,, [[स्थानीय अस्थिरता]] और [[स्टोकेस्टिक अस्थिरता]] परिवारों में [[अस्थिरता सतह]]-जागरूक मॉडल। | ||
ब्लैक मॉडल ब्लैक-स्कोल्स को इक्विटी से वायदा, [[बांड विकल्प]], [[स्वैप्शन]], (यानी स्वैप ( | ब्लैक मॉडल ब्लैक-स्कोल्स को इक्विटी से वायदा, [[बांड विकल्प]], [[स्वैप्शन]], (यानी स्वैप (अर्थव्यवस्था) पर विकल्प), और ब्याज दर कैप और फ्लोर (प्रभावी रूप से ब्याज दर पर विकल्प) पर विकल्प तक विस्तारित करता है। | ||
अंतिम चार [[संख्यात्मक विधि]]याँ हैं, जिनके लिए आमतौर पर परिष्कृत डेरिवेटिव-सॉफ़्टवेयर या [[MATLAB]] जैसे संख्यात्मक- | अंतिम चार [[संख्यात्मक विधि]]याँ हैं, जिनके लिए आमतौर पर परिष्कृत डेरिवेटिव-सॉफ़्टवेयर या [[MATLAB]] जैसे संख्यात्मक-पैकेज की आवश्यकता होती है। इनके लिए, परिणाम की गणना निम्नानुसार की जाती है, भले ही संख्याएँ भिन्न हों: | ||
(i) समय के साथ अंतर्निहित कीमत के लिए एक जोखिम-तटस्थ वितरण बनाया जाता है ( | (i) चयनित मॉडल के माध्यम से समय के साथ अंतर्निहित कीमत के लिए एक जोखिम-तटस्थ वितरण बनाया जाता है (गैर-यूरोपीय विकल्पों के लिए, कम से कम प्रत्येक अभ्यास तिथि पर)। , जैसा कि बाजार में कैलिब्रेट किया गया है;; | ||
(ii) इनमें से प्रत्येक कीमत के लिए विकल्प का भुगतान-मूल्य इनमें से प्रत्येक समय पर निर्धारित किया जाता है; | (ii) इनमें से प्रत्येक कीमत के लिए विकल्प का भुगतान-मूल्य इनमें से प्रत्येक समय पर निर्धारित किया जाता है; | ||
(iii) भुगतान को जोखिम-मुक्त दर पर छूट दी जाती है, और फिर औसत किया जाता है। | (iii) भुगतान को जोखिम-मुक्त दर पर छूट दी जाती है, और फिर औसत किया जाता है। | ||
Line 59: | Line 57: | ||
==पोस्ट संकट== | ==पोस्ट संकट== | ||
{{Further|Financial economics #Derivative pricing|Financial economics#Departures from normality}} | {{Further|Financial economics #Derivative pricing|Financial economics#Departures from normality}} | ||
2007-2008 के | 2007-2008 के अर्थव्यवस्थाीय संकट के बाद, प्रतिपक्ष क्रेडिट जोखिम विचारों को मूल्यांकन में सम्मिलित किया जाना चाहिए, जो पहले पूरी तरह से जोखिम तटस्थ दुनिया में किया गया था। फिर हैं <ref name="Youmbi">[https://ssrn.com/abstract=2511585 Derivatives Pricing after the 2007-2008 Crisis: How the Crisis Changed the Pricing Approach], Didier Kouokap Youmbi, [[Bank of England]] – [[Prudential Regulation Authority (United Kingdom)|Prudential Regulation Authority]]</ref> पुनः विकल्प मूल्य निर्धारण के तीन प्रमुख विकास: | ||
#छूट के लिए, [[रात्रिकालीन अनुक्रमित स्वैप]] (ओआईएस) वक्र का उपयोग अब आम तौर पर जोखिम मुक्त दर के लिए किया जाता है, जैसा कि पहले की तरह [[LIBOR]] के विपरीत है (Libor#LIBOR समाप्ति और 2021 के अंत तक विकल्प उपलब्ध हैं, जिसमें [[सुरक्षित रात्रिकालीन वित्तपोषण दर]] और प्रतिस्थापन | #छूट के लिए, [[रात्रिकालीन अनुक्रमित स्वैप]] (ओआईएस) वक्र का उपयोग अब आम तौर पर जोखिम मुक्त दर के लिए किया जाता है, जैसा कि पहले की तरह [[LIBOR]] के विपरीत है (Libor#LIBOR समाप्ति और 2021 के अंत तक विकल्प उपलब्ध हैं, जिसमें [[सुरक्षित रात्रिकालीन वित्तपोषण दर|सुरक्षित रात्रिकालीन अर्थव्यवस्थापोषण दर]] और प्रतिस्थापन सम्मिलित हैं) [[टोक्यो ओवरनाइट औसत दर]]); देखना {{slink|Interest rate swap|Valuation and pricing}}. संबंधित रूप से, [[बहु-वक्र ढांचा]] अब [[ब्याज दर डेरिवेटिव]] के मूल्यांकन और [[निश्चित आय विश्लेषण]] के लिए आम तौर पर मानक है। | ||
#जैसा कि उल्लेख किया गया है, विकल्प मूल्य निर्धारण मॉडल को अस्थिरता सतह पर विचार करना चाहिए, और संख्याओं को फिर शून्य स्टोचैस्टिक अस्थिरता # अंशांकन और अनुमान की आवश्यकता होगी, जैसे कि देखी गई कीमतें नई कीमतों और / या ग्रीक ( | #जैसा कि उल्लेख किया गया है, विकल्प मूल्य निर्धारण मॉडल को अस्थिरता सतह पर विचार करना चाहिए, और संख्याओं को फिर शून्य स्टोचैस्टिक अस्थिरता # अंशांकन और अनुमान की आवश्यकता होगी, जैसे कि देखी गई कीमतें नई कीमतों और / या ग्रीक (अर्थव्यवस्था) से पहले वापस कर दी जाती हैं। यूनानियों की गणना की जा सकती है। ऐसा करने के लिए, बैंक स्थानीय अस्थिरता|स्थानीय- या स्टोकेस्टिक अस्थिरता मॉडल लागू करेंगे, जैसे कि ऊपर उल्लिखित हेस्टन (या कम सामान्य, [[निहित द्विपद वृक्ष]])। | ||
#जोखिम तटस्थ मूल्य, चाहे कितना भी निर्धारित किया गया हो, फिर [[क्रेडिट मूल्यांकन समायोजन]], या सीवीए के साथ-साथ अन्य [[XVA]] के माध्यम से प्रतिपक्ष क्रेडिट जोखिम के प्रभाव के लिए समायोजित किया जाता है जिसे भी जोड़ा जा सकता है। | #जोखिम तटस्थ मूल्य, चाहे कितना भी निर्धारित किया गया हो, फिर [[क्रेडिट मूल्यांकन समायोजन]], या सीवीए के साथ-साथ अन्य [[XVA]] के माध्यम से प्रतिपक्ष क्रेडिट जोखिम के प्रभाव के लिए समायोजित किया जाता है जिसे भी जोड़ा जा सकता है। | ||
Revision as of 01:33, 12 July 2023
This article needs additional citations for verification. (October 2021) (Learn how and when to remove this template message) |
अर्थव्यवस्था में, विकल्प (अर्थव्यवस्था) खरीदने या बेचने के लिए एक मूल्य (अधिमूल्य) का भुगतान किया जाता है या प्राप्त किया जाता है। यह आलेख सामान्य रूप से इस अधिमूल्य की गणना पर चर्चा करता है। अधिक विवरण के लिए गणितीय वित्त § डेरिवेटिव मूल्य निर्धारण गणित की चर्चा के लिए क्यू दुनिया; कार्यान्वयन के लिए अर्थव्यवस्थाीय इंजीनियरिंग; साथ ही वित्तीय मॉडलिंग § § सामान्यतः मात्रात्मक वित्त देखें।
अधिमूल्य घटक
इस कीमत को दो घटकों में विभाजित किया जा सकता है: आंतरिक मूल्य और समय मूल्य (जिसे बाहरी मूल्य भी कहा जाता है)।[1]
आंतरिक मूल्य
आंतरिक मूल्य अंतर्निहित स्पॉट मूल्य और स्ट्राइक मूल्य के बीच का अंतर है, इस हद तक कि यह विकल्प धारक के पक्ष में है। कॉल विकल्प के लिए, यदि अंतर्निहित स्पॉट कीमत स्ट्राइक कीमत से अधिक है तो विकल्प इन-द-मनी है तब आंतरिक मूल्य अंतर्निहित मूल्य से स्ट्राइक मूल्य घटाकर होता है। पुट विकल्प के लिए, यदि स्ट्राइक मूल्य अंतर्निहित स्पॉट मूल्य से अधिक है तो विकल्प इन-द-मनी है; तब आंतरिक मूल्य स्ट्राइक मूल्य घटा अंतर्निहित स्पॉट मूल्य है। अन्यथा आंतरिक मूल्य शून्य है.
उदाहरण के लिए, जब DJI कॉल (बुलिश/लॉन्ग) विकल्प 18,000 है और अंतर्निहित डीजेआई इंडेक्स की कीमत 18,050 है तो $50 का लाभ होता है, भले ही विकल्प आज समाप्त हो रहा हो। यह $50 विकल्प का आंतरिक मूल्य है।
संक्षेप में, आंतरिक मूल्य: कॉल विकल्प
- = वर्तमान स्टॉक मूल्य - स्ट्राइक मूल्य (कॉल विकल्प)
- = स्ट्राइक प्राइस - मौजूदा स्टॉक मूल्य (विकल्प डाल )
बाह्य (समय) मान
समाप्ति घटना तक विकल्प अधिमूल्य हमेशा आंतरिक मूल्य से अधिक होता है। यह अतिरिक्त पैसा उस जोखिम के लिए है जो विकल्प लेखक/विक्रेता उठा रहा है। इसे समय मान कहा जाता है।
समय मूल्य वह राशि है जो विकल्प व्यापारी किसी अनुबंध के लिए उसके आंतरिक मूल्य से ऊपर भुगतान कर रहा है, इस विश्वास के साथ कि समाप्ति से पहले अंतर्निहित परिसंपत्ति की कीमत में अनुकूल बदलाव के कारण अनुबंध मूल्य बढ़ जाएगा। अनुबंध की समाप्ति तक समय की अवधि जितनी अधिक होगी, समय का मूल्य उतना ही अधिक होगा। इसलिए,
- समय मूल्य = विकल्प अधिमूल्य - आंतरिक मूल्य
अधिमूल्य को प्रभावित करने वाले अन्य कारक
ऐसे कई कारक हैं जो विकल्प अधिमूल्य को प्रभावित करते हैं। ये कारक अलग-अलग तीव्रता के साथ विकल्प के अधिमूल्य को प्रभावित करते हैं। इनमें से कुछ कारक यहां सूचीबद्ध हैं:
- अंतर्निहित की कीमत: अंतर्निहित (स्टॉक/इंडेक्स/कमोडिटी) की कीमत में किसी भी उतार-चढ़ाव का स्पष्ट रूप से विकल्प अनुबंध के अधिमूल्य पर सबसे बड़ा प्रभाव पड़ता है। अंतर्निहित कीमत में वृद्धि से कॉल ऑप्शन का अधिमूल्य बढ़ जाता है और पुट ऑप्शन का अधिमूल्य घट जाता है। जब अंतर्निहित कीमत घटती है तो विपरीत सत्य होता है।
- स्ट्राइक मूल्य: स्ट्राइक मूल्य स्पॉट से कितनी दूर है, यह भी विकल्प अधिमूल्य को प्रभावित करता है। मान लीजिए, यदि निफ्टी 5000 से 5100 तक चला जाता है तो 5000 स्ट्राइक और 5100 स्ट्राइक का अधिमूल्य 5500 या 4700 की स्ट्राइक वाले अनुबंध की तुलना में बहुत बदल जाएगा।
- अंतर्निहित की अस्थिरता: अंतर्निहित सुरक्षा एक निरंतर बदलती इकाई है। जिस डिग्री तक इसकी कीमत में उतार-चढ़ाव होता है उसे अस्थिरता कहा जा सकता है। तो जिस शेयर में दैनिक आधार पर दोनों तरफ 5% का उतार-चढ़ाव होता है, उसे उदाहरण की तुलना में अधिक अस्थिरता कहा जाता है। स्थिर ब्लू चिप शेयर जिनका उतार-चढ़ाव 2-3% पर अधिक सौम्य है। अस्थिरता कॉल और पुट को समान रूप से प्रभावित करती है। उच्च अस्थिरता विकल्प अधिमूल्य को बढ़ाती है क्योंकि यह विक्रेता के लिए अधिक जोखिम लाता है।
- लाभांश का भुगतान: लाभांश के भुगतान का डेरिवेटिव के मूल्य पर प्रत्यक्ष प्रभाव नहीं पड़ता है, लेकिन स्टॉक मूल्य के माध्यम से इसका अप्रत्यक्ष प्रभाव पड़ता है। हम जानते हैं कि यदि लाभांश का भुगतान किया जाता है, तो स्टॉक लाभांश से बाहर हो जाता है इसलिए स्टॉक की कीमत कम हो जाएगी जिसके परिणामस्वरूप पुट अधिमूल्य में वृद्धि होगी और कॉल अधिमूल्य में कमी होगी।
उपरोक्त के अलावा, अन्य कारक जैसे परिपक्वता पर उपज (या ब्याज दर) भी अधिमूल्य को प्रभावित करते हैं। ऐसा इसलिए है क्योंकि विक्रेता द्वारा निवेश किया गया पैसा किसी भी स्थिति में जोखिम मुक्त आय अर्जित कर सकता है और इसलिए विकल्प बेचते समय; उसे इससे अधिक कमाना होगा क्योंकि वह अधिक जोखिम उठा रहा है।
मूल्य निर्धारण मॉडल
क्योंकि विकल्प (अर्थव्यवस्था) अनुबंधों के मूल्य अंतर्निहित परिसंपत्ति के मूल्य के अलावा कई अलग-अलग चर पर निर्भर करते हैं, इसलिए उनका मूल्य जटिल होता है। उपयोग में कई मूल्य निर्धारण मॉडल हैं, यद्यपि सभी अनिवार्य रूप से तर्कसंगत मूल्य निर्धारण # विकल्प (यानी जोखिम तटस्थता), धन, विकल्प समय मूल्य और पुट-कॉल समता की अवधारणाओं को सम्मिलित करते हैं।
मूल्यांकन स्वयं (1) अंतर्निहित मूल्य के व्यवहार के एक मॉडल (प्रक्रिया) को (2) एक गणितीय विधि से जोड़ता है जो कल्पित व्यवहार के एक फलन के रूप में अधिमूल्य लौटाता है।
(1) में मॉडल इक्विटी के लिए (प्रोटोटाइपिकल) ब्लैक-स्कोल्स मॉडल से लेकर, ब्याज दरों के लिए हीथ-जारो-मॉर्टन ढांचे तक, हेस्टन मॉडल तक हैं जहां अस्थिरता को ही स्टोकेस्टिक माना जाता है। यहां विभिन्न मॉडलों की सूची के लिए संपत्ति मूल्य निर्धारण देखें।
जहां तक (2) कार्यान्वयन का संबंध है, सबसे आम दृष्टिकोण हैं:
- बंद-रूप विश्लेषणात्मक मॉडल: इनमें से सबसे बुनियादी ब्लैक-स्कोल्स फॉर्मूला और काला मॉडल हैं।
- जाली मॉडल (पेड़): द्विपद विकल्प मूल्य निर्धारण मॉडल; त्रिपद वृक्ष
- विकल्प मूल्य निर्धारण के लिए मोंटे कार्लो तरीके
- विकल्प मूल्य निर्धारण के लिए सीमित अंतर विधियाँ
- हाल ही में,, स्थानीय अस्थिरता और स्टोकेस्टिक अस्थिरता परिवारों में अस्थिरता सतह-जागरूक मॉडल।
ब्लैक मॉडल ब्लैक-स्कोल्स को इक्विटी से वायदा, बांड विकल्प, स्वैप्शन, (यानी स्वैप (अर्थव्यवस्था) पर विकल्प), और ब्याज दर कैप और फ्लोर (प्रभावी रूप से ब्याज दर पर विकल्प) पर विकल्प तक विस्तारित करता है।
अंतिम चार संख्यात्मक विधियाँ हैं, जिनके लिए आमतौर पर परिष्कृत डेरिवेटिव-सॉफ़्टवेयर या MATLAB जैसे संख्यात्मक-पैकेज की आवश्यकता होती है। इनके लिए, परिणाम की गणना निम्नानुसार की जाती है, भले ही संख्याएँ भिन्न हों: (i) चयनित मॉडल के माध्यम से समय के साथ अंतर्निहित कीमत के लिए एक जोखिम-तटस्थ वितरण बनाया जाता है (गैर-यूरोपीय विकल्पों के लिए, कम से कम प्रत्येक अभ्यास तिथि पर)। , जैसा कि बाजार में कैलिब्रेट किया गया है;; (ii) इनमें से प्रत्येक कीमत के लिए विकल्प का भुगतान-मूल्य इनमें से प्रत्येक समय पर निर्धारित किया जाता है; (iii) भुगतान को जोखिम-मुक्त दर पर छूट दी जाती है, और फिर औसत किया जाता है। विश्लेषणात्मक तरीकों के लिए, इन्हें एक एकल संभाव्य परिणाम में समाहित कर दिया जाता है; देखना Black–Scholes model § Interpretation.
पोस्ट संकट
2007-2008 के अर्थव्यवस्थाीय संकट के बाद, प्रतिपक्ष क्रेडिट जोखिम विचारों को मूल्यांकन में सम्मिलित किया जाना चाहिए, जो पहले पूरी तरह से जोखिम तटस्थ दुनिया में किया गया था। फिर हैं [2] पुनः विकल्प मूल्य निर्धारण के तीन प्रमुख विकास:
- छूट के लिए, रात्रिकालीन अनुक्रमित स्वैप (ओआईएस) वक्र का उपयोग अब आम तौर पर जोखिम मुक्त दर के लिए किया जाता है, जैसा कि पहले की तरह LIBOR के विपरीत है (Libor#LIBOR समाप्ति और 2021 के अंत तक विकल्प उपलब्ध हैं, जिसमें सुरक्षित रात्रिकालीन अर्थव्यवस्थापोषण दर और प्रतिस्थापन सम्मिलित हैं) टोक्यो ओवरनाइट औसत दर); देखना Interest rate swap § Valuation and pricing. संबंधित रूप से, बहु-वक्र ढांचा अब ब्याज दर डेरिवेटिव के मूल्यांकन और निश्चित आय विश्लेषण के लिए आम तौर पर मानक है।
- जैसा कि उल्लेख किया गया है, विकल्प मूल्य निर्धारण मॉडल को अस्थिरता सतह पर विचार करना चाहिए, और संख्याओं को फिर शून्य स्टोचैस्टिक अस्थिरता # अंशांकन और अनुमान की आवश्यकता होगी, जैसे कि देखी गई कीमतें नई कीमतों और / या ग्रीक (अर्थव्यवस्था) से पहले वापस कर दी जाती हैं। यूनानियों की गणना की जा सकती है। ऐसा करने के लिए, बैंक स्थानीय अस्थिरता|स्थानीय- या स्टोकेस्टिक अस्थिरता मॉडल लागू करेंगे, जैसे कि ऊपर उल्लिखित हेस्टन (या कम सामान्य, निहित द्विपद वृक्ष)।
- जोखिम तटस्थ मूल्य, चाहे कितना भी निर्धारित किया गया हो, फिर क्रेडिट मूल्यांकन समायोजन, या सीवीए के साथ-साथ अन्य XVA के माध्यम से प्रतिपक्ष क्रेडिट जोखिम के प्रभाव के लिए समायोजित किया जाता है जिसे भी जोड़ा जा सकता है।
संदर्भ
- ↑ "Extrinsic Value Definition | Britannica Money". www.britannica.com (in English). Retrieved 2023-05-09.
- ↑ Derivatives Pricing after the 2007-2008 Crisis: How the Crisis Changed the Pricing Approach, Didier Kouokap Youmbi, Bank of England – Prudential Regulation Authority