डेलिग्ने कोहोमोलॉजी: Difference between revisions

From Vigyanwiki
No edit summary
Line 53: Line 53:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 08/07/2023]]
[[Category:Created On 08/07/2023]]
[[Category:Vigyan Ready]]

Revision as of 11:23, 20 July 2023

गणित में, डेलिग्ने कोहोमोलॉजी जटिल विविधता के डेलिग्ने कॉम्प्लेक्स की हाइपरकोहोमोलॉजी है। इसे पियरे डेलिग्ने द्वारा लगभग 1972 में अप्रकाशित कार्य में बीजगणितीय विविधता के लिए कोहोलॉजी सिद्धांत के रूप में प्रस्तुत किया गया था जिसमें सामान्य कोहोलॉजी और मध्यवर्ती जैकोबियन दोनों सम्मिलित हैं।

अतः डेलिग्ने कोहोमोलॉजी के परिचयात्मक विवरण के लिए देखें Brylinski (2008, section 1.5), Esnault & Viehweg (1988), और Gomi (2009, section 2).

परिभाषा

विश्लेषणात्मक डेलिग्ने कॉम्प्लेक्स Z(p)D, an जटिल विश्लेषणात्मक मैनिफोल्ड पर X है।

जहाँ Z(p) = (2π i)'Z'. संदर्भ के आधार पर, या तो स्मूथ का जटिल रूप है (अर्थात , सी) क्रमशः विभेदक रूप या होलोमोर्फिक रूप दर्शाया गया है ।

इस प्रकार से डेलिग्ने कोहोमोलॉजी H q
D,an
 
(X,Z(p))
डेलिग्ने कॉम्प्लेक्स की q-th हाइपरकोहोमोलॉजी है। इस कॉम्प्लेक्स की वैकल्पिक परिभाषा आरेख की होमोटॉपी सीमा के रूप में दी गई है[1]

गुण

इस प्रकार से डेलिग्ने कोहोमोलोजी समूह H q
D
 
(X,Z(p))
को ज्यामितीय रूप से वर्णित किया जा सकता है, विशेषकर निम्न डिग्री में। p = 0 के लिए, यह परिभाषा के अनुसार, q-th एकवचन कोहोमोलोजी समूह (Z-गुणांक के साथ) से सहमत है। q = 2 और p = 1 के लिए, यह Xपर स्मूथ (या होलोमोर्फिक, संदर्भ के आधार पर) प्रिंसिपल C×-बंडलों के आइसोमोर्फिज्म वर्गों के समूह के लिए आइसोमोर्फिक है। p = q = 2, के लिए, यह आइसोमोर्फिज्म का समूह है संयोजन के साथ C×-बंडलों की कक्षाएं। q = 3 और p = 2 या 3 के लिए, गेर्ब्स के संदर्भ में विवरण उपलब्ध हैं (ब्रायलिंस्की (2008))। इसे पुनरावृत्त वर्गीकृत स्थानों और उन पर संयोजन के संदर्भ में उच्च डिग्री में विवरण के लिए सामान्यीकृत किया गया है (गजेर (1997)).

हॉज वर्गों के साथ संयोजन

याद रखें कि उपसमूह है इंटीग्रल कोहोमोलॉजी कक्षाओं में हॉज कक्षाओं के समूह को कहा जाता है। डेलिग्ने-कोहोमोलॉजी, उनके इंटरमीडिएट जैकोबियन और हॉज कक्षाओं के इस समूह से संबंधित स्पष्ट अनुक्रम संक्षिप्त स्पष्ट अनुक्रम के रूप में है।

अनुप्रयोग

डेलिग्ने कोहोमोलॉजी का उपयोग L-फलन के विशेष मूल्यों पर बीलिन्सन अनुमान तैयार करने के लिए किया जाता है।

विवरण

इस प्रकार से किसी भी सममित स्पेक्ट्रम के लिए परिभाषित डेलिग्ने-कोहोमोलॉजी का एक विस्तार है[1] जहां विषम के लिए है जिसकी तुलना जटिल विश्लेषणात्मक किस्मों पर सामान्य डेलिग्ने कोहोमोलॉजी से की जा सकती है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Hopkins, Michael J.; Quick, Gereon (March 2015). "हॉज ने जटिल बोर्डिज़्म को फ़िल्टर किया". Journal of Topology. 8 (1): 147–183. arXiv:1212.2173. doi:10.1112/jtopol/jtu021. S2CID 16757713.