स्थानीय परिमित समुच्चय: Difference between revisions
From Vigyanwiki
m (10 revisions imported from alpha:स्थानीय_रूप_से_क्रमित_समुच्चय) |
No edit summary |
||
Line 9: | Line 9: | ||
==संदर्भ== | ==संदर्भ== | ||
{{DEFAULTSORT:Locally Finite Poset}} | {{DEFAULTSORT:Locally Finite Poset}} | ||
[[रिचर्ड पी. स्टेनली|स्टेनली, रिचर्ड पी.]] एन्यूमेरेटिव कॉम्बिनेटरिक्स, वॉल्यूम I. कैम्ब्रिज यूनिवर्सिटी प्रेस, 1997. पृष्ठ 98, 113-116।{{algebra-stub}} | [[रिचर्ड पी. स्टेनली|स्टेनली, रिचर्ड पी.]] एन्यूमेरेटिव कॉम्बिनेटरिक्स, वॉल्यूम I. कैम्ब्रिज यूनिवर्सिटी प्रेस, 1997. पृष्ठ 98, 113-116।{{algebra-stub}} | ||
[[Category:Algebra stubs|Locally Finite Poset]] | |||
[[Category:All stub articles|Locally Finite Poset]] | |||
[[Category: | [[Category:Created On 01/07/2023|Locally Finite Poset]] | ||
[[Category:Created On 01/07/2023]] | [[Category:Machine Translated Page|Locally Finite Poset]] | ||
[[Category: | [[Category:आदेश सिद्धांत|Locally Finite Poset]] |
Revision as of 09:39, 26 July 2023
गणित में, स्थानीय रूप से क्रमित समुच्चय एक आंशिक रूप से ऑर्डर किया गया समूह P है, जैसे कि सभी x, y ∈ P के लिए, अंतराल [x, y] में अनेक तत्वों का एक सीमित समूह होता है।
स्थानीय रूप से क्रमित समुच्चय P को देखते हुए हम इसकी घटना बीजगणित को परिभाषित कर सकते हैं। घटना बीजगणित के तत्व ऐसे कार्य हैं इस प्रकार जो P के प्रत्येक अंतराल [x, y] को एक वास्तविक संख्या ƒ(x, y) निर्दिष्ट करते हैं। यह फलन परिभाषित उत्पाद के साथ एक सहयोगी बीजगणित बनाते हैं
घटना कोलजेब्रा की एक परिभाषा भी है।
सैद्धांतिक भौतिकी में स्थानीय रूप से क्रमित समुच्चय को कारण समुच्चय भी कहा जाता है और इस प्रकार इसे अंतरिक्ष समय के लिए एक मॉडल के रूप में उपयोग किया गया है।
संदर्भ
स्टेनली, रिचर्ड पी. एन्यूमेरेटिव कॉम्बिनेटरिक्स, वॉल्यूम I. कैम्ब्रिज यूनिवर्सिटी प्रेस, 1997. पृष्ठ 98, 113-116।