रीमैनियन ज्यामिति: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:
{{General geometry |शाखाएं}}
{{General geometry |शाखाएं}}


'''रीमैनियन ज्यामिति''' [[विभेदक ज्यामिति]] की शाखा है जो रीमैनियन [[ कई गुना | मैनिफोल्ड]] का अध्ययन करती है, जिसे ''रीमैनियन मीट्रिक'' के साथ मैनिफोल्ड के रूप में परिभाषित किया गया है (प्रत्येक बिंदु पर [[स्पर्शरेखा स्थान|स्पर्शरेखा स्पेस]] पर आंतरिक उत्पाद जो बिंदु से बिंदु तक [[सुचारू कार्य]] को बदलता है) यह, विशेष रूप से, [[कोण]], चाप की लंबाई, सतह क्षेत्र और [[आयतन]] की स्पेसीय धारणाएँ देता है। उनसे, कुछ अन्य वैश्विक मात्राएँ [[अभिन्न]] स्पेसीय योगदान द्वारा प्राप्त की जा सकती हैं।
'''रीमैनियन ज्यामिति''' [[विभेदक ज्यामिति]] की शाखा है जो रीमैनियन [[ कई गुना |मैनिफोल्ड]] का अध्ययन करती है, जिसे ''रीमैनियन मीट्रिक'' के साथ मैनिफोल्ड के रूप में परिभाषित किया गया है (प्रत्येक बिंदु पर [[स्पर्शरेखा स्थान|स्पर्शरेखा स्पेस]] पर आंतरिक उत्पाद जो बिंदु से बिंदु तक [[सुचारू कार्य]] को बदलता है) यह, विशेष रूप से, [[कोण]], चाप की लंबाई, सतह क्षेत्र और [[आयतन]] की स्पेसीय धारणाएँ देता है। उनसे, कुछ अन्य वैश्विक मात्राएँ [[अभिन्न]] स्पेसीय योगदान द्वारा प्राप्त की जा सकती हैं।


रीमैनियन ज्यामिति की उत्पत्ति [[बर्नहार्ड रीमैन]] के अपने उद्घाटन व्याख्यान ''उएबर डाई हाइपोथेसन, वेल्चे डेर जियोमेट्री ज़ू ग्रुंडे लिगेन'' (उन परिकल्पनाओं पर जिन पर ज्यामिति आधारित है) में व्यक्त की गई दृष्टि से हुई।<ref>[http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Geom/ maths.tcd.ie]<!--Old link: http://www.emis.de/classics/Riemann/Geom.pdf--></ref> यह त्रि-आयामी स्पेस R<sup>3</sup> में [[सतहों की विभेदक ज्यामिति]] का बहुत व्यापक और एब्स्ट्रेक्ट सामान्यीकरण है. रीमैनियन ज्यामिति के विकास के परिणामस्वरूप सतहों की ज्यामिति और उन पर [[जियोडेसिक]] के व्यवहार से संबंधित विविध परिणामों का संश्लेषण हुआ था, ऐसी तकनीकों के साथ जिन्हें उच्च आयामों के विभिन्न प्रकारों के अध्ययन में प्रयुक्त किया जा सकता है। इसने [[अल्बर्ट आइंस्टीन]] के सापेक्षता के सामान्य सिद्धांत को तैयार करने में सक्षम बनाया गया था, [[समूह सिद्धांत]] और [[प्रतिनिधित्व सिद्धांत]] के साथ-साथ [[वैश्विक विश्लेषणात्मक कार्य]] पर गहरा प्रभाव डाला था, और [[बीजगणितीय टोपोलॉजी]] और अंतर टोपोलॉजी के विकास को प्रेरित किया था।  
रीमैनियन ज्यामिति की उत्पत्ति [[बर्नहार्ड रीमैन]] के अपने उद्घाटन व्याख्यान ''उएबर डाई हाइपोथेसन, वेल्चे डेर जियोमेट्री ज़ू ग्रुंडे लिगेन'' (उन परिकल्पनाओं पर जिन पर ज्यामिति आधारित है) में व्यक्त की गई दृष्टि से हुई।<ref>[http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Geom/ maths.tcd.ie]<!--Old link: http://www.emis.de/classics/Riemann/Geom.pdf--></ref> यह त्रि-आयामी स्पेस R<sup>3</sup> में [[सतहों की विभेदक ज्यामिति]] का बहुत व्यापक और एब्स्ट्रेक्ट सामान्यीकरण है. रीमैनियन ज्यामिति के विकास के परिणामस्वरूप सतहों की ज्यामिति और उन पर [[जियोडेसिक]] के व्यवहार से संबंधित विविध परिणामों का संश्लेषण हुआ था, ऐसी तकनीकों के साथ जिन्हें उच्च आयामों के विभिन्न प्रकारों के अध्ययन में प्रयुक्त किया जा सकता है। इसने [[अल्बर्ट आइंस्टीन]] के सापेक्षता के सामान्य सिद्धांत को तैयार करने में सक्षम बनाया गया था, [[समूह सिद्धांत]] और [[प्रतिनिधित्व सिद्धांत]] के साथ-साथ [[वैश्विक विश्लेषणात्मक कार्य]] पर गहरा प्रभाव डाला था, और [[बीजगणितीय टोपोलॉजी]] और अंतर टोपोलॉजी के विकास को प्रेरित किया था।  
Line 49: Line 49:
===सामान्य प्रमेय===
===सामान्य प्रमेय===
#गॉस-बोनट प्रमेय कॉम्पैक्ट 2-आयामी रीमैनियन मैनिफोल्ड पर गॉस वक्रता का अभिन्न अंग 2πχ(''M'') के सामान्य है जहां χ(''M'') ''M'' की [[यूलर विशेषता]] को दर्शाता है। इस प्रमेय में किसी भी कॉम्पैक्ट सम-आयामी रीमानियन मैनिफोल्ड का सामान्यीकरण है, [[सामान्यीकृत गॉस-बोनट प्रमेय]] देखें।
#गॉस-बोनट प्रमेय कॉम्पैक्ट 2-आयामी रीमैनियन मैनिफोल्ड पर गॉस वक्रता का अभिन्न अंग 2πχ(''M'') के सामान्य है जहां χ(''M'') ''M'' की [[यूलर विशेषता]] को दर्शाता है। इस प्रमेय में किसी भी कॉम्पैक्ट सम-आयामी रीमानियन मैनिफोल्ड का सामान्यीकरण है, [[सामान्यीकृत गॉस-बोनट प्रमेय]] देखें।
#नैश [[एम्बेडिंग]] प्रमेय। उनका कहना है कि प्रत्येक रीमैनियन मैनिफोल्ड को [[ यूक्लिडियन स्थान | यूक्लिडियन स्पेस]] R<sup>n</sup> में आइसोमेट्रिक रूप से एम्बेड किया जा सकता है.
#नैश [[एम्बेडिंग]] प्रमेय। उनका कहना है कि प्रत्येक रीमैनियन मैनिफोल्ड को [[ यूक्लिडियन स्थान |यूक्लिडियन स्पेस]] R<sup>n</sup> में आइसोमेट्रिक रूप से एम्बेड किया जा सकता है.


===ज्यामिति बड़े मापदंड पर===
===ज्यामिति बड़े मापदंड पर===
Line 56: Line 56:
====पिंच अनुभागीय वक्रता====
====पिंच अनुभागीय वक्रता====
#[[क्षेत्र प्रमेय]]. यदि m सरल रूप से जुड़ा हुआ कॉम्पैक्ट ''n''-आयामी रीमैनियन मैनिफोल्ड है जिसमें अनुभागीय वक्रता सख्ती से 1/4 और 1 के बीच पिन की गई है तो m गोले के लिए भिन्न रूपात्मक है।
#[[क्षेत्र प्रमेय]]. यदि m सरल रूप से जुड़ा हुआ कॉम्पैक्ट ''n''-आयामी रीमैनियन मैनिफोल्ड है जिसमें अनुभागीय वक्रता सख्ती से 1/4 और 1 के बीच पिन की गई है तो m गोले के लिए भिन्न रूपात्मक है।
#चीगर की परिमितता प्रमेय। स्थिरांक ''c'', d और v को देखते हुए, अनुभागीय वक्रता के साथ केवल सीमित रूप से कई (विभिन्नता तक) कॉम्पैक्ट ''n''-आयामी रीमानियन मैनिफोल्ड हैं |
#चीगर की परिमितता प्रमेय। स्थिरांक ''c'', d और v को देखते हुए, अनुभागीय वक्रता के साथ केवल सीमित रूप से कई (विभिन्नता तक) कॉम्पैक्ट ''n''-आयामी रीमानियन मैनिफोल्ड हैं |
#लगभग सपाट मैनिफोल्ड ग्रोमोव का लगभग सपाट मैनिफोल्ड। वहाँ ε <sub>''n''</sub> > 0 है जैसे कि यदि n-आयामी रीमैनियन मैनिफोल्ड में अनुभागीय वक्रता वाला मीट्रिक है |K| ≤ ε<sub>''n''</sub> और व्यास ≤ 1 है तो इसका परिमित आवरण [[शून्य अनेक गुना]] से भिन्न होता है।
#लगभग सपाट मैनिफोल्ड ग्रोमोव का लगभग सपाट मैनिफोल्ड। वहाँ ε <sub>''n''</sub> > 0 है जैसे कि यदि n-आयामी रीमैनियन मैनिफोल्ड में अनुभागीय वक्रता वाला मीट्रिक है |K| ≤ ε<sub>''n''</sub> और व्यास ≤ 1 है तो इसका परिमित आवरण [[शून्य अनेक गुना]] से भिन्न होता है।


Line 62: Line 62:
#चीगर-ग्रोमोल की [[आत्मा प्रमेय]] यदि m गैर-कॉम्पैक्ट पूर्ण गैर-नकारात्मक रूप से घुमावदार ''n''-आयामी रीमैनियन मैनिफोल्ड है, तो m में कॉम्पैक्ट, पूरी तरह से जियोडेसिक सबमैनिफोल्ड ''s'' सम्मिलित है जैसे कि m <nowiki>'''''''''''''''''''''''''''''''''''''''''</nowiki>''''' की आत्मा कहा जाता है) के सामान्य बंडल से भिन्न रूपात्मक है।) विशेष रूप से, यदि''''' m में हर स्थान सख्ती से सकारात्मक वक्रता है, तो यह [[भिन्नरूपी]] है R<sup>n</sup> को. 1994 में जी. पेरेलमैन ने आत्मा अनुमान का आश्चर्यजनक रूप से सुंदर/संक्षिप्त प्रमाण दिया: एम, 'आर<sup>n</sup>' से भिन्न है। यदि इसमें केवल बिंदु पर सकारात्मक वक्रता है।
#चीगर-ग्रोमोल की [[आत्मा प्रमेय]] यदि m गैर-कॉम्पैक्ट पूर्ण गैर-नकारात्मक रूप से घुमावदार ''n''-आयामी रीमैनियन मैनिफोल्ड है, तो m में कॉम्पैक्ट, पूरी तरह से जियोडेसिक सबमैनिफोल्ड ''s'' सम्मिलित है जैसे कि m <nowiki>'''''''''''''''''''''''''''''''''''''''''</nowiki>''''' की आत्मा कहा जाता है) के सामान्य बंडल से भिन्न रूपात्मक है।) विशेष रूप से, यदि''''' m में हर स्थान सख्ती से सकारात्मक वक्रता है, तो यह [[भिन्नरूपी]] है R<sup>n</sup> को. 1994 में जी. पेरेलमैन ने आत्मा अनुमान का आश्चर्यजनक रूप से सुंदर/संक्षिप्त प्रमाण दिया: एम, 'आर<sup>n</sup>' से भिन्न है। यदि इसमें केवल बिंदु पर सकारात्मक वक्रता है।
#'ग्रोमोव की बेटी संख्या प्रमेय' स्थिरांक C = C(n) है, जैसे कि यदि M सकारात्मक अनुभागीय वक्रता के साथ कॉम्पैक्ट कनेक्टेड n-आयामी रीमैनियन मैनिफोल्ड है तो इसकी बेट्टी संख्याओं का योग अधिकतम C है।
#'ग्रोमोव की बेटी संख्या प्रमेय' स्थिरांक C = C(n) है, जैसे कि यदि M सकारात्मक अनुभागीय वक्रता के साथ कॉम्पैक्ट कनेक्टेड n-आयामी रीमैनियन मैनिफोल्ड है तो इसकी बेट्टी संख्याओं का योग अधिकतम C है।
#'ग्रोव-पीटरसन की परिमितता प्रमेय' स्थिरांक c, d और v को देखते हुए, अनुभागीय वक्रता के ≥ c, व्यास ≤ d और वॉल्यूम ≥ v के साथ कॉम्पैक्ट n-आयामी रीमैनियन मैनिफोल्ड के केवल सीमित रूप से कई समरूप प्रकार हैं।
#'ग्रोव-पीटरसन की परिमितता प्रमेय' स्थिरांक c, d और v को देखते हुए, अनुभागीय वक्रता के ≥ c, व्यास ≤ d और वॉल्यूम ≥ v के साथ कॉम्पैक्ट n-आयामी रीमैनियन मैनिफोल्ड के केवल सीमित रूप से कई समरूप प्रकार हैं।


==== ऊपर परिबद्ध अनुभागीय वक्रता ====
==== ऊपर परिबद्ध अनुभागीय वक्रता ====
# कार्टन-हैडामर्ड प्रमेय में कहा गया है कि गैर-सकारात्मक अनुभागीय वक्रता के साथ पूर्ण रूप से जुड़ा हुआ रीमैनियन मैनिफोल्ड m यूक्लिडियन स्पेस R<sup>n</sup> से अलग है। किसी भी बिंदु पर घातांकीय मानचित्र (रिमानियन ज्यामिति) के माध्यम से n = मंद m के साथ इसका तात्पर्य यह है कि गैर-सकारात्मक अनुभागीय वक्रता के साथ सरल रूप से जुड़े पूर्ण रीमैनियन मैनिफोल्ड के कोई भी दो बिंदु अद्वितीय जियोडेसिक द्वारा जुड़े हुए हैं।
# कार्टन-हैडामर्ड प्रमेय में कहा गया है कि गैर-सकारात्मक अनुभागीय वक्रता के साथ पूर्ण रूप से जुड़ा हुआ रीमैनियन मैनिफोल्ड m यूक्लिडियन स्पेस R<sup>n</sup> से अलग है। किसी भी बिंदु पर घातांकीय मानचित्र (रिमानियन ज्यामिति) के माध्यम से n = मंद m के साथ इसका तात्पर्य यह है कि गैर-सकारात्मक अनुभागीय वक्रता के साथ सरल रूप से जुड़े पूर्ण रीमैनियन मैनिफोल्ड के कोई भी दो बिंदु अद्वितीय जियोडेसिक द्वारा जुड़े हुए हैं।
#नकारात्मक अनुभागीय वक्रता के साथ किसी भी कॉम्पैक्ट रीमैनियन मैनिफोल्ड का [[जियोडेसिक प्रवाह]] [[ ergodic |अर्गोडिक]] है।
#नकारात्मक अनुभागीय वक्रता के साथ किसी भी कॉम्पैक्ट रीमैनियन मैनिफोल्ड का [[जियोडेसिक प्रवाह]] [[ ergodic |अर्गोडिक]] है।
#यदि M पूर्ण रीमैनियन मैनिफोल्ड है, जिसके अनुभागीय वक्रता ऊपर सख्ती से नकारात्मक स्थिरांक k से घिरी हुई है तो यह CAT(k) स्पेस है। परिणाम स्वरुप, इसका मूल समूह Γ ={{pi}}<sub>1</sub>(एम) अतिशयोक्तिपूर्ण समूह है. मौलिक समूह की संरचना पर इसके कई निहितार्थ हैं:
#यदि M पूर्ण रीमैनियन मैनिफोल्ड है, जिसके अनुभागीय वक्रता ऊपर सख्ती से नकारात्मक स्थिरांक k से घिरी हुई है तो यह CAT(k) स्पेस है। परिणाम स्वरुप, इसका मूल समूह Γ ={{pi}}<sub>1</sub>(एम) अतिशयोक्तिपूर्ण समूह है. मौलिक समूह की संरचना पर इसके कई निहितार्थ हैं:
::* यह [[अंतिम रूप से प्रस्तुत समूह]] है;
::* यह [[अंतिम रूप से प्रस्तुत समूह]] है;
::* Γ के लिए [[समूहों के लिए शब्द समस्या]] का सकारात्मक समाधान है;
::* Γ के लिए [[समूहों के लिए शब्द समस्या]] का सकारात्मक समाधान है;
Line 79: Line 79:
#[[विभाजन प्रमेय]]. यदि पूर्ण ''n''-आयामी रीमैनियन मैनिफोल्ड में गैर-नकारात्मक रिक्की वक्रता और सीधी रेखा है (अर्थात जियोडेसिक जो प्रत्येक अंतराल पर दूरी को कम करता है) तो यह वास्तविक रेखा के प्रत्यक्ष उत्पाद के लिए आइसोमेट्रिक है और पूर्ण (''n -1) है ''आयामी रीमैनियन मैनिफोल्ड जिसमें गैर-नकारात्मक रिक्की वक्रता है।
#[[विभाजन प्रमेय]]. यदि पूर्ण ''n''-आयामी रीमैनियन मैनिफोल्ड में गैर-नकारात्मक रिक्की वक्रता और सीधी रेखा है (अर्थात जियोडेसिक जो प्रत्येक अंतराल पर दूरी को कम करता है) तो यह वास्तविक रेखा के प्रत्यक्ष उत्पाद के लिए आइसोमेट्रिक है और पूर्ण (''n -1) है ''आयामी रीमैनियन मैनिफोल्ड जिसमें गैर-नकारात्मक रिक्की वक्रता है।
#बिशप-ग्रोमोव असमानता सकारात्मक रिक्की वक्रता के साथ पूर्ण ''n''-आयामी रीमैनियन मैनिफोल्ड में त्रिज्या R की मीट्रिक गेंद का आयतन अधिकतम उसी त्रिज्या R की गेंद के आयतन के सामान्य होता है। यूक्लिडियन स्पेस है
#बिशप-ग्रोमोव असमानता सकारात्मक रिक्की वक्रता के साथ पूर्ण ''n''-आयामी रीमैनियन मैनिफोल्ड में त्रिज्या R की मीट्रिक गेंद का आयतन अधिकतम उसी त्रिज्या R की गेंद के आयतन के सामान्य होता है। यूक्लिडियन स्पेस है
#ग्रोमोव की सघनता प्रमेय (ज्यामिति) ग्रोमोव की सघनता प्रमेय सकारात्मक रिक्की वक्रता और अधिकतम d व्यास के साथ सभी रीमैनियन मैनिफोल्ड्स का सेट [[ मीट्रिक स्थान | मीट्रिक स्पेस]] या ग्रोमोव-हॉसडॉर्फ अभिसरण में प्री-कॉम्पैक्ट या ग्रोमोव-हॉसडॉर्फ मीट्रिक है।
#ग्रोमोव की सघनता प्रमेय (ज्यामिति) ग्रोमोव की सघनता प्रमेय सकारात्मक रिक्की वक्रता और अधिकतम d व्यास के साथ सभी रीमैनियन मैनिफोल्ड्स का सेट [[ मीट्रिक स्थान |मीट्रिक स्पेस]] या ग्रोमोव-हॉसडॉर्फ अभिसरण में प्री-कॉम्पैक्ट या ग्रोमोव-हॉसडॉर्फ मीट्रिक है।


==== नकारात्मक रिक्की वक्रता ====
==== नकारात्मक रिक्की वक्रता ====
Line 100: Line 100:
== टिप्पणियाँ                                                                                                                                                                                                              ==
== टिप्पणियाँ                                                                                                                                                                                                              ==
{{Reflist|30em}}
{{Reflist|30em}}


==संदर्भ==
==संदर्भ==
Line 110: Line 109:
* {{citation |last=Petersen |first=Peter |title=Riemannian Geometry |year=2006 |publication-place=Berlin |publisher=Springer-Verlag |isbn=0-387-98212-4}}
* {{citation |last=Petersen |first=Peter |title=Riemannian Geometry |year=2006 |publication-place=Berlin |publisher=Springer-Verlag |isbn=0-387-98212-4}}


* From Riemann to Differential Geometry and Relativity (Lizhen Ji, Athanase Papadopoulos, and Sumio Yamada, Eds.) Springer, 2017, XXXIV, 647 p. {{ISBN|978-3-319-60039-0}}
* From Riemann to Differential Geometry and Relativity (Lizhen Ji, Athanase Papadopoulos, and Sumio Yamada, Eds.) Springer, 2017, XXXIV, 647 p. {{ISBN|978-3-319-60039-0}}


;Papers
;Papers
*{{citation |last1=Brendle |first1=Simon |author-link1=Simon Brendle |last2=Schoen |first2=Richard M. |author-link2=Richard Schoen |title=Classification of manifolds with weakly 1/4-pinched curvatures |journal=Acta Math |year=2008 |volume=200 |pages=1–13 |doi=10.1007/s11511-008-0022-7 |arxiv=0705.3963|bibcode=2007arXiv0705.3963B |s2cid=15463483 }}
*{{citation |last1=Brendle |first1=Simon |author-link1=Simon Brendle |last2=Schoen |first2=Richard M. |author-link2=Richard Schoen |title=Classification of manifolds with weakly 1/4-pinched curvatures |journal=Acta Math |year=2008 |volume=200 |pages=1–13 |doi=10.1007/s11511-008-0022-7 |arxiv=0705.3963|bibcode=2007arXiv0705.3963B |s2cid=15463483 }}
==बाहरी संबंध==
==बाहरी संबंध==
* [http://www.encyclopediaofmath.org/index.php?title=Riemannian_geometry&oldid=11672 Riemannian geometry] by V. A. Toponogov at the [[Encyclopedia of Mathematics]]
* [http://www.encyclopediaofmath.org/index.php?title=Riemannian_geometry&oldid=11672 Riemannian geometry] by V. A. Toponogov at the [[Encyclopedia of Mathematics]]

Revision as of 17:06, 11 July 2023

रीमैनियन ज्यामिति विभेदक ज्यामिति की शाखा है जो रीमैनियन मैनिफोल्ड का अध्ययन करती है, जिसे रीमैनियन मीट्रिक के साथ मैनिफोल्ड के रूप में परिभाषित किया गया है (प्रत्येक बिंदु पर स्पर्शरेखा स्पेस पर आंतरिक उत्पाद जो बिंदु से बिंदु तक सुचारू कार्य को बदलता है) यह, विशेष रूप से, कोण, चाप की लंबाई, सतह क्षेत्र और आयतन की स्पेसीय धारणाएँ देता है। उनसे, कुछ अन्य वैश्विक मात्राएँ अभिन्न स्पेसीय योगदान द्वारा प्राप्त की जा सकती हैं।

रीमैनियन ज्यामिति की उत्पत्ति बर्नहार्ड रीमैन के अपने उद्घाटन व्याख्यान उएबर डाई हाइपोथेसन, वेल्चे डेर जियोमेट्री ज़ू ग्रुंडे लिगेन (उन परिकल्पनाओं पर जिन पर ज्यामिति आधारित है) में व्यक्त की गई दृष्टि से हुई।[1] यह त्रि-आयामी स्पेस R3 में सतहों की विभेदक ज्यामिति का बहुत व्यापक और एब्स्ट्रेक्ट सामान्यीकरण है. रीमैनियन ज्यामिति के विकास के परिणामस्वरूप सतहों की ज्यामिति और उन पर जियोडेसिक के व्यवहार से संबंधित विविध परिणामों का संश्लेषण हुआ था, ऐसी तकनीकों के साथ जिन्हें उच्च आयामों के विभिन्न प्रकारों के अध्ययन में प्रयुक्त किया जा सकता है। इसने अल्बर्ट आइंस्टीन के सापेक्षता के सामान्य सिद्धांत को तैयार करने में सक्षम बनाया गया था, समूह सिद्धांत और प्रतिनिधित्व सिद्धांत के साथ-साथ वैश्विक विश्लेषणात्मक कार्य पर गहरा प्रभाव डाला था, और बीजगणितीय टोपोलॉजी और अंतर टोपोलॉजी के विकास को प्रेरित किया था।

परिचय

बर्नहार्ड रीमैन

रीमैनियन ज्यामिति को पहली बार 19वीं शताब्दी में बर्नहार्ड रीमैन द्वारा व्यापक रूप से सामने रखा गया था। यह ज्यामिति की विस्तृत श्रृंखला से संबंधित है, जिसके मीट्रिक (गणित) गुण बिंदु-दर-बिंदु भिन्न होते हैं, जिसमें गैर-यूक्लिडियन ज्यामिति के मानक प्रकार भी सम्मिलित हैं।

प्रत्येक स्मूथ मैनिफोल्ड रीमैनियन मीट्रिक को स्वीकार करता है, जो अधिकांशतः विभेदक टोपोलॉजी की समस्याओं को हल करने में सहायता करता है। यह छद्म-रीमैनियन मैनिफोल्ड की अधिक जटिल संरचना के लिए प्रवेश स्तर के रूप में भी कार्य करता है, जो (चार आयामों में) सामान्य सापेक्षता की मुख्य वस्तुएं हैं। रीमैनियन ज्यामिति के अन्य सामान्यीकरणों में फिन्सलर मैनिफोल्ड सम्मिलित है।

नियमित क्रिस्टल में दोषों की गणितीय संरचना के साथ विभेदक ज्यामिति का घनिष्ठ सादृश्य उपस्थित है। अव्यवस्थाएं और झुकाव टोशन और वक्रता उत्पन्न करते हैं।[2][3]

निम्नलिखित लेख कुछ उपयोगी परिचयात्मक पदार्थ प्रदान करते हैं:

मौलिक प्रमेय

रीमैनियन ज्यामिति में सबसे मौलिक प्रमेयों की अधूरी सूची इस प्रकार है। चयन इसके महत्व और निर्माण की सुंदरता के आधार पर किया जाता है। अधिकांश परिणाम जेफ़ चीगर और डी. एबिन के क्लासिक मोनोग्राफ में पाए जा सकते हैं (नीचे देखें)।

दिए गए फॉर्मूलेशन बहुत स्पष्ट या सबसे सामान्य होने से बहुत दूर हैं। यह सूची उन लोगों के लिए है जो पहले से ही मूलभूत परिभाषाएँ जानते हैं और जानना चाहते हैं कि ये परिभाषाएँ किस बारे में हैं।

सामान्य प्रमेय

  1. गॉस-बोनट प्रमेय कॉम्पैक्ट 2-आयामी रीमैनियन मैनिफोल्ड पर गॉस वक्रता का अभिन्न अंग 2πχ(M) के सामान्य है जहां χ(M) M की यूलर विशेषता को दर्शाता है। इस प्रमेय में किसी भी कॉम्पैक्ट सम-आयामी रीमानियन मैनिफोल्ड का सामान्यीकरण है, सामान्यीकृत गॉस-बोनट प्रमेय देखें।
  2. नैश एम्बेडिंग प्रमेय। उनका कहना है कि प्रत्येक रीमैनियन मैनिफोल्ड को यूक्लिडियन स्पेस Rn में आइसोमेट्रिक रूप से एम्बेड किया जा सकता है.

ज्यामिति बड़े मापदंड पर

निम्नलिखित सभी प्रमेयों में हम स्पेस की वैश्विक संरचना के बारे में कुछ जानकारी प्राप्त करने के लिए स्पेस के कुछ स्पेसीय व्यवहार (सामान्यतः वक्रता धारणा का उपयोग करके तैयार) को मानते हैं, जिसमें मैनिफोल्ड के टोपोलॉजिकल प्रकार या बिंदुओं के व्यवहार पर कुछ जानकारी सम्मिलित है। जो पर्याप्त बड़ी दूरी पर होती है

पिंच अनुभागीय वक्रता

  1. क्षेत्र प्रमेय. यदि m सरल रूप से जुड़ा हुआ कॉम्पैक्ट n-आयामी रीमैनियन मैनिफोल्ड है जिसमें अनुभागीय वक्रता सख्ती से 1/4 और 1 के बीच पिन की गई है तो m गोले के लिए भिन्न रूपात्मक है।
  2. चीगर की परिमितता प्रमेय। स्थिरांक c, d और v को देखते हुए, अनुभागीय वक्रता के साथ केवल सीमित रूप से कई (विभिन्नता तक) कॉम्पैक्ट n-आयामी रीमानियन मैनिफोल्ड हैं |
  3. लगभग सपाट मैनिफोल्ड ग्रोमोव का लगभग सपाट मैनिफोल्ड। वहाँ ε n > 0 है जैसे कि यदि n-आयामी रीमैनियन मैनिफोल्ड में अनुभागीय वक्रता वाला मीट्रिक है |K| ≤ εn और व्यास ≤ 1 है तो इसका परिमित आवरण शून्य अनेक गुना से भिन्न होता है।

नीचे परिबद्ध अनुभागीय वक्रता

  1. चीगर-ग्रोमोल की आत्मा प्रमेय यदि m गैर-कॉम्पैक्ट पूर्ण गैर-नकारात्मक रूप से घुमावदार n-आयामी रीमैनियन मैनिफोल्ड है, तो m में कॉम्पैक्ट, पूरी तरह से जियोडेसिक सबमैनिफोल्ड s सम्मिलित है जैसे कि m ''''''''''''''''''''''''''''''''''''''''' की आत्मा कहा जाता है) के सामान्य बंडल से भिन्न रूपात्मक है।) विशेष रूप से, यदि m में हर स्थान सख्ती से सकारात्मक वक्रता है, तो यह भिन्नरूपी है Rn को. 1994 में जी. पेरेलमैन ने आत्मा अनुमान का आश्चर्यजनक रूप से सुंदर/संक्षिप्त प्रमाण दिया: एम, 'आरn' से भिन्न है। यदि इसमें केवल बिंदु पर सकारात्मक वक्रता है।
  2. 'ग्रोमोव की बेटी संख्या प्रमेय' स्थिरांक C = C(n) है, जैसे कि यदि M सकारात्मक अनुभागीय वक्रता के साथ कॉम्पैक्ट कनेक्टेड n-आयामी रीमैनियन मैनिफोल्ड है तो इसकी बेट्टी संख्याओं का योग अधिकतम C है।
  3. 'ग्रोव-पीटरसन की परिमितता प्रमेय' स्थिरांक c, d और v को देखते हुए, अनुभागीय वक्रता के ≥ c, व्यास ≤ d और वॉल्यूम ≥ v के साथ कॉम्पैक्ट n-आयामी रीमैनियन मैनिफोल्ड के केवल सीमित रूप से कई समरूप प्रकार हैं।

ऊपर परिबद्ध अनुभागीय वक्रता

  1. कार्टन-हैडामर्ड प्रमेय में कहा गया है कि गैर-सकारात्मक अनुभागीय वक्रता के साथ पूर्ण रूप से जुड़ा हुआ रीमैनियन मैनिफोल्ड m यूक्लिडियन स्पेस Rn से अलग है। किसी भी बिंदु पर घातांकीय मानचित्र (रिमानियन ज्यामिति) के माध्यम से n = मंद m के साथ इसका तात्पर्य यह है कि गैर-सकारात्मक अनुभागीय वक्रता के साथ सरल रूप से जुड़े पूर्ण रीमैनियन मैनिफोल्ड के कोई भी दो बिंदु अद्वितीय जियोडेसिक द्वारा जुड़े हुए हैं।
  2. नकारात्मक अनुभागीय वक्रता के साथ किसी भी कॉम्पैक्ट रीमैनियन मैनिफोल्ड का जियोडेसिक प्रवाह अर्गोडिक है।
  3. यदि M पूर्ण रीमैनियन मैनिफोल्ड है, जिसके अनुभागीय वक्रता ऊपर सख्ती से नकारात्मक स्थिरांक k से घिरी हुई है तो यह CAT(k) स्पेस है। परिणाम स्वरुप, इसका मूल समूह Γ =π1(एम) अतिशयोक्तिपूर्ण समूह है. मौलिक समूह की संरचना पर इसके कई निहितार्थ हैं:

रिक्की वक्रता नीचे परिबद्ध

  1. मायर्स प्रमेय. यदि पूर्ण रीमैनियन मैनिफोल्ड में सकारात्मक रिक्की वक्रता है तो इसका मूल समूह परिमित है।
  2. बोचनर का सूत्र. यदि कॉम्पैक्ट रीमैनियन n-मैनिफोल्ड में गैर-नकारात्मक रिक्की वक्रता है, तो इसका पहला बेट्टी नंबर अधिकतम n है, समानता के साथ यदि और केवल यदि रीमैनियन मैनिफोल्ड फ्लैट टोरस है।
  3. विभाजन प्रमेय. यदि पूर्ण n-आयामी रीमैनियन मैनिफोल्ड में गैर-नकारात्मक रिक्की वक्रता और सीधी रेखा है (अर्थात जियोडेसिक जो प्रत्येक अंतराल पर दूरी को कम करता है) तो यह वास्तविक रेखा के प्रत्यक्ष उत्पाद के लिए आइसोमेट्रिक है और पूर्ण (n -1) है आयामी रीमैनियन मैनिफोल्ड जिसमें गैर-नकारात्मक रिक्की वक्रता है।
  4. बिशप-ग्रोमोव असमानता सकारात्मक रिक्की वक्रता के साथ पूर्ण n-आयामी रीमैनियन मैनिफोल्ड में त्रिज्या R की मीट्रिक गेंद का आयतन अधिकतम उसी त्रिज्या R की गेंद के आयतन के सामान्य होता है। यूक्लिडियन स्पेस है
  5. ग्रोमोव की सघनता प्रमेय (ज्यामिति) ग्रोमोव की सघनता प्रमेय सकारात्मक रिक्की वक्रता और अधिकतम d व्यास के साथ सभी रीमैनियन मैनिफोल्ड्स का सेट मीट्रिक स्पेस या ग्रोमोव-हॉसडॉर्फ अभिसरण में प्री-कॉम्पैक्ट या ग्रोमोव-हॉसडॉर्फ मीट्रिक है।

नकारात्मक रिक्की वक्रता

  1. नकारात्मक रिक्की वक्रता के साथ कॉम्पैक्ट रीमैनियन मैनिफोल्ड की आइसोमेट्री असतत समूह है।
  2. आयाम n ≥ 3 का कोई भी सहज मैनिफोल्ड नकारात्मक रिक्की वक्रता के साथ रीमानियन मीट्रिक को स्वीकार करता है।[4] (यह सतहों के लिए सच नहीं है।)

सकारात्मक अदिश वक्रता

  1. n-डायमेंशनल टोरस सकारात्मक अदिश वक्रता वाले मीट्रिक को स्वीकार नहीं करता है।
  2. यदि रीमैनियन की शब्दावली और कॉम्पैक्ट n-डायमेंशनल रीमैनियन मैनिफोल्ड की मीट्रिक ज्यामिति ≥ π है तो औसत अदिश वक्रता अधिकतम n(n-1) है।

यह भी देखें

टिप्पणियाँ

  1. maths.tcd.ie
  2. Kleinert, Hagen (1989). "Gauge Fields in Condensed Matter Vol II": 743–1440. {{cite journal}}: Cite journal requires |journal= (help)
  3. Kleinert, Hagen (2008). Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation (PDF). pp. 1–496. Bibcode:2008mfcm.book.....K.
  4. Joachim Lohkamp has shown (Annals of Mathematics, 1994) that any manifold of dimension greater than two admits a metric of negative Ricci curvature.

संदर्भ

Books
  • From Riemann to Differential Geometry and Relativity (Lizhen Ji, Athanase Papadopoulos, and Sumio Yamada, Eds.) Springer, 2017, XXXIV, 647 p. ISBN 978-3-319-60039-0
Papers

बाहरी संबंध