द्विघात अवकल: Difference between revisions

From Vigyanwiki
No edit summary
Line 24: Line 24:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 07/07/2023]]
[[Category:Created On 07/07/2023]]
[[Category:Vigyan Ready]]

Revision as of 15:41, 24 July 2023

गणित में, रीमैन सतह पर द्विघात विभेदक होलोमार्फिक कोटैंजेंट बंडल के सममित वर्ग का खंड है। यदि अनुभाग होलोमोर्फिक है, इस प्रकार द्विघात विभेदक को होलोमोर्फिक कहा जाता है। रीमैन सतह पर होलोमोर्फिक द्विघात विभेदकों के सदिश समिष्ट की रीमैन मॉड्यूलि स्पेस, या टेइचमुलर स्पेस के कोटैंजेंट स्पेस के रूप में प्राकृतिक व्याख्या है।

स्थानीय रूप

एक डोमेन पर प्रत्येक द्विघात विभेदक सम्मिश्र तल में इस प्रकार लिखा जा सकता है , जहाँ सम्मिश्र चर है, और इस प्रकार पर सम्मिश्र-मूल्यवान फलन है ऐसा स्थानीय द्विघात विभेदक होलोमोर्फिक है यदि और केवल यदि होलोमोर्फिक फलन है। इस प्रकार चार्ट दिया गया है जिसमे सामान्य रीमैन सतह के लिए और द्विघात विभेदक पर , पुल बैक सम्मिश्र तल में किसी डोमेन पर द्विघात विभेदक को परिभाषित करता है।

एबेलियन विभेदक से संबंध

यदि रीमैन सतह पर एबेलियन विभेदक है इस प्रकार द्विघात विभेदक है.

एकवचन यूक्लिडियन संरचना

होलोमोर्फिक द्विघात विभेदक रीमैनियन मीट्रिक निर्धारित करता है इसके शून्यों के पूरक पर. इस प्रकार यदि सम्मिश्र तल में डोमेन पर परिभाषित किया गया है, और , इस प्रकार संबंधित रीमैनियन मीट्रिक है , जहाँ . तब से होलोमोर्फिक है, इस मीट्रिक की वक्रता शून्य है। इस प्रकार, होलोमोर्फिक द्विघात विभेदक समुच्चय के पूरक पर फ्लैट मीट्रिक को परिभाषित करता है ऐसा है कि .

संदर्भ

  • Kurt Strebel, Quadratic differentials. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 5. Springer-Verlag, Berlin, 1984. xii + 184 pp. ISBN 3-540-13035-7.
  • Y. Imayoshi and M. Taniguchi, M. An introduction to Teichmüller spaces. Translated and revised from the Japanese version by the authors. Springer-Verlag, Tokyo, 1992. xiv + 279 pp. ISBN 4-431-70088-9.
  • Frederick P. Gardiner, Teichmüller Theory and Quadratic Differentials. Wiley-Interscience, New York, 1987. xvii + 236 pp. ISBN 0-471-84539-6.