अंतर्विरोध समरूपता: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[टोपोलॉजी]] में, गणित की | [[टोपोलॉजी]] में, गणित की शाखा, '''प्रतिच्छेदन समरूपता''' एकवचन समरूपता का एनालॉग है जो विशेष रूप से सिंगुलैरिटी सिद्धांत के अध्ययन के लिए उपयुक्त है, जिसे 1974 के पतन में [[मार्क गोरेस्की]] और रॉबर्ट मैकफर्सन (गणितज्ञ) द्वारा खोजा गया था और अंतिम कुछ वर्षों में उनके द्वारा विकसित किए गए एकवचन स्थानों के अध्ययन के लिए उपयुक्त किया गया है। | ||
इस प्रकार से कज़दान-लुस्ज़टिग अनुमान और रीमैन-हिल्बर्ट पत्राचार को प्रमाणित | इस प्रकार से कज़दान-लुस्ज़टिग अनुमान और रीमैन-हिल्बर्ट पत्राचार को प्रमाणित करने के लिए प्रतिच्छेदन को समरूपता का उपयोग किया गया था। इसका ''L''<sup>2</sup> को समरूपता से घनिष्ट संबंध है। | ||
==गोरेस्की-मैकफ़र्सन दृष्टिकोण== | ==गोरेस्की-मैकफ़र्सन दृष्टिकोण== | ||
कॉम्पैक्ट, ओरिएंटेड, कनेक्टेड, ''n''-आयामी | कॉम्पैक्ट, ओरिएंटेड, कनेक्टेड, ''n''-आयामी मैनिफोल्ड ''X'' के समरूपता समूहों में एक मौलिक स्थान होती है जिसे पोंकारे द्वैत कहा जाता है: [[ द्विरेखीय रूप |द्विरेखीय रूप]] होता है | ||
:<math> H_i(X,\Q) \times H_{n-i}(X,\Q) \to H_0(X,\Q) \cong \Q.</math> | :<math> H_i(X,\Q) \times H_{n-i}(X,\Q) \to H_0(X,\Q) \cong \Q. | ||
चूंकि | </math> | ||
चूंकि शास्त्रीय रूप से - उदाहरण के लिए, हेनरी पोंकारे की ओर वापस जाएं - इस द्वंद्व को [[प्रतिच्छेदन सिद्धांत]] के संदर्भ में दर्शाया गया था। का अवयव है: | |||
:<math>H_j(X)</math> | :<math>H_j(X)</math> | ||
''इस प्रकार से j''-आयामी चक्र द्वारा दर्शाया गया है। यदि | ''इस प्रकार से j''-आयामी चक्र द्वारा दर्शाया गया है। यदि i-आयामी और <math>(n-i)</math>-आयामी चक्र [[सामान्य स्थिति]] में हैं, तो उनका प्रतिच्छेदन बिंदुओं का सीमित संग्रह है। ''X'' के अभिविन्यास का उपयोग करके इनमें से प्रत्येक बिंदु पर चिन्ह निर्दिष्ट किया जा सकता है; दूसरे शब्दों में प्रतिच्छेदन 0-आयामी चक्र उत्पन्न करता है। कोई यह प्रमाणित कर सकता है कि इस चक्र का समरूपता वर्ग केवल मूल i- और <math>(n-i)</math>-आयामी चक्र; के समरूपता वर्गों पर निर्भर करता है कोई यह भी प्रमाणित कर सकता है कि यह जोड़ी एकदम सही जोड़ी है। | ||
जब ''X'' | जब ''X'' में विलक्षणताएं होती हैं - अर्थात , जब अंतरिक्ष में ऐसे स्थान होते हैं जो <math>\R^n</math> की तरह नहीं दिखते हैं - तो ये विचार टूट जाते हैं। इस प्रकार से उदाहरण के लिए, चक्रों के लिए "सामान्य स्थिति" की धारणा को समझना अब संभव नहीं है।चूंकि गोरेस्की और मैकफर्सन ने "स्वीकार्य" चक्रों का एक वर्ग प्रस्तुत किया जिसके लिए सामान्य स्थिति समझ में आती है। उन्होंने स्वीकार्य चक्रों के लिए एक तुल्यता संबंध प्रस्तुत किया (जहां केवल "स्वीकार्य सीमाएं" शून्य के समान हैं), और समूह कहा जाता है | ||
:<math>IH_i(X)</math> | :<math>IH_i(X)</math> | ||
''i''-आयामी स्वीकार्य चक्र मॉड्यूलो के इस तुल्यता संबंध "प्रतिच्छेदन समरूपता"। उन्होंने इसके अतिरिक्त | ''i''-आयामी स्वीकार्य चक्र मॉड्यूलो के इस तुल्यता संबंध "प्रतिच्छेदन समरूपता"। उन्होंने इसके अतिरिक्त दिखाया कि i- और का प्रतिच्छेदन <math>(n-i)</math>-आयामी स्वीकार्य चक्र (सामान्य) शून्य-चक्र देता है जिसका समरूपता वर्ग ठीक प्रकार से से परिभाषित किया गया है। | ||
===स्तरीकरण=== | ===स्तरीकरण=== | ||
इस प्रकार से प्रतिच्छेदन | इस प्रकार से प्रतिच्छेदन समरूपता को मूल रूप से टोपोलॉजिकल रूप से स्तरीकृत स्थान के साथ उपयुक्त स्थानों पर परिभाषित किया गया था, चूंकि समूह सदैव स्तरीकरण की विकल्प से स्वतंत्र होते हैं। और स्तरीकृत स्थानों की कई अलग-अलग परिभाषाएँ होती हैं। प्रतिच्छेदन समरूपता के लिए सुविधाजनक ''n''-आयामी 'टोपोलॉजिकल स्यूडोमैनिफोल्ड' है। यह ([[पैराकॉम्पैक्ट स्पेस]], [[हॉसडॉर्फ़ स्थान]]) स्पेस ''X'' है जिसमें निस्पंदन है | ||
:<math> \emptyset = X_{-1} \subset X_0 \subset X_1 \subset \cdots \subset X_n = X </math> | :<math> \emptyset = X_{-1} \subset X_0 \subset X_1 \subset \cdots \subset X_n = X | ||
</math> | |||
संवृत उप-स्थानों द्वारा X का इस प्रकार है : | संवृत उप-स्थानों द्वारा X का इस प्रकार है : | ||
*प्रत्येक i के लिए और <math>X_i \setminus X_{i-1}</math> के प्रत्येक बिंदु x के लिए, X में x का एक पड़ोस <math> U \subset X </math>, एक कॉम्पैक्ट <math>(n-i-1)</math>आयामी स्तरीकृत स्थान ''L'' | *प्रत्येक i के लिए और <math>X_i \setminus X_{i-1}</math> के प्रत्येक बिंदु x के लिए, X में x का एक पड़ोस <math> U \subset X </math>, एक कॉम्पैक्ट <math>(n-i-1)</math>आयामी स्तरीकृत स्थान ''L'' और एक निस्पंदन-संरक्षित होमोमोर्फिज्म <math> U \cong \R^i \times CL</math> उपस्तिथ है। और यहां <math>CL</math>, ''L'' पर विवृत शंकु है। | ||
*<math>X_{n-1} = X_{n-2}</math>. | *<math>X_{n-1} = X_{n-2}</math>. | ||
*<math>X\setminus X_{n-1}</math> X में सघन है. | *<math>X\setminus X_{n-1}</math> X में सघन है. | ||
यदि X | यदि X टोपोलॉजिकल स्यूडोमेनिफोल्ड है, तो X का i-आयामी 'स्ट्रेटम' स्थान <math>X_i \setminus X_{i-1}</math> है . | ||
उदाहरण: | उदाहरण: | ||
*यदि यदि ''X'' एक ''n''-डायमेंशनल सिंप्लेक्स कॉम्प्लेक्स है, जैसे कि प्रत्येक सिम्प्लेक्स एक ''n''-सिंप्लेक्स में समाहित होता है और ''n''-1 सिम्प्लेक्स बिल्कुल दो ''n''-सिंप्लेक्स में समाहित होता है, तो ''X'' | *यदि यदि ''X'' एक ''n''-डायमेंशनल सिंप्लेक्स कॉम्प्लेक्स है, जैसे कि प्रत्येक सिम्प्लेक्स एक ''n''-सिंप्लेक्स में समाहित होता है और ''n''-1 सिम्प्लेक्स बिल्कुल दो ''n''-सिंप्लेक्स में समाहित होता है, तो ''X'' का अंतर्निहित स्थान एक टोपोलॉजिकल स्यूडोमैनिफोल्ड है। | ||
*यदि ''X'' | *यदि ''X'' कोई जटिल अर्ध-प्रक्षेपी विविधता है (संभवतः विलक्षणताओं के साथ) तो इसका अंतर्निहित स्थान एक टोपोलॉजिकल स्यूडोमैनिफोल्ड है, जिसमें सभी स्तर समान आयाम के हैं। | ||
===विकृतियाँ === | ===विकृतियाँ === | ||
Line 40: | Line 42: | ||
*<math>\mathbf{p}(k+1) - \mathbf{p}(k) \in \{0,1\}</math>. | *<math>\mathbf{p}(k+1) - \mathbf{p}(k) \in \{0,1\}</math>. | ||
दूसरी स्थिति का उपयोग स्तरीकरण के परिवर्तन के तहत प्रतिच्छेदन समरूपता समूहों की अपरिवर्तनीयता को दर्शाने | दूसरी स्थिति का उपयोग स्तरीकरण के परिवर्तन के तहत प्रतिच्छेदन समरूपता समूहों की अपरिवर्तनीयता को दर्शाने के लिए किया जाता है। | ||
पूरक विकृति <math>\mathbf{q}</math> का <math>\mathbf{p}</math> के साथ | पूरक विकृति <math>\mathbf{q}</math> का <math>\mathbf{p}</math> के साथ है | ||
:<math>\mathbf{p}(k)+\mathbf{q}(k)=k-2</math>. | :<math>\mathbf{p}(k)+\mathbf{q}(k)=k-2</math>. | ||
Line 49: | Line 51: | ||
==== विकृतियों के उदाहरण ==== | ==== विकृतियों के उदाहरण ==== | ||
*न्यूनतम विकृति में | *न्यूनतम विकृति में <math>p(k) = 0</math> है . इसका पूरक <math>q(k)=k-2</math> अधिकतम विकृति है . | ||
*(निचली) मध्य विकृति ''m'' को <math>(k-2)/2</math> के पूर्णांक भाग <math>m(k)=[(k-2)/2]</math> द्वारा परिभाषित किया गया है। इसका पूरक ऊपरी मध्य विकृति है, जिसका मान <math>[(k-1)/2]</math> है। यदि विकृति निर्दिष्ट नहीं है, तो सामान्यतः इसका प्रकार के | *(निचली) मध्य विकृति ''m'' को <math>(k-2)/2</math> के पूर्णांक भाग <math>m(k)=[(k-2)/2]</math> द्वारा परिभाषित किया गया है। इसका पूरक ऊपरी मध्य विकृति है, जिसका मान <math>[(k-1)/2]</math> है। यदि विकृति निर्दिष्ट नहीं है, तो सामान्यतः इसका प्रकार के निम्न मध्य विकृति है। यदि किसी स्थान को सम आयाम के सभी स्तरों (उदाहरण के लिए, किसी भी जटिल विविधता) के साथ स्तरीकृत किया जा सकता है, तो प्रतिच्छेदन समरूपता समूह विषम पूर्णांकों पर विकृति के मूल्यों से स्वतंत्र होते हैं, इसलिए ऊपरी और निचले मध्य विकृतियाँ समतुल्य होती हैं। | ||
===एकवचन प्रतिच्छेदन समरूपता=== | ===एकवचन प्रतिच्छेदन समरूपता=== | ||
अतः कुछ स्तरीकरण और | अतः कुछ स्तरीकरण और विकृति ''p'' के साथ आयाम ''n'' के टोपोलॉजिकल स्यूडोमैनिफोल्ड ''X'' को ठीक करें। | ||
मानक सिम्प्लेक्स ''i''-सिंप्लेक्स से | मानक सिम्प्लेक्स ''i''-सिंप्लेक्स से चित्र σ <math>\Delta^i</math> यदि ''X'' (एकवचन सिम्पलेक्स) को 'स्वीकार्य' कहा जाता है | ||
:<math>\sigma^{-1} \left (X_{n-k}\setminus X_{n-k-1} \right)</math> | :<math>\sigma^{-1} \left (X_{n-k}\setminus X_{n-k-1} \right)</math> | ||
<math>\Delta^i</math> के <math>i-k+p(k)</math> रूप | <math>\Delta^i</math> के <math>i-k+p(k)</math> रूप में समाहित है | ||
कॉम्प्लेक्स <math>I^p(X)</math> ''X'' | कॉम्प्लेक्स <math>I^p(X)</math> ''X'' पर एकवचन श्रृंखलाओं के परिसर का उप-संकुल है जिसमें सभी एकवचन श्रृंखलाएं सम्मिलित हैं जैसे कि श्रृंखला और इसकी सीमा दोनों स्वीकार्य एकवचन सिंप्लेक्स के रैखिक संयोजन हैं। एकवचन प्रतिच्छेदन समरूपता समूह (विकृतता ''p'' के साथ) उपयोग किया जाता है। | ||
:<math>I^pH_i(X)</math> | :<math>I^pH_i(X)</math> | ||
इस परिसर के समरूपता समूह हैं। | इस परिसर के समरूपता समूह हैं। | ||
यदि ''X'' | यदि ''X'' में स्तरीकरण के साथ संगत त्रिकोण है, तो सरल प्रतिच्छेदन समरूपता समूहों को समान विधि से परिभाषित किया जा सकता है, और स्वाभाविक रूप से एकवचन प्रतिच्छेदन समरूपता समूहों के लिए समरूपी हैं। | ||
इस प्रकार से प्रतिच्छेदन गृहविज्ञान समूह ''X'' के स्तरीकरण की विकल्प | इस प्रकार से प्रतिच्छेदन गृहविज्ञान समूह ''X'' के स्तरीकरण की विकल्प से स्वतंत्र होते हैं। | ||
यदि ''X'' | यदि ''X'' टोपोलॉजिकल मैनिफोल्ड है, तो प्रतिच्छेदन समरूपता समूह (किसी भी विकृति के लिए) सामान्य समरूपता समूहों के समान होते हैं। | ||
==छोटे संकल्प== | ==छोटे संकल्प== | ||
विलक्षणताओं का | विलक्षणताओं का संकल्प | ||
:<math>f:X\to Y</math> | :<math>f:X\to Y</math> | ||
जटिल किस्म के Y को 'छोटा रिज़ॉल्यूशन' कहा जाता है यदि प्रत्येक r > 0 के लिए, Y के बिंदुओं का स्थान जहां फाइबर का आयाम r है, कोड आयाम 2r से अधिक है। सामान्यतः | जटिल किस्म के Y को 'छोटा रिज़ॉल्यूशन' कहा जाता है यदि प्रत्येक r > 0 के लिए, Y के बिंदुओं का स्थान जहां फाइबर का आयाम r है, कोड आयाम 2r से अधिक है। सामान्यतः कहें तो इसको इस प्रकार से दर्शाया गया है कि अधिकांश फाइबर छोटे होते हैं। इस स्तिथियों में रूपवाद ''X'' के (प्रतिच्छेदन) समरूपता से वाई के प्रतिच्छेदन समरूपता (मध्यम विकृति के साथ) तक समरूपता को प्रेरित करता है। | ||
अतः दो अलग-अलग छोटे रिज़ॉल्यूशन वाली | अतः दो अलग-अलग छोटे रिज़ॉल्यूशन वाली किस्म होती है, जिनकी सह-समरूपता पर अलग-अलग वलय संरचनाएं होती हैं, जिससे पता चलता है कि सामान्यतः प्रतिच्छेदन (सह) समरूपता पर कोई प्राकृतिक वलय संरचना नहीं होती है। | ||
==शीव्स सिद्धांत== | ==शीव्स सिद्धांत== | ||
इस प्रकार से प्रतिच्छेदन | इस प्रकार से प्रतिच्छेदन को समरूपता के लिए डेलिग्ने का सूत्र दर्शाया गया है कि | ||
:<math>I^pH_{n-i}(X) = I^pH^i(X) = H^{i}_c(IC_p(X))</math> | :<math>I^pH_{n-i}(X) = I^pH^i(X) = H^{i}_c(IC_p(X))</math> | ||
जहां <math>IC_p(X)</math> प्रतिच्छेदन परिसर है, ''X'' | जहां <math>IC_p(X)</math> प्रतिच्छेदन परिसर है, ''X'' पर रचनात्मक शीव्स का एक [[निर्माण योग्य शीफ|निर्माण योग्य]] परिसर (व्युत्पन्न श्रेणी के एक तत्व के रूप में माना जाता है, इसलिए दाईं ओर कोहोलॉजी का मतलब कॉम्प्लेक्स की [[हाइपरकोहोमोलॉजी|हाइपरको समरूपता]] है)। कॉम्प्लेक्स <math>IC_p(X)</math> को विवृत समुच्चय <math>X\setminus X_{n-k}</math>पर स्थिर शीव्स से प्रारंभ करके और बार-बार इसे उच्च विवृत समुच्चय <math>X\setminus X_{n-2}</math> तक विस्तारित करके और इसके पश्चात व्युत्पन्न श्रेणी में छोटा करके दिया जाता है; अधिक स्पष्ट रूप से यह डेलिग्ने के सूत्र द्वारा दिया गया है | ||
:<math>IC_p(X) = \tau_{\le p(n)-n}\mathbf{R}i_{n*}\tau_{\le p(n-1)-n}\mathbf{R}i_{n-1*}\cdots\tau_{\le p(2)-n}\mathbf{R}i_{2*} \Complex_{X\setminus X_{n-2}}</math> | :<math>IC_p(X) = \tau_{\le p(n)-n}\mathbf{R}i_{n*}\tau_{\le p(n-1)-n}\mathbf{R}i_{n-1*}\cdots\tau_{\le p(2)-n}\mathbf{R}i_{2*} \Complex_{X\setminus X_{n-2}}</math> | ||
जहाँ | जहाँ <math>\tau_{\le p}</math> व्युत्पन्न श्रेणी में ट्रंकेशन फ़ैक्टर <math>i_k</math> है, <math>X\setminus X_{n-k}</math> में <math>X\setminus X_{n-k-1}</math> का समावेश है ,<math>X\setminus X_{n-2}</math> और <math>\Complex_{X\setminus X_{n-2}}</math> निरंतर शीव्स प्रारंभ है .<ref>Warning: there is more than one convention for the way that the perversity enters Deligne's construction: the numbers <math>p(k)-n</math> are sometimes written as <math>p(k)</math>.</ref> | ||
स्थिर शीव्स को प्रारंभ | स्थिर शीव्स को प्रारंभ करके <math>X\setminus X_{n-2}</math> स्थानीय प्रणाली के साथ, कोई स्थानीय प्रणाली में गुणांकों के साथ प्रतिच्छेदन सहसंगति को परिभाषित करने के लिए डेलिग्ने के सूत्र का उपयोग कर सकता है। | ||
=== उदाहरण === | === उदाहरण === | ||
स्थूल | स्थूल [[अण्डाकार वक्र]] <math>X \subset \mathbb{CP}^2</math> दिया गया है घन सजातीय बहुपद <math>f</math> द्वारा परिभाषित ,<ref>{{Cite book|url=https://www.worldcat.org/oclc/861677360|title=हॉज सिद्धांत|others=E. Cattani, Fouad El Zein, Phillip Griffiths, Dũng Tráng Lê., eds.|date=21 July 2014|isbn=978-0-691-16134-1|location=Princeton|oclc=861677360|archive-url=https://web.archive.org/web/20200815041224/https://webusers.imj-prg.fr/~fouad.elzein/Hodge.pdf|archive-date=15 Aug 2020}}, pp. 281-282</ref> जैसे कि <math>x^3 + y^3 + z^3</math>, एफ़िन शंकु <math>\mathbb{V}(f) \subset \mathbb{C}^3</math> तब से मूल में पृथक विलक्षणता है <math>f(0) = 0</math> और सभी आंशिक व्युत्पन्न <math>\partial_if(0) = 0</math> विलुप्त होना है । ऐसा इसलिए है क्योंकि यह डिग्री में सजातीय है <math>3</math>, और व्युत्पन्न डिग्री 2 के सजातीय हैं। समुच्चय <math>U = \mathbb{V}(f) -\{0\}</math> और <math>i:U \hookrightarrow X</math> समावेशन मानचित्र, प्रतिच्छेदन परिसर <math>IC_{\mathbb{V}(f)}</math> के रूप में दिया गया है<math display="block">\tau_{\leq 1} \mathbf{R}i_*\mathbb{Q}_U</math> | ||
इसकी गणना कोहोलॉजी के आधारों को देखकर स्पष्ट रूप से की जा सकती है। पर <math>p \in \mathbb{V}(f)</math> जहाँ | इसकी गणना कोहोलॉजी के आधारों को देखकर स्पष्ट रूप से की जा सकती है। पर <math>p \in \mathbb{V}(f)</math> जहाँ <math>p \neq 0</math> व्युत्पन्न पुशफॉरवर्ड चिकने बिंदु पर पहचान मानचित्र है, इसलिए एकमात्र संभावित कोहोलॉजी डिग्री में केंद्रित है <math>0</math>. के लिए <math>p = 0</math> तब से कोहोलॉजी अधिक रोचक है | ||
<math display="block">\mathbf{R}^ki_*\mathbb{Q}_U|_{p=0} = \mathop{\underset{V \subset U}\text{colim}} H^k(V; \mathbb{Q})</math> | <math display="block">\mathbf{R}^ki_*\mathbb{Q}_U|_{p=0} = \mathop{\underset{V \subset U}\text{colim}} H^k(V; \mathbb{Q})</math> | ||
जहाँ <math>V</math> के लिए <math>i(V)</math> | जहाँ <math>V</math> के लिए <math>i(V)</math> समापन मूल <math>p=0</math> सम्मिलित है . चूँकि ऐसा कोई भी <math>V</math> विवृत डिस्क के प्रतिच्छेदन पर विचार करके इसे <math>\mathbb{C}^3</math> साथ <math>U</math> परिष्कृत किया जा सकता है, हम केवल <math>H^k(U;\mathbb{Q})</math> सह-समरूपता की गणना कर सकते हैं. यह देखकर निरीक्षण करके किया जा सकता है कि <math>U</math>अण्डाकार वक्र <math>X</math>, [[हाइपरप्लेन बंडल]], पर एक <math>\mathbb{C}^*</math> बंडल है, और [[वांग अनुक्रम]] समरूपता समूह देता है<math display="block">\begin{align} | ||
H^0(U;\mathbb{Q})&\cong H^0(X;\mathbb{Q})=\mathbb{Q} \\ | H^0(U;\mathbb{Q})&\cong H^0(X;\mathbb{Q})=\mathbb{Q} \\ | ||
H^1(U;\mathbb{Q})&\cong H^1(X;\mathbb{Q})=\mathbb{Q}^{\oplus 2}\\ | H^1(U;\mathbb{Q})&\cong H^1(X;\mathbb{Q})=\mathbb{Q}^{\oplus 2}\\ | ||
H^2(U;\mathbb{Q})&\cong H^1(X;\mathbb{Q})=\mathbb{Q}^{\oplus 2} \\ | H^2(U;\mathbb{Q})&\cong H^1(X;\mathbb{Q})=\mathbb{Q}^{\oplus 2} \\ | ||
H^3(U;\mathbb{Q})&\cong H^2(X;\mathbb{Q})=\mathbb{Q} \\ | H^3(U;\mathbb{Q})&\cong H^2(X;\mathbb{Q})=\mathbb{Q} \\ | ||
\end{align}</math>इसलिए को समरूपता | \end{align}</math>इसलिए को समरूपता डंठल पर एकत्र हो <math>p=0</math> जाती है <math display="block">\begin{matrix} | ||
\mathcal{H}^2\left(\mathbf{R}i_*\mathbb{Q}_U|_{p=0}\right) & = & \mathbb{Q}_{p=0} \\ | \mathcal{H}^2\left(\mathbf{R}i_*\mathbb{Q}_U|_{p=0}\right) & = & \mathbb{Q}_{p=0} \\ | ||
\mathcal{H}^1\left(\mathbf{R}i_*\mathbb{Q}_U|_{p=0}\right) & = & \mathbb{Q}_{p=0}^{\oplus 2} \\ | \mathcal{H}^1\left(\mathbf{R}i_*\mathbb{Q}_U|_{p=0}\right) & = & \mathbb{Q}_{p=0}^{\oplus 2} \\ | ||
\mathcal{H}^0\left(\mathbf{R}i_*\mathbb{Q}_U|_{p=0}\right) & = & \mathbb{Q}_{p=0} | \mathcal{H}^0\left(\mathbf{R}i_*\mathbb{Q}_U|_{p=0}\right) & = & \mathbb{Q}_{p=0} | ||
\end{matrix}</math> | \end{matrix}</math> | ||
इसे छोटा करने से गैर-तुच्छ कोहोलॉजी शेव्स <math>\mathcal{H}^0,\mathcal{H}^1</math> मिलते हैं , इसलिए प्रतिच्छेदन | इसे छोटा करने से गैर-तुच्छ कोहोलॉजी शेव्स <math>\mathcal{H}^0,\mathcal{H}^1</math> मिलते हैं , इसलिए प्रतिच्छेदन परिसर <math>IC_{\mathbb{V}(f)}</math> कोहोमोलोजी शेव्स हैं | ||
<math display="block">\begin{matrix} | <math display="block">\begin{matrix} | ||
\mathcal{H}^0(IC_{\mathbb{V}(f)}) & = & \mathbb{Q}_{\mathbb{V}(f)} \\ | \mathcal{H}^0(IC_{\mathbb{V}(f)}) & = & \mathbb{Q}_{\mathbb{V}(f)} \\ | ||
Line 109: | Line 111: | ||
== जटिल IC(X) के गुण == | == जटिल IC(X) के गुण == | ||
जटिल IC<sub>''p''</sub>(''X'') में निम्नलिखित गुण हैं | जटिल IC<sub>''p''</sub>(''X'') में निम्नलिखित गुण हैं | ||
*संहिता 2 के कुछ संवृत समुच्चय | *संहिता 2 के कुछ संवृत समुच्चय के पूरक पर, हमारे पास है | ||
:<math>H^i(j_x^* IC_p) </math> i + m ≠ 0 के लिए 0 है, और i = −m के लिए समूह स्थिर स्थानीय प्रणाली 'C' बनाते हैं | :<math>H^i(j_x^* IC_p) </math> i + m ≠ 0 के लिए 0 है, और i = −m के लिए समूह स्थिर स्थानीय प्रणाली 'C' बनाते हैं | ||
*<math>H^i(j_x^* IC_p) </math> i + m < 0 के लिए 0 है | *<math>H^i(j_x^* IC_p) </math> i + m < 0 के लिए 0 है | ||
*यदि ''i'' > 0 तो <math>H^{-i}(j_x^* IC_p) </math> p(a) ≥ m − i के साथ सबसे छोटे a के लिए कम से कम कोड आयाम के | *यदि ''i'' > 0 तो <math>H^{-i}(j_x^* IC_p) </math> p(a) ≥ m − i के साथ सबसे छोटे a के लिए कम से कम कोड आयाम के समुच्चय को छोड़कर शून्य है | ||
*यदि ''i'' > 0 तो <math>H^{-i}(j_x^! IC_p) </math> q(a) ≥(i) के साथ सबसे छोटे a के लिए कम से कम a कोड आयाम के समुच्चय | *यदि ''i'' > 0 तो <math>H^{-i}(j_x^! IC_p) </math> q(a) ≥(i) के साथ सबसे छोटे a के लिए कम से कम a कोड आयाम के समुच्चय को छोड़कर शून्य है | ||
हमेशा की तरह, q, p की पूरक विकृति है। इसके अतिरिक्त , व्युत्पन्न श्रेणी में समरूपता तक, इन स्थितियों द्वारा जटिल को विशिष्ट रूप से चित्रित किया जाता है। स्थितियाँ स्तरीकरण की विकल्प | हमेशा की तरह, q, p की पूरक विकृति है। इसके अतिरिक्त , व्युत्पन्न श्रेणी में समरूपता तक, इन स्थितियों द्वारा जटिल को विशिष्ट रूप से चित्रित किया जाता है। स्थितियाँ स्तरीकरण की विकल्प पर निर्भर नहीं होती हैं, इसलिए इससे पता चलता है कि प्रतिच्छेदन सहसंबद्धता स्तरीकरण की विकल्प पर भी निर्भर नहीं होती है। | ||
वर्डियर द्वंद्व व्युत्पन्न श्रेणी में | वर्डियर द्वंद्व व्युत्पन्न श्रेणी में IC<sub>''p''</sub> को ''n'' = dim(''X'') द्वारा स्थानांतरित करके IC<sub>''q''</sub> में ले जाता है। | ||
==यह भी देखें== | ==यह भी देखें== |
Revision as of 19:41, 13 July 2023
टोपोलॉजी में, गणित की शाखा, प्रतिच्छेदन समरूपता एकवचन समरूपता का एनालॉग है जो विशेष रूप से सिंगुलैरिटी सिद्धांत के अध्ययन के लिए उपयुक्त है, जिसे 1974 के पतन में मार्क गोरेस्की और रॉबर्ट मैकफर्सन (गणितज्ञ) द्वारा खोजा गया था और अंतिम कुछ वर्षों में उनके द्वारा विकसित किए गए एकवचन स्थानों के अध्ययन के लिए उपयुक्त किया गया है।
इस प्रकार से कज़दान-लुस्ज़टिग अनुमान और रीमैन-हिल्बर्ट पत्राचार को प्रमाणित करने के लिए प्रतिच्छेदन को समरूपता का उपयोग किया गया था। इसका L2 को समरूपता से घनिष्ट संबंध है।
गोरेस्की-मैकफ़र्सन दृष्टिकोण
कॉम्पैक्ट, ओरिएंटेड, कनेक्टेड, n-आयामी मैनिफोल्ड X के समरूपता समूहों में एक मौलिक स्थान होती है जिसे पोंकारे द्वैत कहा जाता है: द्विरेखीय रूप होता है
चूंकि शास्त्रीय रूप से - उदाहरण के लिए, हेनरी पोंकारे की ओर वापस जाएं - इस द्वंद्व को प्रतिच्छेदन सिद्धांत के संदर्भ में दर्शाया गया था। का अवयव है:
इस प्रकार से j-आयामी चक्र द्वारा दर्शाया गया है। यदि i-आयामी और -आयामी चक्र सामान्य स्थिति में हैं, तो उनका प्रतिच्छेदन बिंदुओं का सीमित संग्रह है। X के अभिविन्यास का उपयोग करके इनमें से प्रत्येक बिंदु पर चिन्ह निर्दिष्ट किया जा सकता है; दूसरे शब्दों में प्रतिच्छेदन 0-आयामी चक्र उत्पन्न करता है। कोई यह प्रमाणित कर सकता है कि इस चक्र का समरूपता वर्ग केवल मूल i- और -आयामी चक्र; के समरूपता वर्गों पर निर्भर करता है कोई यह भी प्रमाणित कर सकता है कि यह जोड़ी एकदम सही जोड़ी है।
जब X में विलक्षणताएं होती हैं - अर्थात , जब अंतरिक्ष में ऐसे स्थान होते हैं जो की तरह नहीं दिखते हैं - तो ये विचार टूट जाते हैं। इस प्रकार से उदाहरण के लिए, चक्रों के लिए "सामान्य स्थिति" की धारणा को समझना अब संभव नहीं है।चूंकि गोरेस्की और मैकफर्सन ने "स्वीकार्य" चक्रों का एक वर्ग प्रस्तुत किया जिसके लिए सामान्य स्थिति समझ में आती है। उन्होंने स्वीकार्य चक्रों के लिए एक तुल्यता संबंध प्रस्तुत किया (जहां केवल "स्वीकार्य सीमाएं" शून्य के समान हैं), और समूह कहा जाता है
i-आयामी स्वीकार्य चक्र मॉड्यूलो के इस तुल्यता संबंध "प्रतिच्छेदन समरूपता"। उन्होंने इसके अतिरिक्त दिखाया कि i- और का प्रतिच्छेदन -आयामी स्वीकार्य चक्र (सामान्य) शून्य-चक्र देता है जिसका समरूपता वर्ग ठीक प्रकार से से परिभाषित किया गया है।
स्तरीकरण
इस प्रकार से प्रतिच्छेदन समरूपता को मूल रूप से टोपोलॉजिकल रूप से स्तरीकृत स्थान के साथ उपयुक्त स्थानों पर परिभाषित किया गया था, चूंकि समूह सदैव स्तरीकरण की विकल्प से स्वतंत्र होते हैं। और स्तरीकृत स्थानों की कई अलग-अलग परिभाषाएँ होती हैं। प्रतिच्छेदन समरूपता के लिए सुविधाजनक n-आयामी 'टोपोलॉजिकल स्यूडोमैनिफोल्ड' है। यह (पैराकॉम्पैक्ट स्पेस, हॉसडॉर्फ़ स्थान) स्पेस X है जिसमें निस्पंदन है
संवृत उप-स्थानों द्वारा X का इस प्रकार है :
- प्रत्येक i के लिए और के प्रत्येक बिंदु x के लिए, X में x का एक पड़ोस , एक कॉम्पैक्ट आयामी स्तरीकृत स्थान L और एक निस्पंदन-संरक्षित होमोमोर्फिज्म उपस्तिथ है। और यहां , L पर विवृत शंकु है।
- .
- X में सघन है.
यदि X टोपोलॉजिकल स्यूडोमेनिफोल्ड है, तो X का i-आयामी 'स्ट्रेटम' स्थान है .
उदाहरण:
- यदि यदि X एक n-डायमेंशनल सिंप्लेक्स कॉम्प्लेक्स है, जैसे कि प्रत्येक सिम्प्लेक्स एक n-सिंप्लेक्स में समाहित होता है और n-1 सिम्प्लेक्स बिल्कुल दो n-सिंप्लेक्स में समाहित होता है, तो X का अंतर्निहित स्थान एक टोपोलॉजिकल स्यूडोमैनिफोल्ड है।
- यदि X कोई जटिल अर्ध-प्रक्षेपी विविधता है (संभवतः विलक्षणताओं के साथ) तो इसका अंतर्निहित स्थान एक टोपोलॉजिकल स्यूडोमैनिफोल्ड है, जिसमें सभी स्तर समान आयाम के हैं।
विकृतियाँ
प्रतिच्छेदन समरूपता समूह विकृति की पसंद पर निर्भर करते हैं जो मापता है कि चक्रों को ट्रांसवर्सेलिटी से कितनी दूर तक विचलित होने की अनुमति है। ("विकृति" नाम की उत्पत्ति गोरेस्की (2010) द्वारा बताई गई थी।) एक विकृति फलन है:
पूर्णांकों से ऐसे पूर्णांकों के लिए
- .
- .
दूसरी स्थिति का उपयोग स्तरीकरण के परिवर्तन के तहत प्रतिच्छेदन समरूपता समूहों की अपरिवर्तनीयता को दर्शाने के लिए किया जाता है।
पूरक विकृति का के साथ है
- .
पूरक आयाम और पूरक विकृति के प्रतिच्छेदन समरूपता समूह दोहरे युग्मित हैं।
विकृतियों के उदाहरण
- न्यूनतम विकृति में है . इसका पूरक अधिकतम विकृति है .
- (निचली) मध्य विकृति m को के पूर्णांक भाग द्वारा परिभाषित किया गया है। इसका पूरक ऊपरी मध्य विकृति है, जिसका मान है। यदि विकृति निर्दिष्ट नहीं है, तो सामान्यतः इसका प्रकार के निम्न मध्य विकृति है। यदि किसी स्थान को सम आयाम के सभी स्तरों (उदाहरण के लिए, किसी भी जटिल विविधता) के साथ स्तरीकृत किया जा सकता है, तो प्रतिच्छेदन समरूपता समूह विषम पूर्णांकों पर विकृति के मूल्यों से स्वतंत्र होते हैं, इसलिए ऊपरी और निचले मध्य विकृतियाँ समतुल्य होती हैं।
एकवचन प्रतिच्छेदन समरूपता
अतः कुछ स्तरीकरण और विकृति p के साथ आयाम n के टोपोलॉजिकल स्यूडोमैनिफोल्ड X को ठीक करें।
मानक सिम्प्लेक्स i-सिंप्लेक्स से चित्र σ यदि X (एकवचन सिम्पलेक्स) को 'स्वीकार्य' कहा जाता है
के रूप में समाहित है
कॉम्प्लेक्स X पर एकवचन श्रृंखलाओं के परिसर का उप-संकुल है जिसमें सभी एकवचन श्रृंखलाएं सम्मिलित हैं जैसे कि श्रृंखला और इसकी सीमा दोनों स्वीकार्य एकवचन सिंप्लेक्स के रैखिक संयोजन हैं। एकवचन प्रतिच्छेदन समरूपता समूह (विकृतता p के साथ) उपयोग किया जाता है।
इस परिसर के समरूपता समूह हैं।
यदि X में स्तरीकरण के साथ संगत त्रिकोण है, तो सरल प्रतिच्छेदन समरूपता समूहों को समान विधि से परिभाषित किया जा सकता है, और स्वाभाविक रूप से एकवचन प्रतिच्छेदन समरूपता समूहों के लिए समरूपी हैं।
इस प्रकार से प्रतिच्छेदन गृहविज्ञान समूह X के स्तरीकरण की विकल्प से स्वतंत्र होते हैं।
यदि X टोपोलॉजिकल मैनिफोल्ड है, तो प्रतिच्छेदन समरूपता समूह (किसी भी विकृति के लिए) सामान्य समरूपता समूहों के समान होते हैं।
छोटे संकल्प
विलक्षणताओं का संकल्प
जटिल किस्म के Y को 'छोटा रिज़ॉल्यूशन' कहा जाता है यदि प्रत्येक r > 0 के लिए, Y के बिंदुओं का स्थान जहां फाइबर का आयाम r है, कोड आयाम 2r से अधिक है। सामान्यतः कहें तो इसको इस प्रकार से दर्शाया गया है कि अधिकांश फाइबर छोटे होते हैं। इस स्तिथियों में रूपवाद X के (प्रतिच्छेदन) समरूपता से वाई के प्रतिच्छेदन समरूपता (मध्यम विकृति के साथ) तक समरूपता को प्रेरित करता है।
अतः दो अलग-अलग छोटे रिज़ॉल्यूशन वाली किस्म होती है, जिनकी सह-समरूपता पर अलग-अलग वलय संरचनाएं होती हैं, जिससे पता चलता है कि सामान्यतः प्रतिच्छेदन (सह) समरूपता पर कोई प्राकृतिक वलय संरचना नहीं होती है।
शीव्स सिद्धांत
इस प्रकार से प्रतिच्छेदन को समरूपता के लिए डेलिग्ने का सूत्र दर्शाया गया है कि
जहां प्रतिच्छेदन परिसर है, X पर रचनात्मक शीव्स का एक निर्माण योग्य परिसर (व्युत्पन्न श्रेणी के एक तत्व के रूप में माना जाता है, इसलिए दाईं ओर कोहोलॉजी का मतलब कॉम्प्लेक्स की हाइपरको समरूपता है)। कॉम्प्लेक्स को विवृत समुच्चय पर स्थिर शीव्स से प्रारंभ करके और बार-बार इसे उच्च विवृत समुच्चय तक विस्तारित करके और इसके पश्चात व्युत्पन्न श्रेणी में छोटा करके दिया जाता है; अधिक स्पष्ट रूप से यह डेलिग्ने के सूत्र द्वारा दिया गया है
जहाँ व्युत्पन्न श्रेणी में ट्रंकेशन फ़ैक्टर है, में का समावेश है , और निरंतर शीव्स प्रारंभ है .[1]
स्थिर शीव्स को प्रारंभ करके स्थानीय प्रणाली के साथ, कोई स्थानीय प्रणाली में गुणांकों के साथ प्रतिच्छेदन सहसंगति को परिभाषित करने के लिए डेलिग्ने के सूत्र का उपयोग कर सकता है।
उदाहरण
स्थूल अण्डाकार वक्र दिया गया है घन सजातीय बहुपद द्वारा परिभाषित ,[2] जैसे कि , एफ़िन शंकु तब से मूल में पृथक विलक्षणता है और सभी आंशिक व्युत्पन्न विलुप्त होना है । ऐसा इसलिए है क्योंकि यह डिग्री में सजातीय है , और व्युत्पन्न डिग्री 2 के सजातीय हैं। समुच्चय और समावेशन मानचित्र, प्रतिच्छेदन परिसर के रूप में दिया गया है
जटिल IC(X) के गुण
जटिल ICp(X) में निम्नलिखित गुण हैं
- संहिता 2 के कुछ संवृत समुच्चय के पूरक पर, हमारे पास है
- i + m ≠ 0 के लिए 0 है, और i = −m के लिए समूह स्थिर स्थानीय प्रणाली 'C' बनाते हैं
- i + m < 0 के लिए 0 है
- यदि i > 0 तो p(a) ≥ m − i के साथ सबसे छोटे a के लिए कम से कम कोड आयाम के समुच्चय को छोड़कर शून्य है
- यदि i > 0 तो q(a) ≥(i) के साथ सबसे छोटे a के लिए कम से कम a कोड आयाम के समुच्चय को छोड़कर शून्य है
हमेशा की तरह, q, p की पूरक विकृति है। इसके अतिरिक्त , व्युत्पन्न श्रेणी में समरूपता तक, इन स्थितियों द्वारा जटिल को विशिष्ट रूप से चित्रित किया जाता है। स्थितियाँ स्तरीकरण की विकल्प पर निर्भर नहीं होती हैं, इसलिए इससे पता चलता है कि प्रतिच्छेदन सहसंबद्धता स्तरीकरण की विकल्प पर भी निर्भर नहीं होती है।
वर्डियर द्वंद्व व्युत्पन्न श्रेणी में ICp को n = dim(X) द्वारा स्थानांतरित करके ICq में ले जाता है।
यह भी देखें
- अपघटन प्रमेय
- बोरेल-मूर समरूपता
- स्थलाकृतिक रूप से स्तरीकृत स्थान
- प्रतिच्छेदन सिद्धांत
- विकृत पुलिंदा
- मिश्रित हॉज संरचना
संदर्भ
- ↑ Warning: there is more than one convention for the way that the perversity enters Deligne's construction: the numbers are sometimes written as .
- ↑ हॉज सिद्धांत (PDF). E. Cattani, Fouad El Zein, Phillip Griffiths, Dũng Tráng Lê., eds. Princeton. 21 July 2014. ISBN 978-0-691-16134-1. OCLC 861677360. Archived from the original on 15 Aug 2020.
{{cite book}}
: CS1 maint: location missing publisher (link) CS1 maint: others (link), pp. 281-282
- Armand Borel, Intersection Cohomology. Progress in Mathematics, Birkhauser Boston ISBN 0-8176-3274-3
- Mark Goresky and Robert MacPherson, La dualité de Poincaré pour les espaces singuliers. C.R. Acad. Sci. t. 284 (1977), pp. 1549–1551 Serie A .
- Goresky, Mark (2010), What is the etymology of the term "perverse sheaf"?
- Goresky, Mark; MacPherson, Robert, Intersection homology theory, Topology 19 (1980), no. 2, 135–162. doi:10.1016/0040-9383(80)90003-8
- Goresky, Mark; MacPherson, Robert, Intersection homology. II, Inventiones Mathematicae 72 (1983), no. 1, 77–129. 10.1007/BF01389130 MR0696691 This gives a sheaf-theoretic approach to intersection cohomology.
- Frances Kirwan, Jonathan Woolf, An Introduction to Intersection Homology Theory ISBN 1-58488-184-4
- Kleiman, Steven. The development of intersection homology theory. A Century of Mathematics in America, Part II, Hist. Math. 2, Amer. Math. Soc., 1989, pp. 543–585.
- "Intersection homology", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
बाहरी संबंध
- What is the etymology of the term "perverse sheaf"? (includes discussion on the etymology of the term "intersection homology") – MathOverflow