स्पाइकर वृत्त: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
{{legend-line|solid green|त्रिभुज {{math|△''ABC''}} और इसका [[औसत त्रिभुज]]}} | {{legend-line|solid green|त्रिभुज {{math|△''ABC''}} और इसका [[औसत त्रिभुज]]}} | ||
{{legend-line|solid blue|स्पीकर वृत्त का {{math|△''ABC''}} ([[अन्तःवृत्त]] मध्य त्रिभुज का; [[स्पीकर केंद्र]] पर केंद्रित {{math|''X''<sub>10</sub>}})}} | {{legend-line|solid blue|स्पीकर वृत्त का {{math|△''ABC''}} ([[अन्तःवृत्त]] मध्य त्रिभुज का; [[स्पीकर केंद्र]] पर केंद्रित {{math|''X''<sub>10</sub>}})}} | ||
{{legend-line|solid turquoise|[[क्लीवर (ज्यामिति)|क्लीवर्स]] त्रिभुज का ([[स्पीकर केंद्र पर समवर्ती रेखाएं|समवर्ती]])}}]][[ज्यामिति]] में, किसी त्रिभुज के मध्य त्रिभुज का अंतःवृत्त '''स्पाइकर वृत्त''' होता है, जिसका नाम 19वीं सदी के जर्मन जियोमीटर [[थियोडोर स्पीकर|थियोडोर स्पाइकर]] के नाम पर रखा गया है।<ref name=":05"/> इसका केंद्र, स्पाइकर केंद्र, मध्य त्रिभुज का अंतःकेंद्र होने के अतिरिक्त, त्रिभुज की एकसमान-घनत्व सीमा के द्रव्यमान का केंद्र है।<ref name=":05"/> स्पाइकर केंद्र वह बिंदु भी है जहां त्रिभुज के सभी तीन [[क्लीवर (ज्यामिति)]] (एक पक्ष के मध्य बिंदु पर अंत बिंदु के साथ परिधि द्विभाजक) दूसरे को काटते हैं।<ref name=":05"/> | {{legend-line|solid turquoise|[[क्लीवर (ज्यामिति)|क्लीवर्स]] त्रिभुज का ([[स्पीकर केंद्र पर समवर्ती रेखाएं|समवर्ती]])}}]][[ज्यामिति]] में, किसी त्रिभुज के मध्य त्रिभुज का अंतःवृत्त '''स्पाइकर वृत्त''' होता है, जिसका नाम 19वीं सदी के जर्मन जियोमीटर [[थियोडोर स्पीकर|थियोडोर स्पाइकर]] के नाम पर रखा गया है।<ref name=":05"/> इसका केंद्र, स्पाइकर केंद्र, मध्य त्रिभुज का अंतःकेंद्र होने के अतिरिक्त, त्रिभुज की एकसमान-घनत्व सीमा के द्रव्यमान का केंद्र है।<ref name=":05"/> स्पाइकर केंद्र वह बिंदु भी है जहां त्रिभुज के सभी तीन [[क्लीवर (ज्यामिति)]] (एक पक्ष के मध्य बिंदु पर अंत बिंदु के साथ परिधि द्विभाजक) एक दूसरे को काटते हैं।<ref name=":05"/> | ||
== इतिहास == | == इतिहास == | ||
स्पाइकर वृत्त और स्पाइकर सेंटर का नाम जर्मनी के [[पॉट्सडैम]] के गणितज्ञ और प्रोफेसर थियोडोर स्पाइकर के नाम पर रखा गया है। 1862 में उन्होंने प्रकाशित किया {{lang|de|लेहरबुच डेर एबेनेन ज्योमेट्री मिट बुंगसौफगाबेन फर होहेरे लेहरानस्टाल्टेन}}, तलीय ज्यामिति से निपटना [[अल्बर्ट आइंस्टीन]] सहित कई प्रसिद्ध वैज्ञानिकों और गणितज्ञों के जीवन में प्रभावशाली इस प्रकाशन के कारण, स्पाइकर गणितज्ञ बन गए जिनके लिए स्पाइकर वृत्त और केंद्र का नाम रखा गया था।<ref name=":05">{{Cite journal|last=de Villiers|first=Michael|date=June 2006|title=स्पीकर सर्कल और नागेल लाइन का सामान्यीकरण|journal=Pythagoras|volume=63|pages=30–37}}</ref> | स्पाइकर वृत्त और स्पाइकर सेंटर का नाम जर्मनी के [[पॉट्सडैम]] के गणितज्ञ और प्रोफेसर थियोडोर स्पाइकर के नाम पर रखा गया है। 1862 में उन्होंने प्रकाशित किया {{lang|de|लेहरबुच डेर एबेनेन ज्योमेट्री मिट बुंगसौफगाबेन फर होहेरे लेहरानस्टाल्टेन}}, तलीय ज्यामिति से निपटना [[अल्बर्ट आइंस्टीन]] सहित कई प्रसिद्ध वैज्ञानिकों और गणितज्ञों के जीवन में प्रभावशाली इस प्रकाशन के कारण, स्पाइकर गणितज्ञ बन गए जिनके लिए स्पाइकर वृत्त और केंद्र का नाम रखा गया था।<ref name=":05">{{Cite journal|last=de Villiers|first=Michael|date=June 2006|title=स्पीकर सर्कल और नागेल लाइन का सामान्यीकरण|journal=Pythagoras|volume=63|pages=30–37}}</ref> | ||
Line 12: | Line 12: | ||
स्पाइकर वृत्त का नागेल पॉइंट से भी संबंध है। त्रिभुज का अंतःकेन्द्र और [[नागल बिंदु]] स्पाइकर वृत्त के अन्दर रेखा बनाते हैं। इस रेखाखंड का मध्य भाग स्पाइकर केंद्र है।<ref name=":05"/> नेगल रेखा त्रिभुज के अंतःकेन्द्र, नेगल बिंदु और त्रिभुज के [[केन्द्रक]] से बनती है।<ref name=":05"/> स्पाइकर केंद्र सदैव इसी रेखा पर स्थित रहता है।<ref name=":05"/> | स्पाइकर वृत्त का नागेल पॉइंट से भी संबंध है। त्रिभुज का अंतःकेन्द्र और [[नागल बिंदु]] स्पाइकर वृत्त के अन्दर रेखा बनाते हैं। इस रेखाखंड का मध्य भाग स्पाइकर केंद्र है।<ref name=":05"/> नेगल रेखा त्रिभुज के अंतःकेन्द्र, नेगल बिंदु और त्रिभुज के [[केन्द्रक]] से बनती है।<ref name=":05"/> स्पाइकर केंद्र सदैव इसी रेखा पर स्थित रहता है।<ref name=":05"/> | ||
== नौ-बिंदु वृत्त और यूलर रेखा == | == नौ-बिंदु वृत्त और यूलर रेखा == | ||
स्पाइकर वृत्त को पहली बार जूलियन कूलिज द्वारा नौ-बिंदु वृत्त के समान पाया गया था। इस समय, इसे अभी तक स्पाइकर वृत्त के रूप में पहचाना नहीं गया था, किन्तु पूरी किताब में इसे | स्पाइकर वृत्त को पहली बार जूलियन कूलिज द्वारा नौ-बिंदु वृत्त के समान पाया गया था। इस समय, इसे अभी तक स्पाइकर वृत्त के रूप में पहचाना नहीं गया था, किन्तु पूरी किताब में इसे p वृत्त के रूप में संदर्भित किया गया है।<ref name=":2">{{Cite book|title=वृत्त और गोले पर एक ग्रंथ|title-link=A Treatise on the Circle and the Sphere|last=Coolidge|first=Julian L.|publisher=Oxford University Press|year=1916|pages=53–57}}</ref> यूलर रेखा वाला नौ-बिंदु वृत्त और नागल रेखा वाला स्पाइकर वृत्त एक-दूसरे के अनुरूप हैं, किन्तु [[द्वैत (गणित)]] नहीं हैं, केवल द्वैत जैसी समानताएं हैं।<ref name=":05"/> नौ-बिंदु वृत्त और स्पाइकर वृत्त के बीच समानता उनके निर्माण से संबंधित है। नौ-बिंदु वृत्त मध्य त्रिभुज का वृत्त वृत्त है, जबकि स्पाइकर वृत्त मध्य त्रिभुज का वृत्त वृत्त है।<ref name=":2" /> उनकी संबद्ध रेखाओं के संबंध में, नेगेल रेखा का अंतःकेंद्र यूलर रेखा के परिकेंद्र से संबंधित है।<ref name=":05"/> एक अन्य समान बिंदु नागेल बिंदु और [[ऊंचाई (त्रिकोण)]] है, नागेल बिंदु स्पाइकर वृत्त से जुड़ा हुआ है और ऑर्थोसेंटर नौ-बिंदु वृत्त से जुड़ा हुआ है।<ref name=":05"/> प्रत्येक वृत्त मध्य त्रिभुज की भुजाओं से मिलता है जहाँ लंबकेंद्र, या नागल बिंदु से मूल त्रिभुज के शीर्षों तक की रेखाएँ मध्य त्रिभुज की भुजाओं से मिलती हैं।<ref name=":2" /> | ||
===स्पाइकर शंकु === | ===स्पाइकर शंकु === | ||
यूलर रेखा के साथ नौ-बिंदु वृत्त को नौ-बिंदु शंकु में सामान्यीकृत किया गया था।<ref name=":05"/> एक समान प्रक्रिया के माध्यम से, दो मंडलों के समान गुणों के कारण, स्पाइकर वृत्त को भी स्पाइकर शंकु में सामान्यीकृत किया जा सकता है।<ref name=":05" /> स्पाइकर शंकु अभी भी मध्य त्रिभुज के अन्दर पाया जाता है और मध्य त्रिभुज की प्रत्येक भुजा को छूता है, चूँकि यह त्रिभुज की उन भुजाओं को समान बिंदुओं पर नहीं मिलता है। यदि मध्य त्रिभुज के प्रत्येक शीर्ष से नेगेल बिंदु तक रेखाएं बनाई जाती हैं, जिससे उनमें से प्रत्येक रेखा का मध्य बिंदु पाया जा सकता है।<ref name=":3">{{Cite web|url=http://dynamicmathematicslearning.com/spiekernagelgeneral.html|title=स्पाइकर कॉनिक और नागल रेखा का सामान्यीकरण|last=de Villiers|first=M.|date=2007|website=Dynamic Mathematics Learning}}</ref> साथ ही, मध्य त्रिभुज की प्रत्येक भुजा के मध्य बिंदु पाए जाते हैं और नागल बिंदु के माध्यम से विपरीत रेखा के मध्य बिंदु से जुड़े होते हैं।<ref name=":3" /> इनमें से प्रत्येक रेखा सामान्य मध्यबिंदु, S साझा करती है।<ref name=":3" /> इनमें से प्रत्येक रेखा S के माध्यम से प्रतिबिंबित होने पर, परिणाम मध्य त्रिभुज के अन्दर 6 बिंदु है। इनमें से किन्हीं 5 प्रतिबिंबित बिंदुओं के माध्यम से शंकु बनाएं और शंकु अंतिम बिंदु को स्पर्श करता है।<ref name=":05" /> यह बात डिविलियर्स ने 2006 में सिद्ध कर दी थी.<ref name=":05" /> | यूलर रेखा के साथ नौ-बिंदु वृत्त को नौ-बिंदु शंकु में सामान्यीकृत किया गया था।<ref name=":05"/> एक समान प्रक्रिया के माध्यम से, दो मंडलों के समान गुणों के कारण, स्पाइकर वृत्त को भी स्पाइकर शंकु में सामान्यीकृत किया जा सकता है।<ref name=":05" /> स्पाइकर शंकु अभी भी मध्य त्रिभुज के अन्दर पाया जाता है और मध्य त्रिभुज की प्रत्येक भुजा को छूता है, चूँकि यह त्रिभुज की उन भुजाओं को समान बिंदुओं पर नहीं मिलता है। यदि मध्य त्रिभुज के प्रत्येक शीर्ष से नेगेल बिंदु तक रेखाएं बनाई जाती हैं, जिससे उनमें से प्रत्येक रेखा का मध्य बिंदु पाया जा सकता है।<ref name=":3">{{Cite web|url=http://dynamicmathematicslearning.com/spiekernagelgeneral.html|title=स्पाइकर कॉनिक और नागल रेखा का सामान्यीकरण|last=de Villiers|first=M.|date=2007|website=Dynamic Mathematics Learning}}</ref> साथ ही, मध्य त्रिभुज की प्रत्येक भुजा के मध्य बिंदु पाए जाते हैं और नागल बिंदु के माध्यम से विपरीत रेखा के मध्य बिंदु से जुड़े होते हैं।<ref name=":3" /> इनमें से प्रत्येक रेखा सामान्य मध्यबिंदु, S साझा करती है।<ref name=":3" /> इनमें से प्रत्येक रेखा S के माध्यम से प्रतिबिंबित होने पर, परिणाम मध्य त्रिभुज के अन्दर 6 बिंदु है। इनमें से किन्हीं 5 प्रतिबिंबित बिंदुओं के माध्यम से शंकु बनाएं और शंकु अंतिम बिंदु को स्पर्श करता है।<ref name=":05" /> यह बात डिविलियर्स ने 2006 में सिद्ध कर दी थी.<ref name=":05" /> |
Revision as of 14:19, 22 July 2023
ज्यामिति में, किसी त्रिभुज के मध्य त्रिभुज का अंतःवृत्त स्पाइकर वृत्त होता है, जिसका नाम 19वीं सदी के जर्मन जियोमीटर थियोडोर स्पाइकर के नाम पर रखा गया है।[1] इसका केंद्र, स्पाइकर केंद्र, मध्य त्रिभुज का अंतःकेंद्र होने के अतिरिक्त, त्रिभुज की एकसमान-घनत्व सीमा के द्रव्यमान का केंद्र है।[1] स्पाइकर केंद्र वह बिंदु भी है जहां त्रिभुज के सभी तीन क्लीवर (ज्यामिति) (एक पक्ष के मध्य बिंदु पर अंत बिंदु के साथ परिधि द्विभाजक) एक दूसरे को काटते हैं।[1]
इतिहास
स्पाइकर वृत्त और स्पाइकर सेंटर का नाम जर्मनी के पॉट्सडैम के गणितज्ञ और प्रोफेसर थियोडोर स्पाइकर के नाम पर रखा गया है। 1862 में उन्होंने प्रकाशित किया लेहरबुच डेर एबेनेन ज्योमेट्री मिट बुंगसौफगाबेन फर होहेरे लेहरानस्टाल्टेन, तलीय ज्यामिति से निपटना अल्बर्ट आइंस्टीन सहित कई प्रसिद्ध वैज्ञानिकों और गणितज्ञों के जीवन में प्रभावशाली इस प्रकाशन के कारण, स्पाइकर गणितज्ञ बन गए जिनके लिए स्पाइकर वृत्त और केंद्र का नाम रखा गया था।[1]
निर्माण
किसी त्रिभुज के स्पाइकर वृत्त को खोजने के लिए, पहले मूल त्रिभुज की प्रत्येक भुजा के मध्य बिंदु से मध्य त्रिभुज का निर्माण करना होता है।[1] फिर वृत्त का निर्माण इस तरह किया जाता है कि मध्य त्रिभुज की प्रत्येक भुजा मध्य त्रिभुज के अन्दर वृत्त की स्पर्शरेखा होती है, जिससे त्रिभुज का अंतःवृत्त और बाह्य वृत्त बनता है।[1] इस वृत्त केंद्र का नाम स्पाइकर केंद्र है।
नागेल बिंदु और रेखाएँ
स्पाइकर वृत्त का नागेल पॉइंट से भी संबंध है। त्रिभुज का अंतःकेन्द्र और नागल बिंदु स्पाइकर वृत्त के अन्दर रेखा बनाते हैं। इस रेखाखंड का मध्य भाग स्पाइकर केंद्र है।[1] नेगल रेखा त्रिभुज के अंतःकेन्द्र, नेगल बिंदु और त्रिभुज के केन्द्रक से बनती है।[1] स्पाइकर केंद्र सदैव इसी रेखा पर स्थित रहता है।[1]
नौ-बिंदु वृत्त और यूलर रेखा
स्पाइकर वृत्त को पहली बार जूलियन कूलिज द्वारा नौ-बिंदु वृत्त के समान पाया गया था। इस समय, इसे अभी तक स्पाइकर वृत्त के रूप में पहचाना नहीं गया था, किन्तु पूरी किताब में इसे p वृत्त के रूप में संदर्भित किया गया है।[2] यूलर रेखा वाला नौ-बिंदु वृत्त और नागल रेखा वाला स्पाइकर वृत्त एक-दूसरे के अनुरूप हैं, किन्तु द्वैत (गणित) नहीं हैं, केवल द्वैत जैसी समानताएं हैं।[1] नौ-बिंदु वृत्त और स्पाइकर वृत्त के बीच समानता उनके निर्माण से संबंधित है। नौ-बिंदु वृत्त मध्य त्रिभुज का वृत्त वृत्त है, जबकि स्पाइकर वृत्त मध्य त्रिभुज का वृत्त वृत्त है।[2] उनकी संबद्ध रेखाओं के संबंध में, नेगेल रेखा का अंतःकेंद्र यूलर रेखा के परिकेंद्र से संबंधित है।[1] एक अन्य समान बिंदु नागेल बिंदु और ऊंचाई (त्रिकोण) है, नागेल बिंदु स्पाइकर वृत्त से जुड़ा हुआ है और ऑर्थोसेंटर नौ-बिंदु वृत्त से जुड़ा हुआ है।[1] प्रत्येक वृत्त मध्य त्रिभुज की भुजाओं से मिलता है जहाँ लंबकेंद्र, या नागल बिंदु से मूल त्रिभुज के शीर्षों तक की रेखाएँ मध्य त्रिभुज की भुजाओं से मिलती हैं।[2]
स्पाइकर शंकु
यूलर रेखा के साथ नौ-बिंदु वृत्त को नौ-बिंदु शंकु में सामान्यीकृत किया गया था।[1] एक समान प्रक्रिया के माध्यम से, दो मंडलों के समान गुणों के कारण, स्पाइकर वृत्त को भी स्पाइकर शंकु में सामान्यीकृत किया जा सकता है।[1] स्पाइकर शंकु अभी भी मध्य त्रिभुज के अन्दर पाया जाता है और मध्य त्रिभुज की प्रत्येक भुजा को छूता है, चूँकि यह त्रिभुज की उन भुजाओं को समान बिंदुओं पर नहीं मिलता है। यदि मध्य त्रिभुज के प्रत्येक शीर्ष से नेगेल बिंदु तक रेखाएं बनाई जाती हैं, जिससे उनमें से प्रत्येक रेखा का मध्य बिंदु पाया जा सकता है।[3] साथ ही, मध्य त्रिभुज की प्रत्येक भुजा के मध्य बिंदु पाए जाते हैं और नागल बिंदु के माध्यम से विपरीत रेखा के मध्य बिंदु से जुड़े होते हैं।[3] इनमें से प्रत्येक रेखा सामान्य मध्यबिंदु, S साझा करती है।[3] इनमें से प्रत्येक रेखा S के माध्यम से प्रतिबिंबित होने पर, परिणाम मध्य त्रिभुज के अन्दर 6 बिंदु है। इनमें से किन्हीं 5 प्रतिबिंबित बिंदुओं के माध्यम से शंकु बनाएं और शंकु अंतिम बिंदु को स्पर्श करता है।[1] यह बात डिविलियर्स ने 2006 में सिद्ध कर दी थी.[1]
स्पाइकर रेडिकल वृत्त
स्पाइकर पावर सेंटर (ज्यामिति) वृत्त है, जो स्पाइकर केंद्र पर केंद्रित है, जो औसत श्रेणी के त्रिकोण के तीन अंतःवृत्त और बाह्य वृत्तों के लिए ओर्थोगोनल है।[4][5]
संदर्भ
- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 de Villiers, Michael (June 2006). "स्पीकर सर्कल और नागेल लाइन का सामान्यीकरण". Pythagoras. 63: 30–37.
- ↑ 2.0 2.1 2.2 Coolidge, Julian L. (1916). वृत्त और गोले पर एक ग्रंथ. Oxford University Press. pp. 53–57.
- ↑ 3.0 3.1 3.2 de Villiers, M. (2007). "स्पाइकर कॉनिक और नागल रेखा का सामान्यीकरण". Dynamic Mathematics Learning.
- ↑ Weisstein, Eric W. "एक्ससर्कल्स रेडिकल सर्कल". MathWorld- A Wolfram Web Resource.
- ↑ Weisstein, Eric W. "रेडिकल सर्कल". MathWorld- A Wolfram Web Resource.
- Johnson, Roger A. (1929). Modern Geometry. Boston: Houghton Mifflin. Dover reprint, 1960.
- Kimberling, Clark (1998). "Triangle centers and central triangles". Congressus Numerantium. 129: i–xxv, 1–295.
बाहरी संबंध
- Spieker Conic and generalization of Nagel line at Dynamic Geometry Sketches Generalizes Spieker circle and associated Nagel line.