विरूपण (गणित): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 7: Line 7:
गणित में सबसे प्रमुख विरूपण सिद्धांत जटिल मैनिफोल्ड्स और बीजगणितीय किस्मों का रहा है। इसे [[कुनिहिको कोदैरा]] और डोनाल्ड सी. स्पेंसर के मूलभूत कार्य द्वारा एक मजबूत आधार पर रखा गया था, जब विरूपण तकनीकों को बीजीय ज्यामिति के इतालवी स्कूल में अधिक अस्थायी अनुप्रयोग प्राप्त हुआ था। सहज रूप से, कोई अपेक्षा करता है कि पनिवारणे क्रम के विरूपण सिद्धांत को [[ज़ारिस्की स्पर्शरेखा स्थान]] को मॉड्यूलि स्थान के बराबर करना चाहिए। हालाँकि, सामान्य स्थिति में घटनाएँ सूक्ष्म हो जाती हैं।
गणित में सबसे प्रमुख विरूपण सिद्धांत जटिल मैनिफोल्ड्स और बीजगणितीय किस्मों का रहा है। इसे [[कुनिहिको कोदैरा]] और डोनाल्ड सी. स्पेंसर के मूलभूत कार्य द्वारा एक मजबूत आधार पर रखा गया था, जब विरूपण तकनीकों को बीजीय ज्यामिति के इतालवी स्कूल में अधिक अस्थायी अनुप्रयोग प्राप्त हुआ था। सहज रूप से, कोई अपेक्षा करता है कि पनिवारणे क्रम के विरूपण सिद्धांत को [[ज़ारिस्की स्पर्शरेखा स्थान]] को मॉड्यूलि स्थान के बराबर करना चाहिए। हालाँकि, सामान्य स्थिति में घटनाएँ सूक्ष्म हो जाती हैं।


[[रीमैन सतह]]ों के मामले में, कोई यह समझा सकता है कि [[रीमैन क्षेत्र]] पर जटिल संरचना पृथक है (कोई मॉड्यूल नहीं)। जीनस 1 के लिए, एक [[अण्डाकार वक्र]] में जटिल संरचनाओं का एक-पैरामीटर परिवार होता है, जैसा कि अण्डाकार फ़ंक्शन सिद्धांत में दिखाया गया है। सामान्य कोडैरा-स्पेंसर सिद्धांत विरूपण सिद्धांत की कुंजी के रूप में [[शीफ़ कोहोमोलोजी]] समूह की पहचान करता है
[[रीमैन सतह]]ों के विषय में, कोई यह समझा सकता है कि [[रीमैन क्षेत्र]] पर जटिल संरचना पृथक है (कोई मॉड्यूल नहीं)। जीनस 1 के लिए, [[अण्डाकार वक्र]] में जटिल संरचनाओं का एक-पैरामीटर परिवार होता है, जैसा कि अण्डाकार फ़ंक्शन सिद्धांत में दिखाया गया है। सामान्य कोडैरा-स्पेंसर सिद्धांत विरूपण सिद्धांत की कुंजी के रूप में [[शीफ़ कोहोमोलोजी]] समूह की पहचान करता है


: <math> H^1(\Theta) \, </math>
: <math> H^1(\Theta) \, </math>
जहां Θ होलोमोर्फिक [[स्पर्शरेखा बंडल]] (वर्गों के [[जर्म (गणित)]] का शीफ) है। एच में रुकावट है<sup>2</sup>एक ही पूले का; जो आयाम के सामान्य कारणों से वक्र के मामले में हमेशा शून्य होता है। जीनस 0 के मामले में एच<sup>1</sup>भी गायब हो जाता है. जीनस 1 के लिए आयाम [[हॉज नंबर]] एच है<sup>1,0</sup>जो इसलिए 1 है। यह ज्ञात है कि जीनस एक के सभी वक्रों में फॉर्म y के समीकरण होते हैं<sup>2</sup>=x<sup>3</sup> + कुल्हाड़ी + बी. ये स्पष्ट रूप से दो मापदंडों, ए और बी पर निर्भर करते हैं, जबकि ऐसे वक्रों के समरूपता वर्गों में केवल एक पैरामीटर होता है। इसलिए उन ए और बी से संबंधित एक समीकरण होना चाहिए जो आइसोमोर्फिक अण्डाकार वक्रों का वर्णन करता है। यह वह वक्र निकलता है जिसके लिए बी<sup>2</sup>a<sup>−3</sup> का मान समान है, समरूपी वक्रों का वर्णन करें। अर्थात। ए और बी को भिन्न करना वक्र वाई की संरचना को विकृत करने का एक तरीका है<sup>2</sup>=x<sup>3</sup> + ax + b, लेकिन a,b के सभी रूपांतर वास्तव में वक्र के समरूपता वर्ग को नहीं बदलते हैं।
जहां Θ होलोमोर्फिक [[स्पर्शरेखा बंडल]] (वर्गों के [[जर्म (गणित)]] का शीफ) है। एच में रुकावट है<sup>2</sup>एक ही पूले का; जो आयाम के सामान्य कारणों से वक्र के विषय में हमेशा शून्य होता है। जीनस 0 के विषय में एच<sup>1</sup>भी गायब हो जाता है. जीनस 1 के लिए आयाम [[हॉज नंबर]] एच है<sup>1,0</sup>जो इसलिए 1 है। यह ज्ञात है कि जीनस एक के सभी वक्रों में फॉर्म y के समीकरण होते हैं<sup>2</sup>=x<sup>3</sup> + कुल्हाड़ी + बी. ये स्पष्ट रूप से दो मापदंडों, ए और बी पर निर्भर करते हैं, जबकि ऐसे वक्रों के समरूपता वर्गों में केवल एक पैरामीटर होता है। इसलिए उन ए और बी से संबंधित एक समीकरण होना चाहिए जो आइसोमोर्फिक अण्डाकार वक्रों का वर्णन करता है। यह वह वक्र निकलता है जिसके लिए बी<sup>2</sup>a<sup>−3</sup> का मान समान है, समरूपी वक्रों का वर्णन करें। अर्थात। ए और बी को भिन्न करना वक्र वाई की संरचना को विकृत करने का एक तरीका है<sup>2</sup>=x<sup>3</sup> + ax + b, लेकिन a,b के सभी रूपांतर वास्तव में वक्र के समरूपता वर्ग को नहीं बदलते हैं।


एच से संबंधित करने के लिए [[सेरे द्वैत]] का उपयोग करते हुए, जीनस जी > 1 के मामले में कोई आगे बढ़ सकता है<sup>1</sup>को
एच से संबंधित करने के लिए [[सेरे द्वैत]] का उपयोग करते हुए, जीनस जी > 1 के विषय में कोई आगे बढ़ सकता है<sup>1</sup>को


: <math> H^0(\Omega^{[2]}) </math>
: <math> H^0(\Omega^{[2]}) </math>
जहां Ω होलोमोर्फिक [[कोटैंजेंट बंडल]] और अंकन Ω है<sup>[2]</sup> का अर्थ है टेंसर वर्ग (दूसरी [[बाहरी शक्ति]] नहीं)। दूसरे शब्दों में, रीमैन सतह पर विकृतियों को होलोमोर्फिक [[द्विघात अंतर]]ों द्वारा नियंत्रित किया जाता है, जिसे फिर से शास्त्रीय रूप से जाना जाता है। मॉड्यूलि स्पेस का आयाम, जिसे इस मामले में टीचमुलर स्पेस कहा जाता है, रीमैन-रोच प्रमेय द्वारा 3 जी - 3 के रूप में गणना की जाती है।
जहां Ω होलोमोर्फिक [[कोटैंजेंट बंडल]] और अंकन Ω है<sup>[2]</sup> का अर्थ है टेंसर वर्ग (दूसरी [[बाहरी शक्ति]] नहीं)। दूसरे शब्दों में, रीमैन सतह पर विकृतियों को होलोमोर्फिक [[द्विघात अंतर]]ों द्वारा नियंत्रित किया जाता है, जिसे फिर से शास्त्रीय रूप से जाना जाता है। मॉड्यूलि स्पेस का आयाम, जिसे इस विषय में टीचमुलर स्पेस कहा जाता है, रीमैन-रोच प्रमेय द्वारा 3 जी - 3 के रूप में गणना की जाती है।


ये उदाहरण किसी भी आयाम के जटिल मैनिफोल्ड्स के होलोमोर्फिक परिवारों पर प्रस्तावित होने वाले सिद्धांत की शुरुआत हैं। आगे के विकास में शामिल हैं: [[विभेदक ज्यामिति]] की अन्य संरचनाओं के लिए स्पेंसर द्वारा तकनीकों का विस्तार; [[ग्रोथेंडिक]] के अमूर्त बीजगणितीय ज्यामिति में कोडैरा-स्पेंसर सिद्धांत को आत्मसात करना, जिसके परिणामस्वरूप पनिवारणे के काम की ठोस व्याख्या हुई; और अन्य संरचनाओं का विरूपण सिद्धांत, जैसे कि बीजगणित।
ये उदाहरण किसी भी आयाम के जटिल मैनिफोल्ड्स के होलोमोर्फिक परिवारों पर प्रस्तावित होने वाले सिद्धांत की शुरुआत हैं। आगे के विकास में शामिल हैं: [[विभेदक ज्यामिति]] की अन्य संरचनाओं के लिए स्पेंसर द्वारा तकनीकों का विस्तार; [[ग्रोथेंडिक]] के अमूर्त बीजगणितीय ज्यामिति में कोडैरा-स्पेंसर सिद्धांत को आत्मसात करना, जिसके परिणामस्वरूप पनिवारणे के काम की ठोस व्याख्या हुई; और अन्य संरचनाओं का विरूपण सिद्धांत, जैसे कि बीजगणित।
Line 42: Line 42:


=== विकृतियों की सह-समसामयिक व्याख्या ===
=== विकृतियों की सह-समसामयिक व्याख्या ===
यह स्पष्ट होना चाहिए कि विश्लेषणात्मक कार्यों के एक ही रोगाणु में कई विकृतियाँ हो सकती हैं। इस वजह से, इस सारी जानकारी को व्यवस्थित करने के लिए कुछ बही-खाता उपकरणों की आवश्यकता होती है। इन संगठनात्मक उपकरणों का निर्माण टेंगेंट कोहोमोलॉजी का उपयोग करके किया गया है।<ref name=":0" />यह कोसज़ुल-टेट रिज़ॉल्यूशन का उपयोग करके और अन्य-नियमित बीजगणित के लिए अतिरिक्त जनरेटर जोड़कर इसे संभावित रूप से संशोधित करके बनाया गया है। <math>A</math>. विश्लेषणात्मक बीजगणित के मामले में इन संकल्पों को गणितज्ञ [[गैलिना ट्यूरिना]] के लिए तजुरिना संकल्प कहा जाता है, जिन्होंने सबसे पनिवारणे ऐसी वस्तुओं का अध्ययन किया था। यह एक ग्रेडेड-कम्यूटेटिव डिफरेंशियल ग्रेडेड बीजगणित है <math>(R_\bullet, s)</math> ऐसा है कि <math>R_0 \to A</math> विश्लेषणात्मक बीजगणित का एक विशेषण मानचित्र है, और यह मानचित्र एक सटीक अनुक्रम में फिट बैठता है<ब्लॉककोट><math>\cdots \xrightarrow{s} R_{-2} \xrightarrow{s} R_{-1} \xrightarrow{s} R_0 \xrightarrow{p} A \to 0</math>फिर, व्युत्पत्तियों के विभेदक श्रेणीबद्ध मॉड्यूल को लेकर <math>(\text{Der}(R_\bullet), d)</math>, इसकी सह-समरूपता विश्लेषणात्मक बीजगणित के रोगाणु की स्पर्शरेखा सह-समरूपता बनाती है <math>A</math>. इन सहसंयोजी समूहों को दर्शाया गया है <math>T^k(A)</math>. <math>T^1(A)</math> h> की सभी विकृतियों के बारे में जानकारी शामिल है <math>A</math> और सटीक अनुक्रम<ब्लॉककोट> का उपयोग करके आसानी से गणना की जा सकती है<math>0 \to T^0(A) \to \text{Der}(R_0) \xrightarrow{d} \text{Hom}_{R_0}(I,A) \to T^1(A) \to 0</math>अगर <math>A</math> बीजगणित<ब्लॉककोट> के लिए समरूपी है<math>\frac{\mathbb{C}\{z_1,\ldots,z_n\}}{(f_1,\ldots, f_m)}</math>तो इसकी विकृतियाँ<blockquote> के बराबर होती हैं<math>T^1(A) \cong \frac{A^m}{df \cdot A^n}</math></blockquote>थे <math>df</math> का जैकोबियन मैट्रिक्स है <math>f = (f_1,\ldots, f_m): \mathbb{C}^n \to \mathbb{C}^m</math>. उदाहरण के लिए, हाइपरसतह की विकृतियाँ दी गई हैं <math>f</math> विकृतियाँ <ब्लॉककोट> हैं<math>T^1(A) \cong \frac{A^n}{\left( \frac{\partial f}{\partial z_1}, \ldots, \frac{\partial f}{\partial z_n} \right)}</math></blockquote>एकवचनता के लिए <math>y^2 - x^3</math> यह मॉड्यूल<ब्लॉककोट> है<math>\frac{A^2}{(y, x^2)}</math></blockquote>इसलिए केवल स्थिरांक या रैखिक कारकों को जोड़कर विकृतियां दी जाती हैं, इसलिए एक सामान्य विकृति <math>f(x,y) = y^2 - x^3</math> है <math>F(x,y,a_1,a_2) = y^2 - x^3 + a_1 + a_2x </math> जहां <math>a_i</math> विरूपण पैरामीटर हैं.
यह स्पष्ट होना चाहिए कि विश्लेषणात्मक कार्यों के एक ही रोगाणु में कई विकृतियाँ हो सकती हैं। इस वजह से, इस सारी जानकारी को व्यवस्थित करने के लिए कुछ बही-खाता उपकरणों की आवश्यकता होती है। इन संगठनात्मक उपकरणों का निर्माण टेंगेंट कोहोमोलॉजी का उपयोग करके किया गया है।<ref name=":0" />यह कोसज़ुल-टेट रिज़ॉल्यूशन का उपयोग करके और अन्य-नियमित बीजगणित के लिए अतिरिक्त जनरेटर जोड़कर इसे संभावित रूप से संशोधित करके बनाया गया है। <math>A</math>. विश्लेषणात्मक बीजगणित के विषय में इन संकल्पों को गणितज्ञ [[गैलिना ट्यूरिना]] के लिए तजुरिना संकल्प कहा जाता है, जिन्होंने सबसे पनिवारणे ऐसी वस्तुओं का अध्ययन किया था। यह एक ग्रेडेड-कम्यूटेटिव डिफरेंशियल ग्रेडेड बीजगणित है <math>(R_\bullet, s)</math> ऐसा है कि <math>R_0 \to A</math> विश्लेषणात्मक बीजगणित का एक विशेषण मानचित्र है, और यह मानचित्र एक सटीक अनुक्रम में फिट बैठता है<ब्लॉककोट><math>\cdots \xrightarrow{s} R_{-2} \xrightarrow{s} R_{-1} \xrightarrow{s} R_0 \xrightarrow{p} A \to 0</math>फिर, व्युत्पत्तियों के विभेदक श्रेणीबद्ध मॉड्यूल को लेकर <math>(\text{Der}(R_\bullet), d)</math>, इसकी सह-समरूपता विश्लेषणात्मक बीजगणित के रोगाणु की स्पर्शरेखा सह-समरूपता बनाती है <math>A</math>. इन सहसंयोजी समूहों को दर्शाया गया है <math>T^k(A)</math>. <math>T^1(A)</math> h> की सभी विकृतियों के बारे में जानकारी शामिल है <math>A</math> और सटीक अनुक्रम<ब्लॉककोट> का उपयोग करके आसानी से गणना की जा सकती है<math>0 \to T^0(A) \to \text{Der}(R_0) \xrightarrow{d} \text{Hom}_{R_0}(I,A) \to T^1(A) \to 0</math>अगर <math>A</math> बीजगणित<ब्लॉककोट> के लिए समरूपी है<math>\frac{\mathbb{C}\{z_1,\ldots,z_n\}}{(f_1,\ldots, f_m)}</math>तो इसकी विकृतियाँ<blockquote> के बराबर होती हैं<math>T^1(A) \cong \frac{A^m}{df \cdot A^n}</math></blockquote>थे <math>df</math> का जैकोबियन मैट्रिक्स है <math>f = (f_1,\ldots, f_m): \mathbb{C}^n \to \mathbb{C}^m</math>. उदाहरण के लिए, हाइपरसतह की विकृतियाँ दी गई हैं <math>f</math> विकृतियाँ <ब्लॉककोट> हैं<math>T^1(A) \cong \frac{A^n}{\left( \frac{\partial f}{\partial z_1}, \ldots, \frac{\partial f}{\partial z_n} \right)}</math></blockquote>एकवचनता के लिए <math>y^2 - x^3</math> यह मॉड्यूल<ब्लॉककोट> है<math>\frac{A^2}{(y, x^2)}</math></blockquote>इसलिए केवल स्थिरांक या रैखिक कारकों को जोड़कर विकृतियां दी जाती हैं, इसलिए एक सामान्य विकृति <math>f(x,y) = y^2 - x^3</math> है <math>F(x,y,a_1,a_2) = y^2 - x^3 + a_1 + a_2x </math> जहां <math>a_i</math> विरूपण पैरामीटर हैं.


==कार्यात्मक वर्णन==
==कार्यात्मक वर्णन==

Revision as of 21:23, 12 July 2023

गणित में, विरूपण सिद्धांत किसी समस्या के समाधान पी को थोड़ा भिन्न समाधान पी में परिवर्तन से जुड़ी छोटी-छोटी स्थितियों का अध्ययन है।ε, जहां ε एक छोटी संख्या है, या छोटी मात्राओं का सदिश है। अपरिमित स्थितियां बाधा (गणित) के साथ समस्या को निवारण करने के लिए विभेदक कैलकुलस के दृष्टिकोण को प्रस्तावित करने का परिणाम हैं। नाम अन्य-कठोर संरचनाओं का ऐसा सादृश्य है जो बाहरी ताकतों को समायोजित करने के लिए थोड़ा [[विरूपण (अभियांत्रिकी )]] करता है।

कुछ विशिष्ट घटनाएँ हैं: ε मात्राओं को नगण्य वर्ग मानकर प्रथम-क्रम समीकरणों की व्युत्पत्ति; भिन्न-भिन्न समाधानों की संभावना, जिसमें भिन्न-भिन्न समाधान संभव नहीं हो सकता है, या कुछ भी नया नहीं लाता है; और सवाल यह है कि क्या असीम बाधाएं वास्तव में 'एकीकृत' होती हैं, जिससे उनका समाधान छोटे परिवर्तन प्रदान कर सके। किसी न किसी रूप में इन विचारों का गणित के साथ-साथ भौतिकी और इंजीनियरिंग में भी सदियों प्राचीन इतिहास है। उदाहरण के लिए, संख्याओं की ज्यामिति में परिणामों के वर्ग को भिन्नाव प्रमेय कहा जाता है, जिसे किसी दिए गए समाधान के चारों ओर खुली कक्षा (समूह क्रिया (गणित)) की टोपोलॉजिकल व्याख्या के साथ मान्यता दी गई थी। गड़बड़ी सिद्धांत सामान्यतः ऑपरेटर (गणित) की विकृतियों पर भी ध्यान देता है।

जटिल अनेक गुनाओं की विकृतियाँ

गणित में सबसे प्रमुख विरूपण सिद्धांत जटिल मैनिफोल्ड्स और बीजगणितीय किस्मों का रहा है। इसे कुनिहिको कोदैरा और डोनाल्ड सी. स्पेंसर के मूलभूत कार्य द्वारा एक मजबूत आधार पर रखा गया था, जब विरूपण तकनीकों को बीजीय ज्यामिति के इतालवी स्कूल में अधिक अस्थायी अनुप्रयोग प्राप्त हुआ था। सहज रूप से, कोई अपेक्षा करता है कि पनिवारणे क्रम के विरूपण सिद्धांत को ज़ारिस्की स्पर्शरेखा स्थान को मॉड्यूलि स्थान के बराबर करना चाहिए। हालाँकि, सामान्य स्थिति में घटनाएँ सूक्ष्म हो जाती हैं।

रीमैन सतहों के विषय में, कोई यह समझा सकता है कि रीमैन क्षेत्र पर जटिल संरचना पृथक है (कोई मॉड्यूल नहीं)। जीनस 1 के लिए, अण्डाकार वक्र में जटिल संरचनाओं का एक-पैरामीटर परिवार होता है, जैसा कि अण्डाकार फ़ंक्शन सिद्धांत में दिखाया गया है। सामान्य कोडैरा-स्पेंसर सिद्धांत विरूपण सिद्धांत की कुंजी के रूप में शीफ़ कोहोमोलोजी समूह की पहचान करता है

जहां Θ होलोमोर्फिक स्पर्शरेखा बंडल (वर्गों के जर्म (गणित) का शीफ) है। एच में रुकावट है2एक ही पूले का; जो आयाम के सामान्य कारणों से वक्र के विषय में हमेशा शून्य होता है। जीनस 0 के विषय में एच1भी गायब हो जाता है. जीनस 1 के लिए आयाम हॉज नंबर एच है1,0जो इसलिए 1 है। यह ज्ञात है कि जीनस एक के सभी वक्रों में फॉर्म y के समीकरण होते हैं2=x3 + कुल्हाड़ी + बी. ये स्पष्ट रूप से दो मापदंडों, ए और बी पर निर्भर करते हैं, जबकि ऐसे वक्रों के समरूपता वर्गों में केवल एक पैरामीटर होता है। इसलिए उन ए और बी से संबंधित एक समीकरण होना चाहिए जो आइसोमोर्फिक अण्डाकार वक्रों का वर्णन करता है। यह वह वक्र निकलता है जिसके लिए बी2a−3 का मान समान है, समरूपी वक्रों का वर्णन करें। अर्थात। ए और बी को भिन्न करना वक्र वाई की संरचना को विकृत करने का एक तरीका है2=x3 + ax + b, लेकिन a,b के सभी रूपांतर वास्तव में वक्र के समरूपता वर्ग को नहीं बदलते हैं।

एच से संबंधित करने के लिए सेरे द्वैत का उपयोग करते हुए, जीनस जी > 1 के विषय में कोई आगे बढ़ सकता है1को

जहां Ω होलोमोर्फिक कोटैंजेंट बंडल और अंकन Ω है[2] का अर्थ है टेंसर वर्ग (दूसरी बाहरी शक्ति नहीं)। दूसरे शब्दों में, रीमैन सतह पर विकृतियों को होलोमोर्फिक द्विघात अंतरों द्वारा नियंत्रित किया जाता है, जिसे फिर से शास्त्रीय रूप से जाना जाता है। मॉड्यूलि स्पेस का आयाम, जिसे इस विषय में टीचमुलर स्पेस कहा जाता है, रीमैन-रोच प्रमेय द्वारा 3 जी - 3 के रूप में गणना की जाती है।

ये उदाहरण किसी भी आयाम के जटिल मैनिफोल्ड्स के होलोमोर्फिक परिवारों पर प्रस्तावित होने वाले सिद्धांत की शुरुआत हैं। आगे के विकास में शामिल हैं: विभेदक ज्यामिति की अन्य संरचनाओं के लिए स्पेंसर द्वारा तकनीकों का विस्तार; ग्रोथेंडिक के अमूर्त बीजगणितीय ज्यामिति में कोडैरा-स्पेंसर सिद्धांत को आत्मसात करना, जिसके परिणामस्वरूप पनिवारणे के काम की ठोस व्याख्या हुई; और अन्य संरचनाओं का विरूपण सिद्धांत, जैसे कि बीजगणित।

विरूपण और समतल मानचित्र

विरूपण का सबसे सामान्य रूप एक समतल मानचित्र है जटिल-विश्लेषणात्मक स्थानों की, योजना (गणित), या किसी स्थान पर कार्यों के रोगाणु। ग्रोथेंडिक[1] विकृतियों के लिए इस दूरगामी सामान्यीकरण को खोजने वाले पनिवारणे व्यक्ति थे और उस संदर्भ में सिद्धांत विकसित किया। सामान्य विचार यह है कि एक सार्वभौमिक परिवार का अस्तित्व होना चाहिए जैसे कि किसी भी विकृति को एक अद्वितीय पुलबैक वर्ग<ब्लॉककोट> के रूप में पाया जा सकता हैकई मामलों में, यह सार्वभौमिक परिवार या तो हिल्बर्ट योजना या कोट योजना है, या उनमें से किसी एक का भागफल है। उदाहरण के लिए, वक्रों के मॉड्यूली के निर्माण में, इसका निर्माण हिल्बर्ट योजना में चिकने वक्रों के भागफल के रूप में किया गया है। यदि पुलबैक वर्ग अद्वितीय नहीं है, तो परिवार केवल बहुमुखी है।

विश्लेषणात्मक बीजगणित के रोगाणुओं की विकृतियाँ

विरूपण सिद्धांत के उपयोगी और आसानी से गणना योग्य क्षेत्रों में से एक जटिल स्थानों के रोगाणुओं के विरूपण सिद्धांत से आता है, जैसे कि स्टीन मैनिफोल्ड, कॉम्प्लेक्स मैनिफोल्ड, या कॉम्प्लेक्स विश्लेषणात्मक विविधता।[1]ध्यान दें कि इस सिद्धांत को होलोमोर्फिक फ़ंक्शंस, स्पर्शरेखा रिक्त स्थान आदि के रोगाणुओं के ढेर पर विचार करके जटिल मैनिफोल्ड्स और जटिल विश्लेषणात्मक स्थानों में वैश्वीकृत किया जा सकता है। ऐसे बीजगणित <ब्लॉककोट> के रूप में होते हैं </ब्लॉकक्वॉट>कहां अभिसारी शक्ति-श्रृंखला का वलय है और एक आदर्श है. उदाहरण के लिए, कई लेखक एक विलक्षणता के कार्यों के रोगाणुओं का अध्ययन करते हैं, जैसे कि बीजगणित<ब्लॉककोट>एक समतल-वक्र विलक्षणता का प्रतिनिधित्व करता है। विश्लेषणात्मक बीजगणित का एक रोगाणु ऐसे बीजगणित की विपरीत श्रेणी में एक वस्तु है। फिर, विश्लेषणात्मक बीजगणित के एक रोगाणु का विरूपण विश्लेषणात्मक बीजगणित के रोगाणुओं के एक समतल मानचित्र द्वारा दिया गया है कहाँ एक विशिष्ट बिंदु है ऐसे कि पुलबैक वर्ग<ब्लॉककोट> में फिट बैठता हैइन विकृतियों में क्रमविनिमेय वर्गों द्वारा दिया गया एक तुल्यता संबंध होता है

जहां क्षैतिज तीर समरूपताएं हैं। उदाहरण के लिए, विश्लेषणात्मक बीजगणित के क्रमविनिमेय आरेख के विपरीत आरेख द्वारा दी गई समतल वक्र विलक्षणता का विरूपण है<ब्लॉककोट></ब्लॉकउद्धरण>वास्तव में, मिल्नोर ने ऐसी विकृतियों का अध्ययन किया, जहां एक विलक्षणता एक स्थिरांक द्वारा विकृत हो जाती है, इसलिए एक अन्य-शून्य पर फाइबर मिल्नोर फाइबर कहा जाता है।

विकृतियों की सह-समसामयिक व्याख्या

यह स्पष्ट होना चाहिए कि विश्लेषणात्मक कार्यों के एक ही रोगाणु में कई विकृतियाँ हो सकती हैं। इस वजह से, इस सारी जानकारी को व्यवस्थित करने के लिए कुछ बही-खाता उपकरणों की आवश्यकता होती है। इन संगठनात्मक उपकरणों का निर्माण टेंगेंट कोहोमोलॉजी का उपयोग करके किया गया है।[1]यह कोसज़ुल-टेट रिज़ॉल्यूशन का उपयोग करके और अन्य-नियमित बीजगणित के लिए अतिरिक्त जनरेटर जोड़कर इसे संभावित रूप से संशोधित करके बनाया गया है। . विश्लेषणात्मक बीजगणित के विषय में इन संकल्पों को गणितज्ञ गैलिना ट्यूरिना के लिए तजुरिना संकल्प कहा जाता है, जिन्होंने सबसे पनिवारणे ऐसी वस्तुओं का अध्ययन किया था। यह एक ग्रेडेड-कम्यूटेटिव डिफरेंशियल ग्रेडेड बीजगणित है ऐसा है कि विश्लेषणात्मक बीजगणित का एक विशेषण मानचित्र है, और यह मानचित्र एक सटीक अनुक्रम में फिट बैठता है<ब्लॉककोट>फिर, व्युत्पत्तियों के विभेदक श्रेणीबद्ध मॉड्यूल को लेकर , इसकी सह-समरूपता विश्लेषणात्मक बीजगणित के रोगाणु की स्पर्शरेखा सह-समरूपता बनाती है . इन सहसंयोजी समूहों को दर्शाया गया है . h> की सभी विकृतियों के बारे में जानकारी शामिल है और सटीक अनुक्रम<ब्लॉककोट> का उपयोग करके आसानी से गणना की जा सकती हैअगर बीजगणित<ब्लॉककोट> के लिए समरूपी हैतो इसकी विकृतियाँ

के बराबर होती हैं

थे का जैकोबियन मैट्रिक्स है . उदाहरण के लिए, हाइपरसतह की विकृतियाँ दी गई हैं विकृतियाँ <ब्लॉककोट> हैंएकवचनता के लिए यह मॉड्यूल<ब्लॉककोट> हैइसलिए केवल स्थिरांक या रैखिक कारकों को जोड़कर विकृतियां दी जाती हैं, इसलिए एक सामान्य विकृति है जहां विरूपण पैरामीटर हैं.

कार्यात्मक वर्णन

विरूपण सिद्धांत को औपचारिक बनाने की एक अन्य विधि श्रेणी पर फ़ंक्शनलर्स का उपयोग करना है एक क्षेत्र पर स्थानीय आर्टिन बीजगणित की। एक पूर्व-विरूपण फ़नकार को फ़नकार के रूप में परिभाषित किया गया है

ऐसा है कि एक बिंदु है. विचार यह है कि हम एक बिंदु के चारों ओर कुछ मॉड्यूलि स्पेस की असीम संरचना का अध्ययन करना चाहते हैं जहां उस बिंदु के ऊपर रुचि का स्थान है। आम तौर पर ऐसा होता है कि वास्तविक स्थान खोजने के बजाय मॉड्यूली समस्या के लिए फ़ैक्टर का वर्णन करना आसान होता है। उदाहरण के लिए, यदि हम डिग्री के हाइपरसर्फेस के मॉड्यूलि-स्पेस पर विचार करना चाहते हैं में , तो हम फ़नकार पर विचार कर सकते हैं

कहाँ

हालाँकि सामान्य तौर पर, सेट के बजाय समूहबद्ध के फ़ैक्टर्स के साथ काम करना अधिक सुविधाजनक/आवश्यक है। यह वक्रों के मापांक के लिए सत्य है।

इनफिनिटिमल्स के बारे में तकनीकी टिप्पणियाँ

कैलकुलस में अन्य-कठोर तर्कों के लिए गणितज्ञों द्वारा लंबे समय से इनफिनिटिमल्स का उपयोग किया जाता रहा है। विचार यह है कि यदि हम बहुपदों पर विचार करें एक अतिसूक्ष्म के साथ , तभी केवल प्रथम क्रम की शर्तें वास्तव में मायने रखती हैं; अर्थात् हम विचार कर सकते हैं

इसका एक सरल अनुप्रयोग यह है कि हम इनफिनिटिमल्स का उपयोग करके एकपदी के व्युत्पन्न पा सकते हैं:

 इस शब्द में एकपदी का व्युत्पन्न शामिल है, जो कैलकुलस में इसके उपयोग को प्रदर्शित करता है। हम इस समीकरण की व्याख्या एकपदी के टेलर विस्तार के पनिवारणे दो पदों के रूप में भी कर सकते हैं। स्थानीय आर्टिन बीजगणित में निलपोटेंट तत्वों का उपयोग करके इनफिनिटिमल्स को कठोर बनाया जा सकता है। रिंग में  हम देखते हैं कि इनफिनिटिमल्स के साथ तर्क काम कर सकते हैं। यह अंकन को प्रेरित करता है , जिसे दोहरी संख्याओं का वलय कहा जाता है।

इसके अलावा, यदि हम टेलर सन्निकटन के उच्च-क्रम वाले शब्दों पर विचार करना चाहते हैं तो हम आर्टिन बीजगणित पर विचार कर सकते हैं . हमारे एकपदी के लिए, मान लीजिए कि हम दूसरे क्रम का विस्तार लिखना चाहते हैं

याद रखें कि टेलर विस्तार (शून्य पर) को इस प्रकार लिखा जा सकता है

इसलिए पिछले दो समीकरण दर्शाते हैं कि दूसरा व्युत्पन्न है .

सामान्य तौर पर, चूंकि हम किसी भी संख्या में चर में टेलर विस्तार के मनमाने क्रम पर विचार करना चाहते हैं, हम एक क्षेत्र में सभी स्थानीय आर्टिन बीजगणित की श्रेणी पर विचार करेंगे।

प्रेरणा

पूर्व-विरूपण फ़ंक्टर की परिभाषा को प्रेरित करने के लिए, एक क्षेत्र पर प्रक्षेप्य हाइपरसतह पर विचार करें

यदि हम इस स्थान के एक अत्यंत छोटे विरूपण पर विचार करना चाहते हैं, तो हम एक कार्टेशियन वर्ग लिख सकते हैं

कहाँ . फिर, दाहिने हाथ के कोने पर मौजूद स्थान एक अतिसूक्ष्म विरूपण का एक उदाहरण है: निलपोटेंट तत्वों की अतिरिक्त योजना सैद्धांतिक संरचना (जो स्थलाकृतिक रूप से एक बिंदु है) हमें इस अतिसूक्ष्म डेटा को व्यवस्थित करने की अनुमति देता है। चूँकि हम सभी संभावित विस्तारों पर विचार करना चाहते हैं, इसलिए हम अपने पूर्वविरूपण फ़ैक्टर को वस्तुओं पर इस प्रकार परिभाषित करने देंगे

कहाँ एक स्थानीय कलाकार है -बीजगणित.

चिकना पूर्व-विरूपण फ़ंक्शनल

किसी भी प्रक्षेपण के लिए पूर्व-विरूपण फ़ैक्टर को चिकना कहा जाता है जैसे कि कर्नेल में किसी भी तत्व का वर्ग शून्य है, एक अनुमान है

यह निम्नलिखित प्रश्न से प्रेरित है: एक विकृति दी गई है

क्या इस कार्तीय आरेख का कार्तीय आरेखों तक कोई विस्तार मौजूद है

स्मूथ नाम योजनाओं के स्मूथ रूपवाद को उठाने की कसौटी से आया है।

स्पर्शरेखा स्थान

याद रखें कि किसी योजना का स्पर्शरेखा स्थान के रूप में वर्णित किया जा सकता है -तय करना

जहां स्रोत एक मनमानी रिंग पर दोहरी संख्या#दोहरी संख्याओं की रिंग है। चूँकि हम कुछ मॉड्यूलि स्पेस के एक बिंदु के स्पर्शरेखा स्थान पर विचार कर रहे हैं, हम अपने (पूर्व)-विरूपण फ़ैनक्टर के स्पर्शरेखा स्थान को इस प्रकार परिभाषित कर सकते हैं


विरूपण सिद्धांत के अनुप्रयोग

वक्रों के मापांक का आयाम

बीजगणितीय वक्रों के मापांक के पनिवारणे गुणों में से एक प्रारंभिक विरूपण सिद्धांत का उपयोग करके अनुमान लगाया जा सकता है। इसके आयाम की गणना <ब्लॉककोट> के रूप में की जा सकती है</ब्लॉकक्वॉट>जीनस के एक मनमाने चिकने वक्र के लिए क्योंकि विरूपण स्थान मॉड्यूलि स्थान का स्पर्शरेखा स्थान है। सेरे द्वैत का उपयोग करते हुए स्पर्शरेखा स्थान <ब्लॉककोट> के लिए समरूपी हैइसलिए रीमैन-रोच प्रमेय

देता है

जीनस के वक्रों के लिए क्योंकि<ब्लॉककोट></ब्लॉककोट>डिग्री <ब्लॉककोट> है</ब्लॉककोट>और नकारात्मक डिग्री के लाइन बंडलों के लिए। इसलिए मॉड्यूलि स्पेस का आयाम है .

मोड़ना और तोड़ना

बीजीय विविधता पर तर्कसंगत वक्रों के अस्तित्व का अध्ययन करने के लिए विरूपण सिद्धांत को महत्वपूर्ण सांस्कृतिक संपदा मोरी द्वारा द्विवार्षिक ज्यामिति में प्रसिद्ध रूप से प्रस्तावित किया गया था।[2] फ़ानो किस्म के सकारात्मक आयाम के लिए मोरी ने दिखाया कि प्रत्येक बिंदु से होकर गुजरने वाला एक तर्कसंगत वक्र है। प्रमाण की विधि को बाद में मोरी के मोड़ और तोड़ के नाम से जाना जाने लगा। मोटा विचार यह है कि किसी चुने हुए बिंदु के माध्यम से कुछ वक्र सी से शुरू किया जाए और इसे तब तक विकृत किया जाए जब तक कि यह कई अपरिवर्तनीय घटकों में टूट न जाए। घटकों में से किसी एक द्वारा सी को प्रतिस्थापित करने से वक्र के जीनस या सी की बीजगणितीय विविधता की डिग्री में कमी का प्रभाव पड़ता है। इसलिए प्रक्रिया के कई दोहराव के बाद, अंततः हम जीनस 0 का एक वक्र प्राप्त करेंगे, यानी एक तर्कसंगत वक्र। सी की विकृतियों के अस्तित्व और गुणों के लिए विरूपण सिद्धांत से तर्क और सकारात्मक विशेषता में कमी की आवश्यकता होती है।

अंकगणितीय विकृतियाँ

विरूपण सिद्धांत का एक प्रमुख अनुप्रयोग अंकगणित में है। इसका उपयोग निम्नलिखित प्रश्न का उत्तर देने के लिए किया जा सकता है: यदि हमारे पास विविधता है , संभावित एक्सटेंशन क्या हैं ? यदि हमारी विविधता वक्र है, तो लुप्त हो रही है तात्पर्य यह है कि प्रत्येक विकृति विभिन्नता उत्पन्न करती है ; अर्थात्, यदि हमारे पास एक चिकना वक्र है

और एक विकृति

तब हम इसे हमेशा प्रपत्र के आरेख तक विस्तारित कर सकते हैं

इसका तात्पर्य यह है कि हम एक औपचारिक योजना का निर्माण कर सकते हैं ऊपर एक वक्र देना .

एबेलियन योजनाओं की विकृतियाँ

मोटे तौर पर सेरे-टेट प्रमेय का दावा है कि एबेलियन किस्म ए की विकृतियाँ पी-विभाज्य समूह की विकृतियों द्वारा नियंत्रित होती हैं|पी-विभाज्य समूह इसके पी-पावर मरोड़ बिंदु से मिलकर।

गैलोज़ विकृति

विरूपण सिद्धांत का एक अन्य अनुप्रयोग गैलोज़ विरूपण के साथ है। यह हमें प्रश्न का उत्तर देने की अनुमति देता है: यदि हमारे पास गैलोज़ प्रतिनिधित्व है

हम इसे प्रतिनिधित्व तक कैसे बढ़ा सकते हैं


स्ट्रिंग सिद्धांत से संबंध

बीजगणित (और होशचाइल्ड कोहोमोलॉजी) के संदर्भ में उत्पन्न होने वाले तथाकथित डेलिग्ने अनुमान ने स्ट्रिंग सिद्धांत के संबंध में विरूपण सिद्धांत में बहुत रुचि पैदा की (मोटे तौर पर, इस विचार को औपचारिक रूप देने के लिए कि एक स्ट्रिंग सिद्धांत को एक बिंदु के विरूपण के रूप में माना जा सकता है- कण सिद्धांत)[citation needed]. प्रारंभिक घोषणाओं में कुछ रुकावटों के बाद अब इसे सिद्ध मान लिया गया है। मैक्सिम कोनत्सेविच उन लोगों में से हैं जिन्होंने इसका आम तौर पर स्वीकृत प्रमाण पेश किया है[citation needed].

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 1.2 Palamodov (1990). "Deformations of Complex Spaces". अनेक जटिल चर IV. Encyclopaedia of Mathematical Sciences. Vol. 10. pp. 105–194. doi:10.1007/978-3-642-61263-3_3. ISBN 978-3-642-64766-6.
  2. Debarre, Olivier (2001). "3. Bend-and-Break Lemmas". Higher-Dimensional Algebraic Geometry. Universitext. Springer.


स्रोत

शैक्षिक

सर्वेक्षण आलेख

बाहरी संबंध