रीमैन मानचित्रण प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 54: Line 54:
(5) ⇒ (6) क्योंकि यदि <math>\gamma</math> एक टुकड़ा-वार संवृत वक्र है और <math>f_n</math>, <math>z-w</math> के बाहर <math>w</math> के लिए <math>z-w</math> के क्रमिक वर्गमूल हैं, तो <math>f_n\circ\gamma</math> के बारे में <math>w</math> की विन्डिंग संख्या <math>2^n</math> के बारे में <math>\gamma</math> की विन्डिंग संख्या का <math>0</math> गुना है। इसलिए <math>w</math> के बारे में <math>\gamma</math> की विन्डिंग संख्या सभी <math>n</math> के लिए <math>2^n</math> से विभाज्य होनी चाहिए, इसलिए यह <math>0</math> के समान होनी चाहिए
(5) ⇒ (6) क्योंकि यदि <math>\gamma</math> एक टुकड़ा-वार संवृत वक्र है और <math>f_n</math>, <math>z-w</math> के बाहर <math>w</math> के लिए <math>z-w</math> के क्रमिक वर्गमूल हैं, तो <math>f_n\circ\gamma</math> के बारे में <math>w</math> की विन्डिंग संख्या <math>2^n</math> के बारे में <math>\gamma</math> की विन्डिंग संख्या का <math>0</math> गुना है। इसलिए <math>w</math> के बारे में <math>\gamma</math> की विन्डिंग संख्या सभी <math>n</math> के लिए <math>2^n</math> से विभाज्य होनी चाहिए, इसलिए यह <math>0</math> के समान होनी चाहिए


(6) ⇒ (7) अन्यथा विस्तारित विमान के लिए <math>\mathbb{C}\cup\{\infty\}\setminus G</math> कप कप इन्फ्टी सेटमिनस जी को दो विवृत और संवृत सेट <math>A</math> और <math>B</math> के असंयुक्त संघ के रूप में लिखा जा सकता है, जिसमें <math>A</math> और <math>B</math> में <math>A</math> सीमा होती है। मान लीजिए कि <math>\delta>0</math>, <math>A</math> और <math>B</math> के बीच सबसे छोटी यूक्लिडियन दूरी है और <math>\mathbb{C}</math> पर लंबाई के साथ एक वर्गाकार ग्रिड बनाएं, जिसमें वर्ग के केंद्र में <math>A</math> का एक बिंदु <math>a</math> हो। मान लीजिए कि <math>C</math>, <math>A</math> से दूरी वाले सभी वर्गों के मिलन का एक सघन समुच्चय है। <math>C_i</math> को <math>A</math> को कवर करने वाले सभी वर्गों के रूप में लें, तो <math>\frac{1}{2\pi}\int_{\partial C}\mathrm{d}\mathrm{arg}(z-a)</math><math>A</math> के ऊपर <math>C_i</math> की घुमावदार संख्याओं के योग के समान होता है, इस प्रकार <math>1</math> मिलता है। दूसरी ओर <math>\gamma_j</math> की घुमावदार संख्याओं का योग a के समान होता है 1. इसलिए <math>\gamma_j</math> में से कम से कम एक की घुमावदार संख्या <math>\gamma_j</math> के बारे में <math>a</math> शून्येतर है।
(6) ⇒ (7) अन्यथा विस्तारित विमान के लिए <math>\mathbb{C}\cup\{\infty\}\setminus G</math> कप कप इन्फ्टी सेटमिनस जी को दो विवृत और संवृत समुच्चय <math>A</math> और <math>B</math> के असंयुक्त संघ के रूप में लिखा जा सकता है, जिसमें <math>A</math> और <math>B</math> में <math>A</math> सीमा होती है। मान लीजिए कि <math>\delta>0</math>, <math>A</math> और <math>B</math> के बीच सबसे छोटी यूक्लिडियन दूरी है और <math>\mathbb{C}</math> पर लंबाई के साथ एक वर्गाकार ग्रिड बनाएं, जिसमें वर्ग के केंद्र में <math>A</math> का एक बिंदु <math>a</math> हो। मान लीजिए कि <math>C</math>, <math>A</math> से दूरी वाले सभी वर्गों के मिलन का एक सघन समुच्चय है। <math>C_i</math> को <math>A</math> को कवर करने वाले सभी वर्गों के रूप में लें, तो <math>\frac{1}{2\pi}\int_{\partial C}\mathrm{d}\mathrm{arg}(z-a)</math><math>A</math> के ऊपर <math>C_i</math> की घुमावदार संख्याओं के योग के समान होता है, इस प्रकार <math>1</math> मिलता है। दूसरी ओर <math>\gamma_j</math> की घुमावदार संख्याओं का योग a के समान होता है 1. इसलिए <math>\gamma_j</math> में से कम से कम एक की घुमावदार संख्या <math>\gamma_j</math> के बारे में <math>a</math> शून्येतर है।


(7)⇒ (1) यह विशुद्ध रूप से टोपोलॉजिकल तर्क है। मान लीजिए कि <math>\gamma</math> एक टुकड़ा-वार चिकना संवृत वक्र है जो कि <math>z_0\in G</math> पर आधारित है। सन्निकटन के अनुसार γ, z_{0} पर आधारित लंबाई <math>\delta>0</math> के वर्ग ग्रिड पर एक आयताकार पथ के समान समरूप वर्ग में है; ऐसा आयताकार पथ <math>N</math> क्रमागत निर्देशित ऊर्ध्वाधर और क्षैतिज भुजाओं के क्रम से निर्धारित होता है। <math>N</math> पर प्रेरण द्वारा, ऐसे पथ को ग्रिड के एक कोने पर स्थिर पथ में विकृत किया जा सकता है। यदि पथ एक बिंदु <math>z_1</math> पर प्रतिच्छेद करता है, तो यह लंबाई के दो आयताकार पथों में टूट जाता है, और इस प्रकार प्रेरण परिकल्पना और [[मौलिक समूह]] के प्राथमिक गुणों द्वारा इसे <math>z_1</math> पर स्थिर पथ में विकृत किया जा सकता है। तर्क "उत्तर-पूर्व तर्क" का अनुसरण करता है: :<ref>{{harvnb|Gamelin|2001|pages=256–257}}, elementary proof</ref><ref>{{harvnb|Berenstein|Gay|1991|pages=86–87}}</ref> गैर-स्व-प्रतिच्छेदी पथ में एक कोने <math>z_0</math> होगा जिसमें सबसे बड़ा वास्तविक भाग (पूर्व की ओर) होगा और फिर उनके बीच सबसे बड़ा काल्पनिक भाग (उत्तर की ओर) होगा। यदि आवश्यकता हो तो दिशा उलटते हुए, पथ <math>N</math> के लिए <math>z_0-\delta</math> से <math>z_0</math> तक और फिर <math>w_0=z_0-in\delta</math> तक जाता है और फिर बाईं ओर जाता है। मान लीजिए <math>R</math> इन शीर्षों वाला विवृत आयत है। पथ की घुमावदार संख्या <math>z_0</math> से <math>w_0</math> तक ऊर्ध्वाधर खंड के दाईं ओर के बिंदुओं के लिए <math>0</math> है और दाईं ओर के बिंदुओं के लिए -1 है; और इसलिए आर के अंदर। चूंकि घुमावदार संख्या <math>0</math> है, <math>R</math> '''g''' में स्थित है। यदि <math>z_1</math> पथ का एक बिंदु है, तो इसे जी में स्थित होना चाहिए; यदि <math>\partial R</math> पर है, किन्तु पथ पर नहीं है, तो निरंतरता से <math>z</math> के बारे में पथ की घुमावदार संख्या <math>z</math> भी <math>G</math> में स्थित होनी चाहिए। किन्तु इस स्थिति में आयत की तीन भुजाओं को चौथी भुजाओं से प्रतिस्थापित करके पथ को विकृत किया जा सकता है, जिसके परिणामस्वरूप दो कम भुजाएँ होंगी (स्वयं-प्रतिच्छेदन की अनुमति के साथ)।
(7)⇒ (1) यह विशुद्ध रूप से टोपोलॉजिकल तर्क है। मान लीजिए कि <math>\gamma</math> एक टुकड़ा-वार चिकना संवृत वक्र है जो कि <math>z_0\in G</math> पर आधारित है। सन्निकटन के अनुसार γ, z_{0} पर आधारित लंबाई <math>\delta>0</math> के वर्ग ग्रिड पर एक आयताकार पथ के समान समरूप वर्ग में है; ऐसा आयताकार पथ <math>N</math> क्रमागत निर्देशित ऊर्ध्वाधर और क्षैतिज भुजाओं के क्रम से निर्धारित होता है। <math>N</math> पर प्रेरण द्वारा, ऐसे पथ को ग्रिड के एक कोने पर स्थिर पथ में विकृत किया जा सकता है। यदि पथ एक बिंदु <math>z_1</math> पर प्रतिच्छेद करता है, तो यह लंबाई के दो आयताकार पथों में टूट जाता है, और इस प्रकार प्रेरण परिकल्पना और [[मौलिक समूह]] के प्राथमिक गुणों द्वारा इसे <math>z_1</math> पर स्थिर पथ में विकृत किया जा सकता है। तर्क "उत्तर-पूर्व तर्क" का अनुसरण करता है:<ref>{{harvnb|Gamelin|2001|pages=256–257}}, elementary proof</ref><ref>{{harvnb|Berenstein|Gay|1991|pages=86–87}}</ref> गैर-स्व-प्रतिच्छेदी पथ में एक कोने <math>z_0</math> होगा जिसमें सबसे बड़ा वास्तविक भाग (पूर्व की ओर) होगा और फिर उनके बीच सबसे बड़ा काल्पनिक भाग (उत्तर की ओर) होगा। यदि आवश्यकता हो तो दिशा उलटते हुए, पथ <math>N</math> के लिए <math>z_0-\delta</math> से <math>z_0</math> तक और फिर <math>w_0=z_0-in\delta</math> तक जाता है और फिर बाईं ओर जाता है। मान लीजिए <math>R</math> इन शीर्षों वाला विवृत आयत है। पथ की घुमावदार संख्या <math>z_0</math> से <math>w_0</math> तक ऊर्ध्वाधर खंड के दाईं ओर के बिंदुओं के लिए <math>0</math> है और दाईं ओर के बिंदुओं के लिए -1 है; और इसलिए आर के अंदर। चूंकि घुमावदार संख्या <math>0</math> है, <math>R</math> '''g''' में स्थित है। यदि <math>z_1</math> पथ का एक बिंदु है, तो इसे जी में स्थित होना चाहिए; यदि <math>\partial R</math> पर है, किन्तु पथ पर नहीं है, तो निरंतरता से <math>z</math> के बारे में पथ की घुमावदार संख्या <math>z</math> भी <math>G</math> में स्थित होनी चाहिए। किन्तु इस स्थिति में आयत की तीन भुजाओं को चौथी भुजाओं से प्रतिस्थापित करके पथ को विकृत किया जा सकता है, जिसके परिणामस्वरूप दो कम भुजाएँ होंगी (स्वयं-प्रतिच्छेदन की अनुमति के साथ)।


=== रीमैन मैपिंग प्रमेय ===
=== रीमैन मैपिंग प्रमेय ===


*वीयरस्ट्रैस का अभिसरण प्रमेय। होलोमोर्फिक कार्यों के अनुक्रम के कॉम्पेक्टा पर एकसमान सीमा होलोमोर्फिक है; इसी प्रकार डेरिवेटिव के लिए।
*वीयरस्ट्रैस का अभिसरण प्रमेय होलोमोर्फिक कार्यों के अनुक्रम के कॉम्पेक्टा पर एकसमान सीमा होलोमोर्फिक है; इसी प्रकार डेरिवेटिव के लिए।
::यह पहले कथन के लिए मोरेरा के प्रमेय का तत्काल परिणाम है। कॉची का अभिन्न सूत्र डेरिवेटिव के लिए सूत्र देता है जिसका उपयोग यह जांचने के लिए किया जा सकता है कि डेरिवेटिव भी कॉम्पैक्टा पर समान रूप से अभिसरण करते हैं।<ref>{{harvnb|Gamelin|2001}}</ref>
::यह पहले कथन के लिए मोरेरा के प्रमेय का तत्काल परिणाम है। कॉची का अभिन्न सूत्र डेरिवेटिव के लिए सूत्र देता है जिसका उपयोग यह जांचने के लिए किया जा सकता है कि डेरिवेटिव भी कॉम्पैक्टा पर समान रूप से अभिसरण करते हैं।<ref>{{harvnb|Gamelin|2001}}</ref>
*हर्विट्ज़ प्रमेय (समिष्ट विश्लेषण) या हर्विट्ज़ प्रमेय। यदि किसी विवृत डोमेन पर कहीं भी विलुप्त न होने वाले होलोमोर्फिक फलन के अनुक्रम में कॉम्पेक्टा पर समान सीमा है, तो या तो सीमा समान रूप से शून्य है या सीमा कहीं भी विलुप्त नहीं है। यदि किसी विवृत डोमेन पर एकसमान होलोमोर्फिक फलन के अनुक्रम में कॉम्पेक्टा पर समान सीमा होती है, तो या तो सीमा स्थिर होती है या सीमा एकसमान होती है।
*हर्विट्ज़ प्रमेय (समिष्ट विश्लेषण) या हर्विट्ज़ प्रमेय। यदि किसी विवृत डोमेन पर कहीं भी विलुप्त न होने वाले होलोमोर्फिक फलन के अनुक्रम में कॉम्पेक्टा पर समान सीमा है, तो या तो सीमा समान रूप से शून्य है या सीमा कहीं भी विलुप्त नहीं है। यदि किसी विवृत डोमेन पर एकसमान होलोमोर्फिक फलन के अनुक्रम में कॉम्पेक्टा पर समान सीमा होती है, तो या तो सीमा स्थिर होती है या सीमा एकसमान होती है।
::यदि सीमा फलन गैर-शून्य है, तो उसके शून्यों को अलग करना ह्होता है। बहुलता वाले शून्यों को एक होलोमोर्फिक फलन '''g''' के लिए घुमावदार संख्या <math>\frac{1}{2\pi i}\int_Cg^{-1}(z)g'(z)\mathrm{d}z</math> द्वारा गिना जा सकता है। इसलिए घुमावदार संख्याएं समान सीमाओं के अनुसार निरंतर होती हैं, जिससे अनुक्रम में प्रत्येक फलन में कोई शून्य न हो और न ही कोई सीमा होटी है। दूसरे कथन के लिए मान लीजिए कि <math>g(z)=f(z)-f(a)</math> और सेट करें। ये डिस्क पर कहीं भी विलुप्त नहीं होते हैं, किन्तु <math>g(z)=f(z)-f(a)</math> पर विलुप्त हो जाते हैं, इसलिए जी को समान रूप से विलुप्त होना चाहिए। <ref>{{harvnb|Gamelin|2001}}</ref>
::यदि सीमा फलन गैर-शून्य है, तो उसके शून्यों को अलग करना होता है। बहुलता वाले शून्यों को एक होलोमोर्फिक फलन '''g''' के लिए घुमावदार संख्या <math>\frac{1}{2\pi i}\int_Cg^{-1}(z)g'(z)\mathrm{d}z</math> द्वारा गिना जा सकता है। इसलिए घुमावदार संख्याएं समान सीमाओं के अनुसार निरंतर होती हैं, जिससे अनुक्रम में प्रत्येक फलन में कोई शून्य न हो और न ही कोई सीमा होती है। दूसरे कथन के लिए मान लीजिए कि <math>g(z)=f(z)-f(a)</math> और समुच्चय करें। ये डिस्क पर कहीं भी विलुप्त नहीं होते हैं, किन्तु <math>g(z)=f(z)-f(a)</math> पर विलुप्त हो जाते हैं, इसलिए जी को समान रूप से विलुप्त होना चाहिए। <ref>{{harvnb|Gamelin|2001}}</ref>
परिभाषाएँ वर्ग <math>{\cal F}</math> विवृत डोमेन पर होलोमोर्फिक फलन को सामान्य कहा जाता है यदि फलन का कोई क्रम हो <math>{\cal F}</math> इसका परिणाम है जो कॉम्पैक्टा पर समान रूप से होलोमोर्फिक फलन में परिवर्तित हो जाता है। एक वर्ग <math>{\cal F}</math> जब भी कोई अनुक्रम हो तो सघन होता है <math>f_n</math> में निहित है और समान रूप से अभिसरित <math>f</math> हो जाता है कॉम्पैक्टा पर, फिर <math>f</math> में भी निहित है .वर्ग <math>{\cal F}</math> इसे स्थानीय रूप से बाउंड कहा जाता है यदि उनके कार्य प्रत्येक कॉम्पैक्ट डिस्क पर समान रूप से बाउंड होते हैं। [[कॉची अभिन्न सूत्र]] को अलग करते हुए, यह निष्कर्ष निकलता है कि स्थानीय रूप से बंधे वर्ग के व्युत्पन्न भी स्थानीय रूप से बंधे होते हैं।<ref>{{harvnb|Duren|1983}}</ref><ref>{{harvnb|Jänich|1993}}</ref>
परिभाषाएँ वर्ग <math>{\cal F}</math> विवृत डोमेन पर होलोमोर्फिक फलन को सामान्य कहा जाता है यदि फलन का कोई क्रम हो <math>{\cal F}</math> इसका परिणाम है जो कॉम्पैक्टा पर समान रूप से होलोमोर्फिक फलन में परिवर्तित हो जाता है। एक वर्ग <math>{\cal F}</math> जब भी कोई अनुक्रम हो तो सघन होता है जो की <math>f_n</math> में निहित है और समान रूप से अभिसरित <math>f</math> हो जाता है कॉम्पैक्टा पर, फिर <math>f</math> में भी निहित है .वर्ग <math>{\cal F}</math> इसे स्थानीय रूप से बाउंड कहा जाता है यदि उनके कार्य प्रत्येक कॉम्पैक्ट डिस्क पर समान रूप से बाउंड होते हैं। [[कॉची अभिन्न सूत्र]] को अलग करते हुए, यह निष्कर्ष निकलता है कि स्थानीय रूप से बंधे वर्ग के व्युत्पन्न भी स्थानीय रूप से बंधे होते हैं।<ref>{{harvnb|Duren|1983}}</ref><ref>{{harvnb|Jänich|1993}}</ref>
*मोंटेल का प्रमेय. डोमेन <math>G</math> में होलोमोर्फिक फलन का प्रत्येक स्थानीय रूप से घिरा वर्ग सामान्य है।
*मोंटेल का प्रमेय. डोमेन <math>G</math> में होलोमोर्फिक फलन का प्रत्येक स्थानीय रूप से घिरा वर्ग सामान्य है।
::मान लीजिए <math>f_n</math> एक पूरी तरह से घिरा हुआ अनुक्रम है और <math>G</math> का एक गणनीय सघन उपसमुच्चय <math>w_m</math> चुना है। स्थानीय रूप से सीमाबद्धता और एक "विकर्ण तर्क" द्वारा, एक अनुवर्ती चुना जा सकता है जिससे <math>g_n</math> प्रत्येक बिंदु <math>w_m</math> पर अभिसरण होता है। यह सत्यापित किया जाना चाहिए कि होलोमोर्फिक फलन का यह क्रम प्रत्येक कॉम्पेक्टम <math>K</math> पर समान रूप से <math>G</math> पर अभिसरण करता है। <math>E</math> को <math>K\subset E</math> के साथ इस प्रकार खोलें कि <math>E</math> का समापन कॉम्पैक्ट हो और इसमें <math>G</math> सम्मिलित होते है।
::मान लीजिए <math>f_n</math> एक पूरी तरह से घिरा हुआ अनुक्रम है और <math>G</math> का एक गणनीय सघन उपसमुच्चय <math>w_m</math> चुना है। स्थानीय रूप से सीमाबद्धता और एक "विकर्ण तर्क" द्वारा, एक अनुवर्ती चुना जा सकता है जिससे <math>g_n</math> प्रत्येक बिंदु <math>w_m</math> पर अभिसरण होता है। यह सत्यापित किया जाना चाहिए कि होलोमोर्फिक फलन का यह क्रम प्रत्येक कॉम्पेक्टम <math>K</math> पर समान रूप से <math>G</math> पर अभिसरण करता है। <math>E</math> को <math>K\subset E</math> के साथ इस प्रकार खोलें कि <math>E</math> का समापन कॉम्पैक्ट हो और इसमें <math>G</math> सम्मिलित होते है।
Line 89: Line 89:
पास में <math>\infty</math>, अधिकतमीकरण <math>\mathrm{Re}(e^{-2i\theta}a_1)</math> और छवि होना <math>f(G)</math> कोण के साथ समानांतर स्लिट डोमेन <math>\theta</math> तक {{math|''x''}}-एक्सिस <ref>{{harvnb|Jenkins|1958|pages=77–78}}</ref><ref>{{harvnb|Duren|1980}}</ref><ref>{{harvnb|Schiff|1993|pages=162–166}}</ref> मल्टीपल कनेक्टेड केस में समानांतर स्लिट डोमेन कैनोनिकल डोमेन होने का पहला प्रमाण 1909 में डेविड हिल्बर्ट द्वारा दिया गया था। {{harvtxt|जेन्किन्स|1958}}, अनवैलेंट फलन और कंफ़ॉर्मल मैपिंग पर अपनी पुस्तक पर, 1930 के दशक की प्रारंभ में हर्बर्ट ग्रोट्ज़ और रेने डी पॉसेल के कार्य के आधार पर उपचार दिया; यह [[क्वासिकोनफॉर्मल मैपिंग]] और [[द्विघात अंतर]] का अग्रदूत था, जिसे इसके पश्चात् ओसवाल्ड टीचमुलर के कारण [[चरम लंबाई]] की तकनीक के रूप में विकसित किया गया था।<ref>{{harvnb|Jenkins|1958|pages=77–78}}</ref> [[मेनहेम मैक्स शिफ़र]] ने बहुत ही सामान्य [[परिवर्तनशील सिद्धांत]] पर आधारित उपचार दिया था, जिसका सारांश उन्होंने 1950 और 1958 में [[गणितज्ञों की अंतर्राष्ट्रीय कांग्रेस]] को दिए गए संबोधनों में दिया था। सीमा भिन्नता पर प्रमेय में (इसे आंतरिक भिन्नता से अलग करने के लिए), उन्होंने अंतर समीकरण निकाला और असमानता, जो 1936 से उघट्रेड शटलवर्थ हसलाम-जोन्स के कारण सीधी-रेखा खंडों के माप-सैद्धांतिक लक्षण वर्णन पर निर्भर थी। हसलाम-जोन्स के प्रमाण को कठिन माना गया था और केवल 1970 के दशक के मध्य में शॉबर और कैंपबेल द्वारा संतोषजनक प्रमाण दिया गया था। -लैमौरेक्स.<ref>{{harvnb|Schober|1975}}</ref><ref>{{harvnb|Duren|1980}}</ref><ref>{{harvnb|Duren|1983}}</ref>
पास में <math>\infty</math>, अधिकतमीकरण <math>\mathrm{Re}(e^{-2i\theta}a_1)</math> और छवि होना <math>f(G)</math> कोण के साथ समानांतर स्लिट डोमेन <math>\theta</math> तक {{math|''x''}}-एक्सिस <ref>{{harvnb|Jenkins|1958|pages=77–78}}</ref><ref>{{harvnb|Duren|1980}}</ref><ref>{{harvnb|Schiff|1993|pages=162–166}}</ref> मल्टीपल कनेक्टेड केस में समानांतर स्लिट डोमेन कैनोनिकल डोमेन होने का पहला प्रमाण 1909 में डेविड हिल्बर्ट द्वारा दिया गया था। {{harvtxt|जेन्किन्स|1958}}, अनवैलेंट फलन और कंफ़ॉर्मल मैपिंग पर अपनी पुस्तक पर, 1930 के दशक की प्रारंभ में हर्बर्ट ग्रोट्ज़ और रेने डी पॉसेल के कार्य के आधार पर उपचार दिया; यह [[क्वासिकोनफॉर्मल मैपिंग]] और [[द्विघात अंतर]] का अग्रदूत था, जिसे इसके पश्चात् ओसवाल्ड टीचमुलर के कारण [[चरम लंबाई]] की तकनीक के रूप में विकसित किया गया था।<ref>{{harvnb|Jenkins|1958|pages=77–78}}</ref> [[मेनहेम मैक्स शिफ़र]] ने बहुत ही सामान्य [[परिवर्तनशील सिद्धांत]] पर आधारित उपचार दिया था, जिसका सारांश उन्होंने 1950 और 1958 में [[गणितज्ञों की अंतर्राष्ट्रीय कांग्रेस]] को दिए गए संबोधनों में दिया था। सीमा भिन्नता पर प्रमेय में (इसे आंतरिक भिन्नता से अलग करने के लिए), उन्होंने अंतर समीकरण निकाला और असमानता, जो 1936 से उघट्रेड शटलवर्थ हसलाम-जोन्स के कारण सीधी-रेखा खंडों के माप-सैद्धांतिक लक्षण वर्णन पर निर्भर थी। हसलाम-जोन्स के प्रमाण को कठिन माना गया था और केवल 1970 के दशक के मध्य में शॉबर और कैंपबेल द्वारा संतोषजनक प्रमाण दिया गया था। -लैमौरेक्स.<ref>{{harvnb|Schober|1975}}</ref><ref>{{harvnb|Duren|1980}}</ref><ref>{{harvnb|Duren|1983}}</ref>


{{harvtxt|शिफ़|1993}} ने समानांतर स्लिट डोमेन के लिए एकरूपता का प्रमाण दिया जो रीमैन मैपिंग प्रमेय के समान था। अंकन को सरल बनाने के लिए क्षैतिज स्लिटों का सहारा लिया जाएगा। सबसे पहले, कोएबे तिमाही प्रमेय द्वारा बीबरबैक की असमान प्रमेय के लिए गुणांक असमानता|बीबरबैक की असमानता है, कोई भी असमान कार्य नहीं है
{{harvtxt|शिफ़|1993}} ने समानांतर स्लिट डोमेन के लिए एकरूपता का प्रमाण दिया जो रीमैन मैपिंग प्रमेय के समान था। अंकन को सरल बनाने के लिए क्षैतिज स्लिटों का सहारा लिया जाएगा। सबसे पहले, कोएबे तिमाही प्रमेय द्वारा बीबरबैक की असमान प्रमेय के लिए गुणांक असमानता या बीबरबैक की असमानता है, कोई भी असमान कार्य नहीं है
:<math>g(z)=z+cz^2+\cdots</math>
:<math>g(z)=z+cz^2+\cdots</math>


Line 127: Line 127:
सीमा पर. तब से <math>u</math> होलोमोर्फिक फलन का वास्तविक भाग है, हम यह <math>u</math> जानते हैं आवश्यक रूप से [[हार्मोनिक फ़ंक्शन|हार्मोनिक फलन]] है; अर्थात, यह लाप्लास के समीकरण को संतुष्ट करता है।
सीमा पर. तब से <math>u</math> होलोमोर्फिक फलन का वास्तविक भाग है, हम यह <math>u</math> जानते हैं आवश्यक रूप से [[हार्मोनिक फ़ंक्शन|हार्मोनिक फलन]] है; अर्थात, यह लाप्लास के समीकरण को संतुष्ट करता है।


फिर सवाल यह हो जाता है: क्या कोई वास्तविक-मूल्यवान हार्मोनिक कार्य करता है इस प्रकार <math>u</math> उपस्थित है जो सभी <math>U</math> पर परिभाषित है और दी गई सीमा नियम है? धनात्मक उत्तर डिरिचलेट सिद्धांत द्वारा प्रदान किया गया है। अस्तित्व <math>u</math> होलोमोर्फिक फलन के लिए कॉची-रीमैन समीकरण <math>g</math> स्थापित किया गया है हमें खोजने <math>v</math> की अनुमति दें (यह तर्क इस धारणा पर निर्भर करता है कि <math>U</math> सरलता जुड़े रहें)। इस प्रकार <math>u</math> और <math>v</math> का निर्माण किया गया है, किसी को परिणामी फलन <math>f</math> की जांच करनी होती है वास्तव में इसमें सभी आवश्यक गुण हैं।<ref>{{harvnb|Gamelin|2001|pages=390–407}}</ref>
फिर प्रश्न यह हो जाता है: क्या कोई वास्तविक-मूल्यवान हार्मोनिक कार्य करता है इस प्रकार <math>u</math> उपस्थित है जो सभी <math>U</math> पर परिभाषित है और दी गई सीमा नियम है? धनात्मक उत्तर डिरिचलेट सिद्धांत द्वारा प्रदान किया गया है। अस्तित्व <math>u</math> होलोमोर्फिक फलन के लिए कॉची-रीमैन समीकरण <math>g</math> स्थापित किया गया है हमें खोजने <math>v</math> की अनुमति दें (यह तर्क इस धारणा पर निर्भर करता है कि <math>U</math> सरलता जुड़े रहें)। इस प्रकार <math>u</math> और <math>v</math> का निर्माण किया गया है, किसी को परिणामी फलन <math>f</math> की जांच करनी होती है वास्तव में इसमें सभी आवश्यक गुण हैं।<ref>{{harvnb|Gamelin|2001|pages=390–407}}</ref>
==एकरूपीकरण प्रमेय==
==एकरूपीकरण प्रमेय==
रीमैन मैपिंग प्रमेय को रीमैन सतहों के संदर्भ में सामान्यीकृत किया जा सकता है: यदि <math>U</math> फिर, रीमैन सतह का गैर-रिक्त सरल रूप से जुड़ा हुआ विवृत उपसमुच्चय <math>U</math> है निम्नलिखित में से के लिए बायोलोमोर्फिक है: रीमैन क्षेत्र, समिष्ट विमान <math>\mathbb{C}</math>, या विवृत इकाई डिस्क <math>D</math> है इसे [[एकरूपीकरण प्रमेय]] के रूप में जाना जाता है।
रीमैन मैपिंग प्रमेय को रीमैन सतहों के संदर्भ में सामान्यीकृत किया जा सकता है: यदि <math>U</math> फिर, रीमैन सतह का गैर-रिक्त सरल रूप से जुड़ा हुआ विवृत उपसमुच्चय <math>U</math> है निम्नलिखित में से के लिए बायोलोमोर्फिक है: रीमैन क्षेत्र, समिष्ट विमान <math>\mathbb{C}</math>, या विवृत इकाई डिस्क <math>D</math> है इसे [[एकरूपीकरण प्रमेय]] के रूप में जाना जाता है।
Line 145: Line 145:
ऋणात्मक परिणाम:
ऋणात्मक परिणाम:


* मान लीजिए कि एल्गोरिदम A है जो सरल-कनेक्टेड डोमेन देता है रैखिक-समय गणना <math>\Omega</math> योग्य सीमा और आंतरिक त्रिज्या के साथ <math>>1/2</math> और संख्या <math>n</math> पहले गणना <math>20 n</math> करता है [[अनुरूप त्रिज्या]] के अंक <math>r(\Omega, 0),</math> तब हम शार्प-सैट( के किसी भी उदाहरण को हल करने के लिए A पर कॉल का उपयोग कर सकते हैं रैखिक समय उपरि के साथ। दूसरे शब्दों में, शार्प-पी या पी समुच्चय के अनुरूप त्रिज्या की गणना करने के लिए बहु-समय कम करने योग्य है।
* मान लीजिए कि एल्गोरिदम A है जो सरल-कनेक्टेड डोमेन देता है रैखिक-समय गणना <math>\Omega</math> योग्य सीमा और आंतरिक त्रिज्या के साथ <math>>1/2</math> और संख्या <math>n</math> पहले गणना <math>20 n</math> करता है [[अनुरूप त्रिज्या]] के अंक <math>r(\Omega, 0),</math> तब हम शार्प-सैट( के किसी भी उदाहरण को हल करने के लिए A पर कॉल का उपयोग कर सकते हैं रैखिक समय उपरि के साथ दूसरे शब्दों में, शार्प-पी या पी समुच्चय के अनुरूप त्रिज्या की गणना करने के लिए बहु-समय कम करने योग्य है।


* सरलता-कनेक्टेड डोमेन <math>\Omega,</math> के अनुरूप त्रिज्या की गणना करने की समस्या पर विचार करें, जहां <math>\Omega,</math> की सीमा <math>O(n^2)</math> पिक्सल के स्पष्ट संग्रह द्वारा स्पष्ट <math>1/n</math> के साथ दी गई है। परिशुद्धता के साथ अनुरूप त्रिज्या की गणना करने की समस्या को <math>1/n^c</math> <math>\texttt{CONF}(n,n^c).</math> द्वारा निरूपित करें, फिर, <math>\texttt{MAJ}_n</math> किसी भी [[AC0]] के लिए <math>\texttt{CONF}(n,n^c)</math> को <math>0 < c < \tfrac{1}{2}.</math> में कम करने योग्य है
* सरलता-कनेक्टेड डोमेन <math>\Omega,</math> के अनुरूप त्रिज्या की गणना करने की समस्या पर विचार करें, जहां <math>\Omega,</math> की सीमा <math>O(n^2)</math> पिक्सल के स्पष्ट संग्रह द्वारा स्पष्ट <math>1/n</math> के साथ दी गई है। परिशुद्धता के साथ अनुरूप त्रिज्या की गणना करने की समस्या को <math>1/n^c</math> <math>\texttt{CONF}(n,n^c).</math> द्वारा निरूपित करें, फिर, <math>\texttt{MAJ}_n</math> किसी भी [[AC0]] के लिए <math>\texttt{CONF}(n,n^c)</math> को <math>0 < c < \tfrac{1}{2}.</math> में कम करने योग्य है

Revision as of 09:02, 24 July 2023

समिष्ट विश्लेषण में, रीमैन मैपिंग प्रमेय में कहा गया है कि यदि समिष्ट संख्या विमान का एक गैर-रिक्त सरलता जुड़ा हुआ विवृत उपसमुच्चय है, जो का पूरा भाग नहीं है, तो ओपन यूनिट डिस्क पर से एक बायोलोमोर्फिक मैपिंग (अर्थात एक विशेषण होलोमोर्फिक फलन जिसका व्युत्क्रम भी होलोमोर्फिक है) उपस्थित है।

सामान्यतः, नियम यह है कि सरलता जुड़ा हुआ है [1] इसका कारण है कि में कोई "छिद्र" नहीं है। तथ्य यह है कि बिहोलोमोर्फिक है, इसका तात्पर्य यह है कि यह एक अनुरूप मानचित्र है और इसलिए कोण-संरक्षित है। इस तरह के अनुरूप मानचित्र की व्याख्या किसी भी पर्याप्त छोटी आकृति के आकार को संरक्षित करने के रूप में की जा सकती है, जबकि संभवतः इसे घुमाते और स्केल करते हुए (किन्तु प्रतिबिंबित नहीं करते हुए)।

हेनरी पोनकारे ने सिद्ध किया कि मानचित्र घूर्णन और पुनरावर्तन के स्थिति में अद्वितीय है: यदि का एक तत्व है और एक इच्छानुसार कोण है, तो उपरोक्त स्पष्ट रूप से एक उपस्थित है जैसे कि और बिंदु पर के व्युत्पन्न का तर्क के समान है। यह ब्लैक लेम्मा का एक सरल परिणाम है।

प्रमेय के परिणाम के रूप में, रीमैन क्षेत्र के किन्हीं दो सरल रूप से जुड़े हुए विवृत उपसमुच्चय, जिनमें से दोनों में क्षेत्र के कम से कम दो बिंदुओं की कमी है, जिसको एक-दूसरे में अनुरूप रूप से मैप किया जा सकता है।

इतिहास

प्रमेय को बर्नहार्ड रीमैन ने 1851 में अपनी पीएचडी थीसिस में कहा था (इस धारणा के अनुसार कि की सीमा टुकड़ों में स्मूथ है)। लार्स अहलफोर्स ने प्रमेय के मूल सूत्रीकरण के संबंध में एक बार लिखा था कि इसे "अंततः ऐसे शब्दों में तैयार किया गया था जो आधुनिक विधियों से भी प्रमाण के किसी भी प्रयास को अस्वीकार कर देता है"।[2] रीमैन का त्रुटिपूर्ण प्रमाण डिरिचलेट सिद्धांत (जिसे रीमैन ने स्वयं नाम दिया था) पर निर्भर था, जिसे उस समय सही माना जाता था। चूँकि, कार्ल वीयरस्ट्रैस ने पाया कि यह सिद्धांत सार्वभौमिक रूप से मान्य नहीं था। इसके पश्चात्, डेविड हिल्बर्ट यह सिद्ध करने में सक्षम हुए कि, अधिक सीमा तक, डिरिक्लेट सिद्धांत उस परिकल्पना के अनुसार मान्य है जिसके साथ रीमैन कार्य कर रहा था। चूँकि, वैध होने के लिए, डिरिचलेट सिद्धांत को की सीमा से संबंधित कुछ परिकल्पनाओं की आवश्यकता है जो सामान्य रूप से जुड़े हुए डोमेन (गणितीय विश्लेषण) के लिए मान्य नहीं हैं।

प्रमेय का पहला कठोर प्रमाण 1900 में विलियम फॉग ऑसगूड द्वारा दिया गया था। उन्होंने के अतिरिक्त इच्छानुसार से जुड़े डोमेन पर ग्रीन के फलन के अस्तित्व को सिद्ध किया था; इसने रीमैन मैपिंग प्रमेय की स्थापना की थी।[3]

कॉन्स्टेंटिन कैराथोडोरी ने 1912 में प्रमेय का और प्रमाण दिया था, जो संभावित सिद्धांत के अतिरिक्त पूरी तरह से फलन सिद्धांत के विधियों पर विश्वास करने वाला पहला प्रमाण था।[4] उनके प्रमाण में मॉन्टेल की सामान्य वर्गों की अवधारणा का उपयोग किया गया था, जो पाठ्यपुस्तकों में प्रमाण की मानक विधि बन गई थी।[5] कैराथोडोरी ने 1913 में इस अतिरिक्त प्रश्न को हल करके जारी रखा कि क्या डोमेन के बीच रीमैन मैपिंग को सीमाओं के होमोमोर्फिज्म तक बढ़ाया जा सकता है (देखें कैराथोडोरी का प्रमेय (कन्फर्मल मैपिंग) या कैराथोडोरी का प्रमेय)।[6]

कैराथोडोरी के प्रमाण में रीमैन सतह का उपयोग किया गया और इसे पॉल कोबे द्वारा दो साल बाद इस तरह से सरल बनाया गया कि उनकी आवश्यकता नहीं थी। और प्रमाण, लिपोट फेजर और फ्रिगयेस रिज़्ज़ के कारण, 1922 में प्रकाशित हुआ था और यह पिछले वाले की तुलना में छोटा था। इस प्रमाण में, रीमैन के प्रमाण की तरह, चरम समस्या के समाधान के रूप में वांछित मानचित्रण प्राप्त किया गया था। फ़ेज़ेर-रीज़ प्रमाण को अलेक्जेंडर ओस्ट्रोव्स्की और कैराथोडोरी द्वारा और अधिक सरल बनाया गया था।

महत्व

निम्नलिखित बिंदु रीमैन मैपिंग प्रमेय की विशिष्टता और शक्ति का विवरण देते हैं:

  • यहां तक ​​कि अपेक्षाकृत सरल रीमैन मैपिंग (उदाहरण के लिए वृत्त के आंतरिक भाग से वर्ग के आंतरिक भाग तक का नक्शा) में केवल प्राथमिक कार्य का उपयोग करके कोई स्पष्ट सूत्र नहीं है।
  • समतल में सरलता से जुड़े हुए विवृत समुच्चय अत्यधिक समिष्ट हो सकते हैं, उदाहरण के लिए, सीमा (टोपोलॉजी) अनंत लंबाई का कहीं न कहीं भिन्न-भिन्न कार्य वाला भग्न वक्र हो सकता है, तथापि समुच्चय स्वयं परिबद्ध होता है। ऐसा ही उदाहरण कोच वक्र है।[7] तथ्य यह है कि इस तरह के समुच्चय को कोण-संरक्षण विधि से अच्छी और नियमित इकाई डिस्क पर मैप किया जा सकता है, यह प्रति-सहज ज्ञान युक्त लगता है।
  • अधिक समष्टि डोमेन के लिए रीमैन मैपिंग प्रमेय का एनालॉग सत्य नहीं है। अगला सरलतम स्थिति दोहरे रूप से जुड़े डोमेन (एकल छेद वाले डोमेन) का है। पंचर डिस्क और पंचर प्लेन को छोड़कर कोई भी दोगुना जुड़ा हुआ डोमेन अनुरूप रूप से के साथ कुछ एनलस के समान है, चूँकि व्युत्क्रम और स्थिरांक द्वारा गुणा को छोड़कर एन्युली के बीच कोई अनुरूप मानचित्र नहीं हैं, इसलिए एनलस एनलस के अनुरूप अनुरूप नहीं है (जैसा कि चरम लंबाई का उपयोग करके सिद्ध किया जा सकता है)।
  • तीन या अधिक वास्तविक आयामों में रीमैन मैपिंग प्रमेय का एनालॉग सत्य नहीं है। तीन आयामों में अनुरूप मानचित्रों का वर्ग बहुत व्यर्थ है, और अनिवार्य रूप से इसमें केवल मोबियस परिवर्तन सम्मिलित हैं (लिउविले के प्रमेय (अनुरूप मानचित्रण) देखें |
  • तथापि उच्च आयामों में इच्छानुसार होमियोमोर्फिज्म की अनुमति होटी है, संकुचन मैनिफोल्ड्स पाए जा सकते हैं जो बॉल (गणित) (उदाहरण के लिए, व्हाइटहेड सातत्य) के लिए होमियोमोर्फिक नहीं हैं।
  • कई समिष्ट चरों के कार्य में रीमैन मैपिंग प्रमेय का एनालॉग भी सत्य नहीं है। जिसमें (), बॉल और पॉलीडिस्क दोनों सरलता जुड़े हुए हैं, किन्तु उनके बीच कोई बायोलोमोर्फिक मानचित्र नहीं है।[8]

सामान्य वर्गों के माध्यम से प्रमाण

सरल कनेक्टिविटी

प्रमेय. विवृत डोमेन के लिए निम्नलिखित स्थितियाँ समतुल्य हैं:[9]

  1. सरलता जुड़ा हुआ है;
  2. प्रत्येक होलोमोर्फिक फलन का अभिन्न अंग संवृत टुकड़ों में चिकने वक्र के चारों ओर विलुप्त हो जाता है;
  3. प्रत्येक होलोमोर्फिक फलन होलोमोर्फिक फलन का व्युत्पन्न है;
  4. प्रत्येक कहीं-लुप्त हो जाने वाला होलोमोर्फिक फलन पर होलोमोर्फिक लघुगणक है;
  5. प्रत्येक कहीं-लुप्त हो जाने वाला होलोमोर्फिक फलन पर होलोमोर्फिक वर्गमूल है;
  6. किसी भी के लिए, में किसी भी टुकड़े के अनुसार चिकने संवृत वक्र के लिए की विन्डिंग संख्या है
  7. विस्तारित सम्मिश्र तल में का पूरक जुड़ा हुआ है।

(1) ⇒ (2) क्योंकि G में आधार बिंदु के साथ कोई भी निरंतर संवृत वक्र, निरंतर स्थिर वक्र में विकृत हो सकता है। जिससे वक्र पर की रेखा अभिन्न अंग है

(2) ⇒ (3) क्योंकि किसी भी टुकड़े के अनुसार स्मूथ पथ पर अभिन्न अंग से को मौलिक को परिभाषित करने के लिए उपयोग किया जा सकता है।

(3) ⇒ (4) लघुगणक की एक शाखा देने के लिए से तक को एकीकृत करते है।

(4) ⇒ (5) वर्गमूल को के रूप में लेकर, जहां लघुगणक का एक होलोमोर्फिक विकल्प है।

(5) ⇒ (6) क्योंकि यदि एक टुकड़ा-वार संवृत वक्र है और , के बाहर के लिए के क्रमिक वर्गमूल हैं, तो के बारे में की विन्डिंग संख्या के बारे में की विन्डिंग संख्या का गुना है। इसलिए के बारे में की विन्डिंग संख्या सभी के लिए से विभाज्य होनी चाहिए, इसलिए यह के समान होनी चाहिए

(6) ⇒ (7) अन्यथा विस्तारित विमान के लिए कप कप इन्फ्टी सेटमिनस जी को दो विवृत और संवृत समुच्चय और के असंयुक्त संघ के रूप में लिखा जा सकता है, जिसमें और में सीमा होती है। मान लीजिए कि , और के बीच सबसे छोटी यूक्लिडियन दूरी है और पर लंबाई के साथ एक वर्गाकार ग्रिड बनाएं, जिसमें वर्ग के केंद्र में का एक बिंदु हो। मान लीजिए कि , से दूरी वाले सभी वर्गों के मिलन का एक सघन समुच्चय है। को को कवर करने वाले सभी वर्गों के रूप में लें, तो के ऊपर की घुमावदार संख्याओं के योग के समान होता है, इस प्रकार मिलता है। दूसरी ओर की घुमावदार संख्याओं का योग a के समान होता है 1. इसलिए में से कम से कम एक की घुमावदार संख्या के बारे में शून्येतर है।

(7)⇒ (1) यह विशुद्ध रूप से टोपोलॉजिकल तर्क है। मान लीजिए कि एक टुकड़ा-वार चिकना संवृत वक्र है जो कि पर आधारित है। सन्निकटन के अनुसार γ, z_{0} पर आधारित लंबाई के वर्ग ग्रिड पर एक आयताकार पथ के समान समरूप वर्ग में है; ऐसा आयताकार पथ क्रमागत निर्देशित ऊर्ध्वाधर और क्षैतिज भुजाओं के क्रम से निर्धारित होता है। पर प्रेरण द्वारा, ऐसे पथ को ग्रिड के एक कोने पर स्थिर पथ में विकृत किया जा सकता है। यदि पथ एक बिंदु पर प्रतिच्छेद करता है, तो यह लंबाई के दो आयताकार पथों में टूट जाता है, और इस प्रकार प्रेरण परिकल्पना और मौलिक समूह के प्राथमिक गुणों द्वारा इसे पर स्थिर पथ में विकृत किया जा सकता है। तर्क "उत्तर-पूर्व तर्क" का अनुसरण करता है:[10][11] गैर-स्व-प्रतिच्छेदी पथ में एक कोने होगा जिसमें सबसे बड़ा वास्तविक भाग (पूर्व की ओर) होगा और फिर उनके बीच सबसे बड़ा काल्पनिक भाग (उत्तर की ओर) होगा। यदि आवश्यकता हो तो दिशा उलटते हुए, पथ के लिए से तक और फिर तक जाता है और फिर बाईं ओर जाता है। मान लीजिए इन शीर्षों वाला विवृत आयत है। पथ की घुमावदार संख्या से तक ऊर्ध्वाधर खंड के दाईं ओर के बिंदुओं के लिए है और दाईं ओर के बिंदुओं के लिए -1 है; और इसलिए आर के अंदर। चूंकि घुमावदार संख्या है, g में स्थित है। यदि पथ का एक बिंदु है, तो इसे जी में स्थित होना चाहिए; यदि पर है, किन्तु पथ पर नहीं है, तो निरंतरता से के बारे में पथ की घुमावदार संख्या भी में स्थित होनी चाहिए। किन्तु इस स्थिति में आयत की तीन भुजाओं को चौथी भुजाओं से प्रतिस्थापित करके पथ को विकृत किया जा सकता है, जिसके परिणामस्वरूप दो कम भुजाएँ होंगी (स्वयं-प्रतिच्छेदन की अनुमति के साथ)।

रीमैन मैपिंग प्रमेय

  • वीयरस्ट्रैस का अभिसरण प्रमेय होलोमोर्फिक कार्यों के अनुक्रम के कॉम्पेक्टा पर एकसमान सीमा होलोमोर्फिक है; इसी प्रकार डेरिवेटिव के लिए।
यह पहले कथन के लिए मोरेरा के प्रमेय का तत्काल परिणाम है। कॉची का अभिन्न सूत्र डेरिवेटिव के लिए सूत्र देता है जिसका उपयोग यह जांचने के लिए किया जा सकता है कि डेरिवेटिव भी कॉम्पैक्टा पर समान रूप से अभिसरण करते हैं।[12]
  • हर्विट्ज़ प्रमेय (समिष्ट विश्लेषण) या हर्विट्ज़ प्रमेय। यदि किसी विवृत डोमेन पर कहीं भी विलुप्त न होने वाले होलोमोर्फिक फलन के अनुक्रम में कॉम्पेक्टा पर समान सीमा है, तो या तो सीमा समान रूप से शून्य है या सीमा कहीं भी विलुप्त नहीं है। यदि किसी विवृत डोमेन पर एकसमान होलोमोर्फिक फलन के अनुक्रम में कॉम्पेक्टा पर समान सीमा होती है, तो या तो सीमा स्थिर होती है या सीमा एकसमान होती है।
यदि सीमा फलन गैर-शून्य है, तो उसके शून्यों को अलग करना होता है। बहुलता वाले शून्यों को एक होलोमोर्फिक फलन g के लिए घुमावदार संख्या द्वारा गिना जा सकता है। इसलिए घुमावदार संख्याएं समान सीमाओं के अनुसार निरंतर होती हैं, जिससे अनुक्रम में प्रत्येक फलन में कोई शून्य न हो और न ही कोई सीमा होती है। दूसरे कथन के लिए मान लीजिए कि और समुच्चय करें। ये डिस्क पर कहीं भी विलुप्त नहीं होते हैं, किन्तु पर विलुप्त हो जाते हैं, इसलिए जी को समान रूप से विलुप्त होना चाहिए। [13]

परिभाषाएँ वर्ग विवृत डोमेन पर होलोमोर्फिक फलन को सामान्य कहा जाता है यदि फलन का कोई क्रम हो इसका परिणाम है जो कॉम्पैक्टा पर समान रूप से होलोमोर्फिक फलन में परिवर्तित हो जाता है। एक वर्ग जब भी कोई अनुक्रम हो तो सघन होता है जो की में निहित है और समान रूप से अभिसरित हो जाता है कॉम्पैक्टा पर, फिर में भी निहित है .वर्ग इसे स्थानीय रूप से बाउंड कहा जाता है यदि उनके कार्य प्रत्येक कॉम्पैक्ट डिस्क पर समान रूप से बाउंड होते हैं। कॉची अभिन्न सूत्र को अलग करते हुए, यह निष्कर्ष निकलता है कि स्थानीय रूप से बंधे वर्ग के व्युत्पन्न भी स्थानीय रूप से बंधे होते हैं।[14][15]

  • मोंटेल का प्रमेय. डोमेन में होलोमोर्फिक फलन का प्रत्येक स्थानीय रूप से घिरा वर्ग सामान्य है।
मान लीजिए एक पूरी तरह से घिरा हुआ अनुक्रम है और का एक गणनीय सघन उपसमुच्चय चुना है। स्थानीय रूप से सीमाबद्धता और एक "विकर्ण तर्क" द्वारा, एक अनुवर्ती चुना जा सकता है जिससे प्रत्येक बिंदु पर अभिसरण होता है। यह सत्यापित किया जाना चाहिए कि होलोमोर्फिक फलन का यह क्रम प्रत्येक कॉम्पेक्टम पर समान रूप से पर अभिसरण करता है। को के साथ इस प्रकार खोलें कि का समापन कॉम्पैक्ट हो और इसमें सम्मिलित होते है।
,
हमारे पास यह है कि अब प्रत्येक के लिए में कुछ चुनें जहां पर अभिसरण होता है, और को इतना बड़ा लें कि वह इसकी सीमा के के अन्दर हो। फिर के लिए
इसलिए अनुक्रम आवश्यकतानुसार पर एक समान मानदंड में एक कॉची अनुक्रम बनाता है।[16][17]
  • रीमैन मानचित्रण प्रमेय. यदि एक सरल रूप से जुड़ा हुआ डोमेन है और में है, तो यूनिट डिस्क पर की एक अद्वितीय अनुरूप मैपिंग है, जिसे इस तरह सामान्यीकृत किया गया है कि और
विशिष्टता इस प्रकार है क्योंकि यदि और समान नियमो को पूरा करते हैं, तो इकाई डिस्क का एक असमान होलोमोर्फिक मानचित्र होगा जिसमें इकाई डिस्क होगी और और होगा। किन्तु श्वार्ज़ लेम्मा द्वारा, यूनिट डिस्क के असमान होलोमोर्फिक मानचित्र मोबियस ट्रांसफॉर्मेशन द्वारा दिए गए हैं
के साथ तो पहचान मानचित्र और होना चाहिए
अस्तित्व को सिद्ध करने के लिए, मान लीजिए होलोमोर्फिक यूनिवेलेंट मैपिंग का वर्ग होना का विवृत यूनिट डिस्क में साथ और . मोंटेल के प्रमेय के अनुसार यह सामान्य वर्ग है। सरल-कनेक्टिविटी के लक्षण वर्णन द्वारा, के लिए वर्गमूल की होलोमोर्फिक शाखा होती है इस प्रकार में . यह एकसमान है और के लिए है तब से संवृत डिस्क होनी चाहिए केंद्र के साथ और त्रिज्या , का कोई अंक नहीं में गलत बोल सकते हैं मान लीजिए अद्वितीय मोबियस परिवर्तनकारी बनें पर सामान्यीकरण के साथ और . निर्माण द्वारा में है , जिससे गैर-रिक्त है. पॉल कोएबे की विधि समस्या को हल करने के लिए अनुरूप मानचित्रण उत्पन्न करने के लिए चरम फलन का उपयोग करना है: इस स्थिति में इसे अधिकांशतः अहलफोर्स फलन कहा जाता है , लार्स अहलफोर्स के बाद [18] मान लीजिए का सर्वोच्च होना के लिए . साथ के लिए उन्मुख होता है मॉन्टेल के प्रमेय के अनुसार, यदि आवश्यक हो तो अनुवर्ती से निकलते हुए, होलोमोर्फिक फलन की ओर प्रवृत्त होता है कॉम्पेक्टा पर समान रूप से। हर्विट्ज़ प्रमेय द्वारा, या तो असंयोजक है या स्थिर है। किन्तु है और . इसलिए परिमित है, समान और है. यह जाँचना बाकी है कि अनुरूप मानचित्रण लेता है इस प्रकार पर . नहीं तो ले लो में और जाने का होलोमोर्फिक वर्गमूल हो पर . फलन एकसमान और मानचित्र है मान लीजिए
जहाँ . तब और नियमित गणना यह दर्शाती है
यह की अधिकतमता का खंडन करता है , जिससे सभी मूल्यों को अंदर लेना चाहिए .[19][20][21]

टिप्पणी। रीमैन मैपिंग प्रमेय के परिणामस्वरूप, विमान में प्रत्येक सरलता जुड़ा हुआ डोमेन यूनिट डिस्क के लिए होमोमोर्फिक है। यदि अंक छोड़ दिए जाएं, तो यह प्रमेय से निकलता है। पूरे विमान के लिए, होमोमोर्फिज्म की समरूपता पर देता है.

समानांतर स्लिट मैपिंग

सामान्य वर्गों के लिए कोएबे का एकरूपीकरण प्रमेय भी एकरूपता उत्पन्न करने के लिए सामान्यीकरण करता है इस प्रकार बहु-जुड़े हुए डोमेन के लिए परिमित समानांतर स्लिट डोमेन के लिए, जहां स्लिट तक x-एक्सिस का कोण होता है। इस प्रकार यदि में डोमेन युक्त और सीमित रूप से कई जॉर्डन आकृतियों से घिरा होता है, अद्वितीय असमान कार्य पर साथ है

पास में , अधिकतमीकरण और छवि होना कोण के साथ समानांतर स्लिट डोमेन तक x-एक्सिस [22][23][24] मल्टीपल कनेक्टेड केस में समानांतर स्लिट डोमेन कैनोनिकल डोमेन होने का पहला प्रमाण 1909 में डेविड हिल्बर्ट द्वारा दिया गया था। जेन्किन्स (1958), अनवैलेंट फलन और कंफ़ॉर्मल मैपिंग पर अपनी पुस्तक पर, 1930 के दशक की प्रारंभ में हर्बर्ट ग्रोट्ज़ और रेने डी पॉसेल के कार्य के आधार पर उपचार दिया; यह क्वासिकोनफॉर्मल मैपिंग और द्विघात अंतर का अग्रदूत था, जिसे इसके पश्चात् ओसवाल्ड टीचमुलर के कारण चरम लंबाई की तकनीक के रूप में विकसित किया गया था।[25] मेनहेम मैक्स शिफ़र ने बहुत ही सामान्य परिवर्तनशील सिद्धांत पर आधारित उपचार दिया था, जिसका सारांश उन्होंने 1950 और 1958 में गणितज्ञों की अंतर्राष्ट्रीय कांग्रेस को दिए गए संबोधनों में दिया था। सीमा भिन्नता पर प्रमेय में (इसे आंतरिक भिन्नता से अलग करने के लिए), उन्होंने अंतर समीकरण निकाला और असमानता, जो 1936 से उघट्रेड शटलवर्थ हसलाम-जोन्स के कारण सीधी-रेखा खंडों के माप-सैद्धांतिक लक्षण वर्णन पर निर्भर थी। हसलाम-जोन्स के प्रमाण को कठिन माना गया था और केवल 1970 के दशक के मध्य में शॉबर और कैंपबेल द्वारा संतोषजनक प्रमाण दिया गया था। -लैमौरेक्स.[26][27][28]

शिफ़ (1993) ने समानांतर स्लिट डोमेन के लिए एकरूपता का प्रमाण दिया जो रीमैन मैपिंग प्रमेय के समान था। अंकन को सरल बनाने के लिए क्षैतिज स्लिटों का सहारा लिया जाएगा। सबसे पहले, कोएबे तिमाही प्रमेय द्वारा बीबरबैक की असमान प्रमेय के लिए गुणांक असमानता या बीबरबैक की असमानता है, कोई भी असमान कार्य नहीं है


जहां फिर और एक नियमित गणना से यह पता चलता है

यह की अधिकतमता का खंडन करता है, इसलिए को में सभी मान लेने होंगे

R को इतना बड़ा लें कि खुली डिस्क |z|<R में स्थित हो जाए। के लिए, एकरूपता और अनुमान का अर्थ है कि, यदि z, के साथ G में स्थित है, तो चूंकि एकसंयोजक f का वर्ग स्थानीय रूप से में घिरा हुआ है, मोंटेल के प्रमेय के अनुसार वे एक सामान्य वर्ग बनाते हैं। इसके अतिरिक्त यदि वर्ग में है और कॉम्पैक्टा पर समान रूप से की ओर प्रवृत्त होता है, तो भी वर्ग में है और पर लॉरेंट विस्तार का प्रत्येक गुणांक f के संगत गुणांक की ओर प्रवृत्त होता है। यह विशेष रूप से गुणांक पर प्रयुक्त होता है: इसलिए सघनता से एक असमान एफ होता है जो अधिकतम होता है । उसे जांचने के लिए

अब सिद्ध करने के लिए कि गुणा किया गया डोमेन क्षैतिज समानांतर स्लिट अनुरूप मानचित्रण द्वारा एकरूप बनाया जा सकता है

,

माना इतना बड़ा विवृत डिस्क में है . के लिए , एकरूपता और अनुमान इसका तात्पर्य यह है कि, यदि में निहित है साथ , तब . एकसमान वर्ग के बाद से स्थानीय रूप से बंधे हुए हैं मोंटेल के प्रमेय के अनुसार वे सामान्य वर्ग बनाते हैं। इसके अतिरिक्त यदि वर्ग में है और प्रवृत्त है फिर, कॉम्पेक्टा पर समान रूप से वर्ग में भी है और लॉरेंट विस्तार के प्रत्येक गुणांक पर की के संगत गुणांक की ओर प्रवृत्त होता है . यह विशेष रूप से गुणांक पर प्रयुक्त होता है: इसलिए सघनता से असंयोजक होता है जो अधिकतम होता है . उसे जांचने के लिए

आवश्यक समानांतर स्लिट परिवर्तन है, मान लीजिए कि रिडक्टियो एड एब्सर्डम है कॉम्पैक्ट और कनेक्टेड घटक है इसकी सीमा का जो क्षैतिज झिरी नहीं है। फिर पूरक का में से जुड़ा हुआ है . रीमैन मानचित्रण प्रमेय के अनुसार अनुरूप मानचित्रण होता है

ऐसा है कि है क्षैतिज स्लिट हटाकरतो हमारे पास वह है

और इस तरह की चरम सीमा से . इसलिए, . दूसरी ओर रीमैन मानचित्रण प्रमेय द्वारा अनुरूप मानचित्रण होता है

मैपिंग पर . तब

पिछले पैराग्राफ में स्लिट मैपिंग के लिए सख्त अधिकतमता से, हम उस को देख सकते हैं, जिससे के लिए दो असमानताएँ विरोधाभासी हैं।[29][30][31]

अनुरूप समानांतर स्लिट परिवर्तन की विशिष्टता का प्रमाण गोलुज़िन (1969) और ग्रुंस्की (1978) में दिया गया है। जौकोव्स्की ट्रांसफॉर्म एच के व्युत्क्रम को क्षैतिज स्लिट डोमेन पर प्रयुक्त करते हुए, यह माना जा सकता है कि जी एक डोमेन है जो यूनिट सर्कल से घिरा है और इसमें विश्लेषणात्मक आर्क्स और पृथक बिंदु सम्मिलित हैं (अन्य समानांतर क्षैतिज स्लिट के अनुसार जौकोव्स्की ट्रांसफॉर्म के व्युत्क्रम की छवियां)। इस प्रकार, में एक निश्चित लेते हुए, एक असमान मानचित्रण होता है

इसकी छवि के साथ क्षैतिज स्लिट डोमेन लगता है कि के साथ और एकरूपकारक है

प्रत्येक के या के अंतर्गत छवियों में एक निश्चित y-निर्देशांक होता है, इसलिए क्षैतिज खंड होते हैं। दूसरी ओर, में होलोमोर्फिक है। यदि यह स्थिर है, तो इसे के बाद से समान रूप से शून्य होना चाहिए। मान लीजिए गैर-स्थिर है, तो धारणा के अनुसार सभी क्षैतिज रेखाएं हैं। यदि t इन पंक्तियों में से एक में नहीं है, तो कॉची के तर्क सिद्धांत से पता चलता है कि में के समाधानों की संख्या शून्य है (कोई भी अंततः में के निकट आकृति से घिरा होगा)। यह इस तथ्य का खंडन करता है कि गैर-स्थिर होलोमोर्फिक फ़ंक्शन एक विवृत मानचित्रण है।[32]

डिरिचलेट समस्या के माध्यम से स्केच प्रमाण

दिया गया और बिंदु , हम फलन बनाना चाहते हैं जो मानचित्र यूनिट डिस्क के लिए और को . इस स्केच के लिए, हम मान लेंगे कि यू घिरा हुआ है और इसकी सीमा स्मूथ है, जैसा कि रीमैन ने किया था।

जहाँ वास्तविक भाग के साथ कुछ (निर्धारित किया जाना है) होलोमोर्फिक फलन है इस प्रकार और काल्पनिक भाग . तब यह स्पष्ट हो जाता है कि का एकमात्र शून्य है हमें इसकी आवश्यकता है के लिए , तो हमें चाहिए

सीमा पर. तब से होलोमोर्फिक फलन का वास्तविक भाग है, हम यह जानते हैं आवश्यक रूप से हार्मोनिक फलन है; अर्थात, यह लाप्लास के समीकरण को संतुष्ट करता है।

फिर प्रश्न यह हो जाता है: क्या कोई वास्तविक-मूल्यवान हार्मोनिक कार्य करता है इस प्रकार उपस्थित है जो सभी पर परिभाषित है और दी गई सीमा नियम है? धनात्मक उत्तर डिरिचलेट सिद्धांत द्वारा प्रदान किया गया है। अस्तित्व होलोमोर्फिक फलन के लिए कॉची-रीमैन समीकरण स्थापित किया गया है हमें खोजने की अनुमति दें (यह तर्क इस धारणा पर निर्भर करता है कि सरलता जुड़े रहें)। इस प्रकार और का निर्माण किया गया है, किसी को परिणामी फलन की जांच करनी होती है वास्तव में इसमें सभी आवश्यक गुण हैं।[33]

एकरूपीकरण प्रमेय

रीमैन मैपिंग प्रमेय को रीमैन सतहों के संदर्भ में सामान्यीकृत किया जा सकता है: यदि फिर, रीमैन सतह का गैर-रिक्त सरल रूप से जुड़ा हुआ विवृत उपसमुच्चय है निम्नलिखित में से के लिए बायोलोमोर्फिक है: रीमैन क्षेत्र, समिष्ट विमान , या विवृत इकाई डिस्क है इसे एकरूपीकरण प्रमेय के रूप में जाना जाता है।

स्मूथ रीमैन मैपिंग प्रमेय

स्मूथ सीमा के साथ सरलता जुड़े हुए बंधे हुए डोमेन के स्थिति में, रीमैन मैपिंग फलन और इसके सभी डेरिवेटिव डोमेन के संवृत होने तक निरंतरता द्वारा विस्तारित होते हैं। इसे डिरिचलेट सीमा मूल्य समस्या के समाधान के नियमितता गुणों का उपयोग करके सिद्ध किया जा सकता है, जो या तो समतल डोमेन के लिए सोबोलेव रिक्त समिष्ट के सिद्धांत से अनुसरण करते हैं रीमैन मैपिंग प्रमेय को सुचारू करने के लिए आवेदन या न्यूमैन-पोंकारे ऑपरेटर से डिरिचलेट और न्यूमैन समस्याओं का समाधान सुचारू रीमैन मैपिंग प्रमेय को सिद्ध करने के अन्य विधियों में कर्नेल फलन का सिद्धांत सम्मिलित है [34]

एल्गोरिदम

कम्प्यूटेशनल कंफर्मल मैपिंग को व्यावहारिक विश्लेषण और गणितीय भौतिकी की समस्याओं के साथ-साथ इमेज प्रोसेसिंग जैसे इंजीनियरिंग विषयों में प्रमुखता से दिखाया गया है।

1980 के दशक की प्रारंभ में अनुरूप मानचित्रों की गणना के लिए प्राथमिक एल्गोरिदम की खोज की गई थी। अंक दिये गये समतल में, एल्गोरिथ्म जॉर्डन वक्र से घिरे क्षेत्र पर यूनिट डिस्क के स्पष्ट अनुरूप मानचित्र की गणना साथ करता है यह एल्गोरिदम जॉर्डन क्षेत्रों के लिए अभिसरण करता है [35] समान रूप से निकट सीमाओं के अर्थ में मैपिंग फलन और उनके व्युत्क्रमों के लिए संवृत क्षेत्र और संवृत डिस्क पर समान समान अनुमान हैं। यदि डेटा बिंदु a पर स्थित हों तो उत्तम अनुमान प्राप्त होते हैं इस प्रकार वक्र या A K-अर्धवृत्त. एल्गोरिथ्म को अनुरूप वेल्डिंग के लिए अनुमानित विधि के रूप में खोजा गया था; चूँकि, इसे लोवेनर अंतर समीकरण के विवेकाधीनता के रूप में भी देखा जा सकता है।[36] निम्नलिखित दो समतलीय डोमेन के बीच अनुरूप मानचित्रण को संख्यात्मक रूप से अनुमानित करने के बारे में जाना जाता है।[37]

धनात्मक परिणाम:

  • एक एल्गोरिदम A है जो निम्नलिखित अर्थों में एकरूपीकरण मानचित्र की गणना करता है। मान लीजिए सीमाबद्ध सरल-कनेक्टेड डोमेन बनें, और . A को ओरेकल द्वारा पिक्सेलयुक्त अर्थ में प्रतिनिधित्व करते हुए प्रदान किया जाता है (अर्थात, यदि स्क्रीन को विभाजित किया गया है) पिक्सेल, ओरेकल कह सकता है कि प्रत्येक पिक्सेल सीमा से संबंधित है या नहीं)। फिर A एकसमान मानचित्र के निरपेक्ष मानों की गणना करता है स्पष्टता के साथ से घिरे विमान में और समय है जहाँ के व्यास और पर ही निर्भर करता है इसके अतिरिक्त, एल्गोरिथ्म के मूल्य की गणना करता है स्पष्टता के साथ जब तक कि है इसके अतिरिक्त, प्रश्न करता है अधिकतम परिशुद्धता के साथ विशेषकर, यदि विमान में गणना योग्य बहुपद समिष्ट है कुछ स्थिरांक के लिए और समय तब A का उपयोग विमान में समान मानचित्र की गणना करने के लिए किया जा सकता है
  • एक एल्गोरिदम ए' है जो निम्नलिखित अर्थों में एकरूपीकरण मानचित्र की गणना करता है। मान लीजिए सीमाबद्ध सरल-कनेक्टेड डोमेन बनें, और मान लीजिए कि कुछ के लिए स्पष्टता के साथ A' को दिया गया है इस प्रकार द्वारा पिक्सल फिर A' एकसमान मानचित्र के निरपेक्ष मानों की गणना करता है इस प्रकार की त्रुटि के अन्दर से घिरे यादृच्छिक समिष्ट में और समय बहुपद में (अर्थात बीपीएल द्वारा(n)-मशीन)। इसके अतिरिक्त, एल्गोरिथ्म के मूल्य की गणना करता है | स्पष्टता के साथ जब तक कि है

ऋणात्मक परिणाम:

  • मान लीजिए कि एल्गोरिदम A है जो सरल-कनेक्टेड डोमेन देता है रैखिक-समय गणना योग्य सीमा और आंतरिक त्रिज्या के साथ और संख्या पहले गणना करता है अनुरूप त्रिज्या के अंक तब हम शार्प-सैट( के किसी भी उदाहरण को हल करने के लिए A पर कॉल का उपयोग कर सकते हैं रैखिक समय उपरि के साथ दूसरे शब्दों में, शार्प-पी या पी समुच्चय के अनुरूप त्रिज्या की गणना करने के लिए बहु-समय कम करने योग्य है।
  • सरलता-कनेक्टेड डोमेन के अनुरूप त्रिज्या की गणना करने की समस्या पर विचार करें, जहां की सीमा पिक्सल के स्पष्ट संग्रह द्वारा स्पष्ट के साथ दी गई है। परिशुद्धता के साथ अनुरूप त्रिज्या की गणना करने की समस्या को द्वारा निरूपित करें, फिर, किसी भी AC0 के लिए को में कम करने योग्य है

यह भी देखें

टिप्पणियाँ

  1. The existence of f is equivalent to the existence of a Green’s function.
  2. Ahlfors, Lars (1953), L. Ahlfors; E. Calabi; M. Morse; L. Sario; D. Spencer (eds.), "Developments of the Theory of Conformal Mapping and Riemann Surfaces Through a Century", Contributions to the Theory of Riemann Surfaces: 3–4
  3. For the original paper, see Osgood 1900. For accounts of the history, see Walsh 1973, pp. 270–271; Gray 1994, pp. 64–65; Greene & Kim 2017, p. 4. Also see Carathéodory 1912, p. 108, footnote ** (acknowledging that Osgood 1900 had already proven the Riemann mapping theorem).
  4. Gray 1994, pp. 78–80, citing Carathéodory 1912
  5. Greene & Kim 2017, p. 1
  6. Gray 1994, pp. 80–83
  7. Lakhtakia, Akhlesh; Varadan, Vijay K.; Messier, Russell (August 1987). "समतल कोच वक्र का सामान्यीकरण और यादृच्छिकीकरण". Journal of Physics A: Mathematical and General. 20 (11): 3537–3541. doi:10.1088/0305-4470/20/11/052.
  8. Remmert 1998, section 8.3, p. 187
  9. See
  10. Gamelin 2001, pp. 256–257, elementary proof
  11. Berenstein & Gay 1991, pp. 86–87
  12. Gamelin 2001
  13. Gamelin 2001
  14. Duren 1983
  15. Jänich 1993
  16. Duren 1983
  17. Jänich 1993
  18. Gamelin 2001, p. 309
  19. Duren 1983
  20. Jänich 1993
  21. Ahlfors 1978
  22. Jenkins 1958, pp. 77–78
  23. Duren 1980
  24. Schiff 1993, pp. 162–166
  25. Jenkins 1958, pp. 77–78
  26. Schober 1975
  27. Duren 1980
  28. Duren 1983
  29. Schiff 1993
  30. Goluzin 1969, pp. 210–216
  31. Nehari 1952, pp. 351–358
  32. Goluzin 1969, pp. 214−215
  33. Gamelin 2001, pp. 390–407
  34. Bell 1992
  35. A Jordan region is the interior of a Jordan curve.
  36. Marshall, Donald E.; Rohde, Steffen (2007). "अनुरूप मानचित्रण के लिए जिपर एल्गोरिदम के एक संस्करण का अभिसरण". SIAM Journal on Numerical Analysis. 45 (6): 2577. CiteSeerX 10.1.1.100.2423. doi:10.1137/060659119.
  37. Binder, Ilia; Braverman, Mark; Yampolsky, Michael (2007). "रीमैन मैपिंग की कम्प्यूटेशनल जटिलता पर". Arkiv för Matematik. 45 (2): 221. arXiv:math/0505617. Bibcode:2007ArM....45..221B. doi:10.1007/s11512-007-0045-x. S2CID 14545404.

संदर्भ

बाहरी संबंध