न्यूनतम मॉडल कार्यक्रम: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Effort to birationally classify algebraic varieties}} | {{Short description|Effort to birationally classify algebraic varieties}} | ||
[[बीजगणितीय ज्यामिति]] में, '''न्यूनतम मॉडल प्रोग्राम''' बीजगणितीय वैराइटीज के बिरेशनल वर्गीकरण का भाग है। इसका लक्ष्य किसी भी जटिल प्रक्षेप्य विविधता का | [[बीजगणितीय ज्यामिति]] में, '''न्यूनतम मॉडल प्रोग्राम''' बीजगणितीय वैराइटीज के बिरेशनल वर्गीकरण का भाग है। इसका लक्ष्य किसी भी जटिल प्रक्षेप्य विविधता का बिरेशनल मॉडल बनाना है जो यथासंभव सरल हो। इस विषय की उत्पत्ति इटैलियन बीजगणितीय ज्यामिति स्कूल द्वारा अध्ययन की गई सतहों की पारंपरिक [[द्विवार्षिक ज्यामिति|बिरेशनल ज्यामिति]] में हुई है, और वर्तमान में यह बीजगणितीय ज्यामिति के अन्दर सक्रिय अनुसंधान क्षेत्र है। | ||
==रूपरेखा== | ==रूपरेखा== | ||
Line 6: | Line 6: | ||
आधुनिक सूत्रीकरण में सिद्धांत का लक्ष्य इस प्रकार है। मान लीजिए हमें प्रक्षेपी वैराइटी <math>X</math> दी गई है, जिसे सरलता के लिए गैर-एकवचन माना जाता है। इसके कोडैरा आयाम <math>\kappa(X)</math> पर आधारित दो स्थितियां हैं:<ref>Note that the Kodaira dimension of an ''n''-dimensional variety is either <math>-\infty</math> or an integer in the range 0 to ''n''.</ref> | आधुनिक सूत्रीकरण में सिद्धांत का लक्ष्य इस प्रकार है। मान लीजिए हमें प्रक्षेपी वैराइटी <math>X</math> दी गई है, जिसे सरलता के लिए गैर-एकवचन माना जाता है। इसके कोडैरा आयाम <math>\kappa(X)</math> पर आधारित दो स्थितियां हैं:<ref>Note that the Kodaira dimension of an ''n''-dimensional variety is either <math>-\infty</math> or an integer in the range 0 to ''n''.</ref> | ||
* <math>\kappa(X)=-\infty.</math> हम | * <math>\kappa(X)=-\infty.</math> हम विविधता <math>X'</math> को <math>X</math> से बिरेशनल और मोर्फिज्म <math>f\colon X' \to Y</math> को एक प्रक्षेपी वैराइटी <math>Y</math> से इस प्रकार खोजना चाहते हैं कि <math>\dim Y < \dim X'</math> एक सामान्य फाइबर <math>F</math> के [[विहित वर्ग|एंटीकैनोनिकल वर्ग]] <math>-K_F</math> के साथ [[पर्याप्त लाइन बंडल]] हो। इस प्रकार के मोर्फिज्म को [[फैनो फ़िब्रेशन]] कहा जाता है। | ||
* <math>\kappa(X) \geqslant 0.</math> हम कैनोनिकल वर्ग <math>K_{X^\prime}</math> के साथ [[संख्यात्मक रूप से प्रभावी]], <math>X</math> के बिरेशनल <math>X'</math> को खोजना चाहते हैं। इस स्थितियां में, <math>X'</math> <math>X</math> के लिए एक न्यूनतम मॉडल है। | * <math>\kappa(X) \geqslant 0.</math> हम कैनोनिकल वर्ग <math>K_{X^\prime}</math> के साथ [[संख्यात्मक रूप से प्रभावी]], <math>X</math> के बिरेशनल <math>X'</math> को खोजना चाहते हैं। इस स्थितियां में, <math>X'</math> <math>X</math> के लिए एक न्यूनतम मॉडल है। | ||
Line 16: | Line 16: | ||
प्रत्येक अपरिवर्तनीय जटिल बीजगणितीय वक्र अद्वितीय स्मूथ प्रक्षेप्य वक्र के लिए बिरेशनल है, इसलिए वक्रों के लिए सिद्धांत तुच्छ है। सतहों के स्थितियां की जांच सबसे पहले 1900 के निकट इटैलियन स्कूल के जियोमीटर द्वारा की गई थी; [[गुइडो कैस्टेलनुवोवो]] का कैस्टेलनुओवो संकुचन प्रमेय अनिवार्य रूप से किसी भी सतह के न्यूनतम मॉडल के निर्माण की प्रक्रिया का वर्णन करता है। प्रमेय बताता है कि कोई भी गैर-तुच्छ बिरेशनल मोर्फिज्म <math>f\colon X\to Y</math> −1-वक्र को चिकने बिंदु पर अनुबंधित करना होगा, और इसके विपरीत ऐसे किसी भी वक्र को आसानी से अनुबंधित किया जा सकता है। यहां −1-वक्र स्व-प्रतिच्छेदन के साथ सहज तर्कसंगत वक्र C है जिसमें स्वयं-प्रतिच्छेदन <math>C\cdot C = -1</math> है। ऐसा कोई भी वक्र में <math>K\cdot C = -1</math> अवश्य होना चाहिए जो दर्शाता है कि यदि कैनोनिकल वर्ग नेफ है तो सतह पर कोई −1-वक्र नहीं है। | प्रत्येक अपरिवर्तनीय जटिल बीजगणितीय वक्र अद्वितीय स्मूथ प्रक्षेप्य वक्र के लिए बिरेशनल है, इसलिए वक्रों के लिए सिद्धांत तुच्छ है। सतहों के स्थितियां की जांच सबसे पहले 1900 के निकट इटैलियन स्कूल के जियोमीटर द्वारा की गई थी; [[गुइडो कैस्टेलनुवोवो]] का कैस्टेलनुओवो संकुचन प्रमेय अनिवार्य रूप से किसी भी सतह के न्यूनतम मॉडल के निर्माण की प्रक्रिया का वर्णन करता है। प्रमेय बताता है कि कोई भी गैर-तुच्छ बिरेशनल मोर्फिज्म <math>f\colon X\to Y</math> −1-वक्र को चिकने बिंदु पर अनुबंधित करना होगा, और इसके विपरीत ऐसे किसी भी वक्र को आसानी से अनुबंधित किया जा सकता है। यहां −1-वक्र स्व-प्रतिच्छेदन के साथ सहज तर्कसंगत वक्र C है जिसमें स्वयं-प्रतिच्छेदन <math>C\cdot C = -1</math> है। ऐसा कोई भी वक्र में <math>K\cdot C = -1</math> अवश्य होना चाहिए जो दर्शाता है कि यदि कैनोनिकल वर्ग नेफ है तो सतह पर कोई −1-वक्र नहीं है। | ||
कैस्टेलनोवो के प्रमेय का तात्पर्य है कि | कैस्टेलनोवो के प्रमेय का तात्पर्य है कि स्मूथ सतह के लिए न्यूनतम मॉडल का निर्माण करने के लिए, हम बस सतह पर सभी −1-वक्रों को आकारवाद में संकुचन करते हैं, और परिणामी विविधता Y या तो K नेफ के साथ (अद्वितीय) न्यूनतम मॉडल है, या शासित सतह ( जो 2-आयामी फ़ानो फ़ाइबर स्पेस के समान है, और या तो प्रक्षेप्य तल है या वक्र के ऊपर शासित सतह है) है। दूसरे स्थितियां में, X के लिए शासित बिरेशनल सतह अद्वितीय नहीं है, चूंकि प्रक्षेप्य रेखा और वक्र के उत्पाद के लिए अद्वितीय आइसोमोर्फिक है। कुछ सीमा तक सूक्ष्म बात यह है कि तथापि सतह में अनंत रूप से कई -1-वक्र हो सकते हैं, किसी को बिना -1-वक्र वाली सतह प्राप्त करने के लिए उनमें से केवल सीमित रूप से कई को अनुबंधित करने की आवश्यकता होती है। | ||
==उच्च-आयामी न्यूनतम मॉडल== | ==उच्च-आयामी न्यूनतम मॉडल== | ||
2 से बड़े आयामों में, सिद्धांत कहीं अधिक सम्मिलित हो जाता है। विशेष रूप से, स्मूथ वैराइटी <math>X</math> उपस्थित हैं जो [[नेफ लाइन बंडल|नेफ कैनोनिकल वर्ग]] के साथ किसी भी स्मूथ वैराइटी <math>X'</math> के लिए बिरेशनल नहीं हैं। 1970 और 1980 के दशक के प्रारंभ में प्रमुख वैचारिक प्रगति यह थी कि न्यूनतम मॉडलों का निर्माण अभी भी संभव है, परंतु कोई घटित होने वाली विलक्षणताओं के वैराइटीज के बारे में सावधान रहे। (उदाहरण के लिए, हम यह तय करना चाहते हैं कि क्या <math>K_{X'}</math> नेफ़ है, इसलिए प्रतिच्छेदन संख्याएँ <math>K_{X'} \cdot C</math> परिभाषित किया जाना चाहिए। इसलिए, कम से कम, कुछ सकारात्मक पूर्णांक <math>n</math> के लिए [[कार्टियर विभाजक]] होने के लिए हमारी वैराइटीज में <math>nK_{X'}</math> होना चाहिए।) | 2 से बड़े आयामों में, सिद्धांत कहीं अधिक सम्मिलित हो जाता है। विशेष रूप से, स्मूथ वैराइटी <math>X</math> उपस्थित हैं जो [[नेफ लाइन बंडल|नेफ कैनोनिकल वर्ग]] के साथ किसी भी स्मूथ वैराइटी <math>X'</math> के लिए बिरेशनल नहीं हैं। 1970 और 1980 के दशक के प्रारंभ में प्रमुख वैचारिक प्रगति यह थी कि न्यूनतम मॉडलों का निर्माण अभी भी संभव है, परंतु कोई घटित होने वाली विलक्षणताओं के वैराइटीज के बारे में सावधान रहे। (उदाहरण के लिए, हम यह तय करना चाहते हैं कि क्या <math>K_{X'}</math> नेफ़ है, इसलिए प्रतिच्छेदन संख्याएँ <math>K_{X'} \cdot C</math> परिभाषित किया जाना चाहिए। इसलिए, कम से कम, कुछ सकारात्मक पूर्णांक <math>n</math> के लिए [[कार्टियर विभाजक]] होने के लिए हमारी वैराइटीज में <math>nK_{X'}</math> होना चाहिए।) | ||
पहला मुख्य परिणाम [[ महत्वपूर्ण सांस्कृतिक संपदा मोरी | शिगेफुमी मोरी]] का शंकु प्रमेय है, जो <math>X</math> के वक्रों के शंकु की संरचना का वर्णन करता है। संक्षेप में, प्रमेय से पता चलता है कि <math>X</math> से प्रारंभ करके, कोई भी प्रेरक रूप से <math>X_i</math> के वैराइटीज का क्रम बना सकता है, जिनमें से प्रत्येक <math>K_{X_i}</math> नेफ वाले पिछले वाले की तुलना में अधिक निकट है। चूँकि, इस प्रक्रिया में कठिनाइयों का सामना करना पड़ सकता है: कुछ बिंदु पर विविधता <math>X_i</math> बहुत विलक्षण हो सकती है। इस समस्या का अनुमानित समाधान फ्लिप (बीजगणितीय ज्यामिति) है, जो <math>X_i</math> पर वैराइटी का कोडिमेंशन-2 सर्जरी ऑपरेशन है। यह स्पष्ट नहीं है कि आवश्यक फ़्लिप उपस्थित हैं, और न ही वे सदैव समाप्त (अर्थात, कोई कई चरणों में न्यूनतम मॉडल <math>X'</math> तक पहुँच जाता है।) हो जाते हैं {{harvtxt|मोरी|1988}} ने दिखाया कि फ़्लिप 3-आयामी स्थितियां में उपस्थित हैं। | पहला मुख्य परिणाम [[ महत्वपूर्ण सांस्कृतिक संपदा मोरी |शिगेफुमी मोरी]] का शंकु प्रमेय है, जो <math>X</math> के वक्रों के शंकु की संरचना का वर्णन करता है। संक्षेप में, प्रमेय से पता चलता है कि <math>X</math> से प्रारंभ करके, कोई भी प्रेरक रूप से <math>X_i</math> के वैराइटीज का क्रम बना सकता है, जिनमें से प्रत्येक <math>K_{X_i}</math> नेफ वाले पिछले वाले की तुलना में अधिक निकट है। चूँकि, इस प्रक्रिया में कठिनाइयों का सामना करना पड़ सकता है: कुछ बिंदु पर विविधता <math>X_i</math> बहुत विलक्षण हो सकती है। इस समस्या का अनुमानित समाधान फ्लिप (बीजगणितीय ज्यामिति) है, जो <math>X_i</math> पर वैराइटी का कोडिमेंशन-2 सर्जरी ऑपरेशन है। यह स्पष्ट नहीं है कि आवश्यक फ़्लिप उपस्थित हैं, और न ही वे सदैव समाप्त (अर्थात, कोई कई चरणों में न्यूनतम मॉडल <math>X'</math> तक पहुँच जाता है।) हो जाते हैं {{harvtxt|मोरी|1988}} ने दिखाया कि फ़्लिप 3-आयामी स्थितियां में उपस्थित हैं। | ||
अधिक सामान्य लॉग फ़्लिप का अस्तित्व [[व्याचेस्लाव शोकरोव]] द्वारा तीन और चार आयामों में स्थापित किया गया था। इसे बाद में [[कॉचर बिरकर]], पाओलो कैसिनी, [[क्रिस्टोफर हैकोन]] और [[जेम्स मैककर्नन]] द्वारा शोकरोव और हैकॉन और मैककर्नन के पहले के काम पर विश्वाश करते हुए उच्च आयामों के लिए सामान्यीकृत किया गया। उन्होंने लॉग कैनोनिकल रिंगों की सीमित पीढ़ी और लॉग सामान्य प्रकार की वैराइटीज के लिए न्यूनतम मॉडल के अस्तित्व सहित कई अन्य समस्याओं को भी सिद्ध किया। | अधिक सामान्य लॉग फ़्लिप का अस्तित्व [[व्याचेस्लाव शोकरोव]] द्वारा तीन और चार आयामों में स्थापित किया गया था। इसे बाद में [[कॉचर बिरकर]], पाओलो कैसिनी, [[क्रिस्टोफर हैकोन]] और [[जेम्स मैककर्नन]] द्वारा शोकरोव और हैकॉन और मैककर्नन के पहले के काम पर विश्वाश करते हुए उच्च आयामों के लिए सामान्यीकृत किया गया। उन्होंने लॉग कैनोनिकल रिंगों की सीमित पीढ़ी और लॉग सामान्य प्रकार की वैराइटीज के लिए न्यूनतम मॉडल के अस्तित्व सहित कई अन्य समस्याओं को भी सिद्ध किया। |
Revision as of 08:33, 23 July 2023
बीजगणितीय ज्यामिति में, न्यूनतम मॉडल प्रोग्राम बीजगणितीय वैराइटीज के बिरेशनल वर्गीकरण का भाग है। इसका लक्ष्य किसी भी जटिल प्रक्षेप्य विविधता का बिरेशनल मॉडल बनाना है जो यथासंभव सरल हो। इस विषय की उत्पत्ति इटैलियन बीजगणितीय ज्यामिति स्कूल द्वारा अध्ययन की गई सतहों की पारंपरिक बिरेशनल ज्यामिति में हुई है, और वर्तमान में यह बीजगणितीय ज्यामिति के अन्दर सक्रिय अनुसंधान क्षेत्र है।
रूपरेखा
सिद्धांत का मूल विचार प्रत्येक बिरेशनल तुल्यता वर्ग में, यथासंभव सरल वैराइटी की खोज करके वैराइटीज के बिरेशनल वर्गीकरण को सरल बनाना है। इस वाक्यांश का त्रुटिहीन अर्थ विषय के विकास के साथ विकसित हुआ है; मूल रूप से सतहों के लिए, इसका अर्थ स्मूथ वैराइटी ढूंढना था जिसके लिए स्मूथ सतह के साथ कोई भी बिरेशनल नियमित मानचित्र (बीजगणितीय ज्यामिति) एक आइसोमोर्फिज्म है।
आधुनिक सूत्रीकरण में सिद्धांत का लक्ष्य इस प्रकार है। मान लीजिए हमें प्रक्षेपी वैराइटी दी गई है, जिसे सरलता के लिए गैर-एकवचन माना जाता है। इसके कोडैरा आयाम पर आधारित दो स्थितियां हैं:[1]
- हम विविधता को से बिरेशनल और मोर्फिज्म को एक प्रक्षेपी वैराइटी से इस प्रकार खोजना चाहते हैं कि एक सामान्य फाइबर के एंटीकैनोनिकल वर्ग के साथ पर्याप्त लाइन बंडल हो। इस प्रकार के मोर्फिज्म को फैनो फ़िब्रेशन कहा जाता है।
- हम कैनोनिकल वर्ग के साथ संख्यात्मक रूप से प्रभावी, के बिरेशनल को खोजना चाहते हैं। इस स्थितियां में, के लिए एक न्यूनतम मॉडल है।
प्रश्न यह है कि क्या वैराइटी और ऊपर प्रदर्शित होना गैर-विलक्षण है, यह महत्वपूर्ण बात है। यह आशा करना स्वाभाविक लगता है कि यदि हम स्मूथ से प्रारंभ करते है, तो हम सदैव स्मूथ वैराइटीज की श्रेणी के अंदर न्यूनतम मॉडल या फ़ानो फाइबर स्थान पा सकते हैं। चूँकि, यह सच नहीं है, और इसलिए एकल वैराइटीज पर भी विचार करना आवश्यक हो जाता है। जो विलक्षणताएँ प्रकट होती हैं उन्हें टर्मिनल विलक्षणताएँ कहा जाता है।
सतहों के न्यूनतम मॉडल
प्रत्येक अपरिवर्तनीय जटिल बीजगणितीय वक्र अद्वितीय स्मूथ प्रक्षेप्य वक्र के लिए बिरेशनल है, इसलिए वक्रों के लिए सिद्धांत तुच्छ है। सतहों के स्थितियां की जांच सबसे पहले 1900 के निकट इटैलियन स्कूल के जियोमीटर द्वारा की गई थी; गुइडो कैस्टेलनुवोवो का कैस्टेलनुओवो संकुचन प्रमेय अनिवार्य रूप से किसी भी सतह के न्यूनतम मॉडल के निर्माण की प्रक्रिया का वर्णन करता है। प्रमेय बताता है कि कोई भी गैर-तुच्छ बिरेशनल मोर्फिज्म −1-वक्र को चिकने बिंदु पर अनुबंधित करना होगा, और इसके विपरीत ऐसे किसी भी वक्र को आसानी से अनुबंधित किया जा सकता है। यहां −1-वक्र स्व-प्रतिच्छेदन के साथ सहज तर्कसंगत वक्र C है जिसमें स्वयं-प्रतिच्छेदन है। ऐसा कोई भी वक्र में अवश्य होना चाहिए जो दर्शाता है कि यदि कैनोनिकल वर्ग नेफ है तो सतह पर कोई −1-वक्र नहीं है।
कैस्टेलनोवो के प्रमेय का तात्पर्य है कि स्मूथ सतह के लिए न्यूनतम मॉडल का निर्माण करने के लिए, हम बस सतह पर सभी −1-वक्रों को आकारवाद में संकुचन करते हैं, और परिणामी विविधता Y या तो K नेफ के साथ (अद्वितीय) न्यूनतम मॉडल है, या शासित सतह ( जो 2-आयामी फ़ानो फ़ाइबर स्पेस के समान है, और या तो प्रक्षेप्य तल है या वक्र के ऊपर शासित सतह है) है। दूसरे स्थितियां में, X के लिए शासित बिरेशनल सतह अद्वितीय नहीं है, चूंकि प्रक्षेप्य रेखा और वक्र के उत्पाद के लिए अद्वितीय आइसोमोर्फिक है। कुछ सीमा तक सूक्ष्म बात यह है कि तथापि सतह में अनंत रूप से कई -1-वक्र हो सकते हैं, किसी को बिना -1-वक्र वाली सतह प्राप्त करने के लिए उनमें से केवल सीमित रूप से कई को अनुबंधित करने की आवश्यकता होती है।
उच्च-आयामी न्यूनतम मॉडल
2 से बड़े आयामों में, सिद्धांत कहीं अधिक सम्मिलित हो जाता है। विशेष रूप से, स्मूथ वैराइटी उपस्थित हैं जो नेफ कैनोनिकल वर्ग के साथ किसी भी स्मूथ वैराइटी के लिए बिरेशनल नहीं हैं। 1970 और 1980 के दशक के प्रारंभ में प्रमुख वैचारिक प्रगति यह थी कि न्यूनतम मॉडलों का निर्माण अभी भी संभव है, परंतु कोई घटित होने वाली विलक्षणताओं के वैराइटीज के बारे में सावधान रहे। (उदाहरण के लिए, हम यह तय करना चाहते हैं कि क्या नेफ़ है, इसलिए प्रतिच्छेदन संख्याएँ परिभाषित किया जाना चाहिए। इसलिए, कम से कम, कुछ सकारात्मक पूर्णांक के लिए कार्टियर विभाजक होने के लिए हमारी वैराइटीज में होना चाहिए।)
पहला मुख्य परिणाम शिगेफुमी मोरी का शंकु प्रमेय है, जो के वक्रों के शंकु की संरचना का वर्णन करता है। संक्षेप में, प्रमेय से पता चलता है कि से प्रारंभ करके, कोई भी प्रेरक रूप से के वैराइटीज का क्रम बना सकता है, जिनमें से प्रत्येक नेफ वाले पिछले वाले की तुलना में अधिक निकट है। चूँकि, इस प्रक्रिया में कठिनाइयों का सामना करना पड़ सकता है: कुछ बिंदु पर विविधता बहुत विलक्षण हो सकती है। इस समस्या का अनुमानित समाधान फ्लिप (बीजगणितीय ज्यामिति) है, जो पर वैराइटी का कोडिमेंशन-2 सर्जरी ऑपरेशन है। यह स्पष्ट नहीं है कि आवश्यक फ़्लिप उपस्थित हैं, और न ही वे सदैव समाप्त (अर्थात, कोई कई चरणों में न्यूनतम मॉडल तक पहुँच जाता है।) हो जाते हैं मोरी (1988) ने दिखाया कि फ़्लिप 3-आयामी स्थितियां में उपस्थित हैं।
अधिक सामान्य लॉग फ़्लिप का अस्तित्व व्याचेस्लाव शोकरोव द्वारा तीन और चार आयामों में स्थापित किया गया था। इसे बाद में कॉचर बिरकर, पाओलो कैसिनी, क्रिस्टोफर हैकोन और जेम्स मैककर्नन द्वारा शोकरोव और हैकॉन और मैककर्नन के पहले के काम पर विश्वाश करते हुए उच्च आयामों के लिए सामान्यीकृत किया गया। उन्होंने लॉग कैनोनिकल रिंगों की सीमित पीढ़ी और लॉग सामान्य प्रकार की वैराइटीज के लिए न्यूनतम मॉडल के अस्तित्व सहित कई अन्य समस्याओं को भी सिद्ध किया।
उच्च आयामों में लॉग फ़्लिप की समाप्ति की समस्या सक्रिय शोध का विषय बनी हुई है।
यह भी देखें
- बहुतायत अनुमान
- न्यूनतम तर्कसंगत सतह
संदर्भ
- ↑ Note that the Kodaira dimension of an n-dimensional variety is either or an integer in the range 0 to n.
- Birkar, Caucher; Cascini, Paolo; Hacon, Christopher; McKernan, James (2010), "Existence of minimal models for varieties of log general type", Journal of the American Mathematical Society, 23 (2): 405–468, arXiv:math/0610203, Bibcode:2010JAMS...23..405B, doi:10.1090/S0894-0347-09-00649-3, MR 2601039
- Clemens, Herbert; Kollár, János; Mori, Shigefumi (1988), "Higher-dimensional complex geometry", Astérisque (166): 144 pp. (1989), ISSN 0303-1179, MR 1004926
- Fujino, Osamu (2009), "New developments in the theory of minimal models", Sugaku, Mathematical Society of Japan, 61 (2): 162–186, ISSN 0039-470X, MR 2560253
- Kollár, János (1987), "The structure of algebraic threefolds: an introduction to Mori's program", Bulletin of the American Mathematical Society, New Series, 17 (2): 211–273, doi:10.1090/S0273-0979-1987-15548-0, ISSN 0002-9904, MR 0903730
- Kollár, János (1989), "Minimal models of algebraic threefolds: Mori's program", Astérisque (177): 303–326, ISSN 0303-1179, MR 1040578
- Kollár, János (1996), Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Berlin: Springer-Verlag, doi:10.1007/978-3-662-03276-3, ISBN 978-3-642-08219-1, MR 1440180
- Kollár, János; Mori, Shigefumi (1998), Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, doi:10.1017/CBO9780511662560, ISBN 978-0-521-63277-5, MR 1658959
- Matsuki, Kenji (2002), Introduction to the Mori program, Universitext, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4757-5602-9, ISBN 978-0-387-98465-0, MR 1875410
- Mori, Shigefumi (1988), "Flip theorem and the existence of minimal models for 3-folds", Journal of the American Mathematical Society, American Mathematical Society, 1 (1): 117–253, doi:10.2307/1990969, ISSN 0894-0347, JSTOR 1990969, MR 0924704
- Kawamata, Yujiro (2001) [1994], "Mori theory of extremal rays", Encyclopedia of Mathematics, EMS Press