क्वांटम ऑपरेशन: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 125: | Line 125: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 06/07/2023]] | [[Category:Created On 06/07/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 10:58, 25 July 2023
क्वांटम यांत्रिकी में, एक क्वांटम ऑपरेशन (क्वांटम डायनेमिक मैप या क्वांटम प्रक्रिया के रूप में भी जाना जाता है) एक गणितीय औपचारिकता है जिसका उपयोग एक क्वांटम यांत्रिक प्रणाली में होने वाले परिवर्तनों के व्यापक वर्ग का वर्णन करने के लिए किया जाता है। इसकी चर्चा सबसे पहले जॉर्ज सुदर्शन द्वारा घनत्व आव्यूह के लिए एक सामान्य स्टोकेस्टिक परिवर्तन के रूप में की गई थी।[1] क्वांटम ऑपरेशन औपचारिकता न केवल एकात्मक समय विकास या पृथक प्रणालियों के समरूपता परिवर्तनों का वर्णन करती है, किंतु एक पर्यावरण के साथ माप और क्षणिक परस्पर क्रिया के प्रभावों का भी वर्णन करती है। क्वांटम गणना के संदर्भ में, क्वांटम ऑपरेशन को क्वांटम चैनल कहा जाता है।
ध्यान दें कि कुछ लेखक "क्वांटम ऑपरेशन" शब्द का उपयोग विशेष रूप से पूरी तरह से सकारात्मक (सीपी) और घनत्व आव्यूह के स्थान पर गैर-ट्रेस-बढ़ते मानचित्रों को संदर्भित करने के लिए करते हैं, और "क्वांटम चैनल" शब्द का उपयोग उन लोगों के सबसेट को संदर्भित करने के लिए करते हैं जो हैं कड़ाई से ट्रेस-संरक्षण है ।[2]
क्वांटम संचालन क्वांटम यांत्रिक प्रणाली के घनत्व ऑपरेटर विवरण के संदर्भ में तैयार किए जाते हैं। सख्ती से, एक क्वांटम ऑपरेशन अपने आप में घनत्व ऑपरेटरों के सेट से एक रैखिक, पूरी तरह से सकारात्मक मानचित्र है। क्वांटम जानकारी के संदर्भ में, कोई अधिकांशत:आगे प्रतिबंध लगाता है कि एक क्वांटम ऑपरेशन भौतिक होना चाहिए,[3] अर्थात् किसी भी अवस्था के लिए को संतुष्ट करना चाहिए।
कुछ क्वांटम प्रक्रियाओं को क्वांटम ऑपरेशन औपचारिकता के अंदर अधिकृत नहीं किया जा सकता है;[4] सिद्धांत रूप में, क्वांटम प्रणाली का घनत्व आव्यूह पूरी तरह से इच्छानुसार समय विकास से गुजर सकता है। क्वांटम संचालन को क्वांटम उपकरणों द्वारा सामान्यीकृत किया जाता है, जो क्वांटम जानकारी के अतिरिक्त माप के समय प्राप्त मौलिक जानकारी को अधिकृत करते हैं।
पृष्ठभूमि
श्रोडिंगर चित्र कुछ मान्यताओं के तहत क्वांटम यांत्रिक प्रणाली के लिए अवस्था के समय के विकास का एक संतोषजनक विवरण प्रदान करता है। इन धारणाओं में सम्मिलित हैं
- प्रणाली गैर-सापेक्षवादी है
- प्रणाली पृथक है.
समय विकास के लिए श्रोडिंगर चित्र में कई गणितीय समकक्ष सूत्र हैं। ऐसा ही एक सूत्रीकरण श्रोडिंगर समीकरण के माध्यम से अवस्था के परिवर्तन की समय दर को व्यक्त करता है। इस प्रदर्शनी के लिए एक अधिक उपयुक्त सूत्रीकरण इस प्रकार व्यक्त किया गया है:
एक पृथक प्रणाली S की स्थिति पर समय की t इकाइयों के पारित होने का प्रभाव एक एकात्मक ऑपरेटर Ut द्वारा S से जुड़े हिल्बर्ट स्थान H पर दिया जाता है।
इसका अर्थ यह है कि यदि प्रणाली समय के एक पल में v ∈ H के अनुरूप स्थिति में है, तो समय की t इकाइयों के बाद की स्थिति Ut v होगी। सापेक्ष प्रणालियों के लिए, कोई सार्वभौमिक समय पैरामीटर नहीं है, किंतु हम अभी भी कर सकते हैं क्वांटम मैकेनिकल प्रणाली पर कुछ प्रतिवर्ती परिवर्तनों के प्रभाव को तैयार कर सकते हैं। उदाहरण के लिए, संदर्भ के विभिन्न फ़्रेमों में पर्यवेक्षकों से संबंधित अवस्था परिवर्तन एकात्मक परिवर्तनों द्वारा दिए जाते हैं। किसी भी स्थिति में, ये अवस्था परिवर्तन शुद्ध अवस्थाओं को शुद्ध अवस्थाओं में ले जाते हैं; इसे अधिकांशत यह कहकर तैयार किया जाता है कि इस आदर्श रूपरेखा में कोई विसंगति नहीं है।
इंटरैक्टिंग (या खुली) प्रणालियों के लिए, जैसे कि माप से गुजरने वाली प्रणालियों के लिए, स्थिति पूरी तरह से अलग है। आरंभ करने के लिए, ऐसी प्रणालियों द्वारा अनुभव किए गए अवस्था परिवर्तनों को विशेष रूप से शुद्ध अवस्था के सेट पर परिवर्तन के कारण नहीं माना जा सकता है (अर्थात, जो h में मानक 1 के वैक्टर से जुड़े हैं)। इस तरह की परस्पर क्रिया के पश्चात्, शुद्ध अवस्था φ में एक प्रणाली अब शुद्ध अवस्था φ में नहीं रह सकती है। सामान्य रूप से यह संबंधित संभावनाओं λ1, ..., λk. के साथ शुद्ध अवस्थाओं φ1, ..., φk के अनुक्रम के एक सांख्यिकीय मिश्रण में होगा। शुद्ध अवस्था से मिश्रित अवस्था में परिवर्तन को विच्छेदन कहा जाता है।
इंटरैक्टिंग प्रणाली के स्थिति को संभालने के लिए कई गणितीय औपचारिकताएं स्थापित की गई हैं। क्वांटम ऑपरेशन औपचारिकता 1983 के आसपास कार्ल क्रॉस (भौतिक विज्ञानी) के काम से उभरी, जो मैन-डुएन चोई के पहले गणितीय काम पर निर्भर थे। इसका लाभ यह है कि यह माप जैसे संचालन को घनत्व अवस्थाओ से घनत्व अवस्थाओ तक मानचित्रण के रूप में व्यक्त करता है। विशेष रूप से, क्वांटम संचालन का प्रभाव घनत्व अवस्थाओ के सेट के अंदर रहता है।
परिभाषा
याद रखें कि यूनिट ट्रेस के साथ हिल्बर्ट स्थान पर एक घनत्व ऑपरेटर एक गैर-ऋणात्मक ऑपरेटर है।
गणितीय रूप से, एक क्वांटम ऑपरेशन हिल्बर्ट स्पेस H और G पर ट्रेस क्लास ऑपरेटरों के रिक्त स्थान के बीच एक रैखिक मानचित्र Φ है जैसे कि
- यदि S एक घनत्व संचालिका है, तो Tr(Φ(S)) ≤ 1.
- Φ पूरी तरह से सकारात्मक है, जो कि किसी भी प्राकृतिक संख्या n और आकार n के किसी भी वर्ग आव्यूह के लिए है जिसकी प्रविष्टियाँ ट्रेस-क्लास ऑपरेटर हैंऔर फिर जो गैर-ऋणात्मक है
- यह भी गैर-ऋणात्मक है. दूसरे शब्दों में, Φ पूरी तरह से सकारात्मक है यदि सभी n के लिए सकारात्मक है, जहां आव्यूहों के C*-बीजगणित पर पहचान मानचित्र को दर्शाता है।
ध्यान दें कि, पहली नियम के अनुसार, क्वांटम संचालन सांख्यिकीय संयोजनों की सामान्यीकरण गुण को संरक्षित नहीं कर सकता है। संभाव्य शब्दों में, क्वांटम संचालन उप-मार्कोवियन हो सकते हैं। एक क्वांटम ऑपरेशन के लिए घनत्व आव्यूह के सेट को संरक्षित करने के लिए, हमें अतिरिक्त धारणा की आवश्यकता है कि यह ट्रेस-संरक्षण है।
क्वांटम जानकारी के संदर्भ में, यहां परिभाषित क्वांटम संचालन, अथार्त पूरी तरह से सकारात्मक मानचित्र जो ट्रेस को नहीं बढ़ाते हैं, उन्हें क्वांटम चैनल या स्टोकेस्टिक मानचित्र भी कहा जाता है। यहां सूत्रीकरण क्वांटम अवस्थाओं के बीच चैनलों तक ही सीमित है; चूँकि इसे मौलिक अवस्थाओं को भी सम्मिलित `करने के लिए बढ़ाया जा सकता है, जिससे क्वांटम और मौलिक जानकारी को एक साथ संभालने की अनुमति मिलती है।
क्रॉस ऑपरेटर्स
क्रॉस का प्रमेय (कार्ल क्रॉस के नाम पर) पूरी तरह से सकारात्मक मानचित्रों की विशेषता बताता है, जो क्वांटम अवस्थाओ के बीच क्वांटम संचालन का मॉडल बनाते हैं। अनौपचारिक रूप से, प्रमेय यह सुनिश्चित करता है कि किसी स्थिति पर किसी भी ऐसे क्वांटम ऑपरेशन की क्रिया को सदैव के रूप में लिखा जा सकता है ऑपरेटरों के कुछ सेट के लिए संतोषजनक , जहां पहचान ऑपरेटर है।
प्रमेय का कथन
प्रमेय.[5] मान लीजिए कि और क्रमशः आयाम और के हिल्बर्ट स्थान हैं, और, और के बीच एक क्वांटम ऑपरेशन है। फिर, आव्यूह हैं
आव्यूह को क्रॉस ऑपरेटर कहा जाता है। (कभी-कभी उन्हें ध्वनि ऑपरेटरों या त्रुटि ऑपरेटरों के रूप में जाना जाता है, विशेष रूप से क्वांटम सूचना प्रसंस्करण के संदर्भ में, जहां क्वांटम ऑपरेशन पर्यावरण के ध्वनि , त्रुटि-उत्पादक प्रभावों का प्रतिनिधित्व करता है।) स्टाइनस्प्रिंग फैक्टराइजेशन प्रमेय उपरोक्त परिणाम को इच्छानुसार से अलग करने योग्य हिल्बर्ट तक विस्तारित करता है। रिक्त स्थान H और G. वहां, S को एक ट्रेस क्लास ऑपरेटर द्वारा और को बाउंडेड ऑपरेटरों के अनुक्रम द्वारा प्रतिस्थापित किया जाता है।
एकात्मक तुल्यता
क्रॉस मैट्रिसेस सामान्य रूप से क्वांटम ऑपरेशन द्वारा विशिष्ट रूप से निर्धारित नहीं होते हैं। उदाहरण के लिए, चोई आव्यूह के अलग-अलग चोलेस्की फ़ैक्टराइज़ेशन क्रॉस ऑपरेटरों के अलग-अलग सेट दे सकते हैं। निम्नलिखित प्रमेय में कहा गया है कि समान क्वांटम ऑपरेशन का प्रतिनिधित्व करने वाले क्रॉस मैट्रिसेस की सभी प्रणालियाँ एकात्मक परिवर्तन से संबंधित हैं:
प्रमेय. मान लीजिए कि एक परिमित-आयामी हिल्बर्ट स्पेस H पर एक (जरूरी नहीं कि ट्रेस-संरक्षित) क्वांटम ऑपरेशन हो, जिसमें क्रॉस मैट्रिसेस और के दो अनुक्रमों का प्रतिनिधित्व हो। फिर एक एकात्मक संचालिका आव्यूह ऐसा है
यह स्टाइनस्प्रिंग के प्रमेय का परिणाम है कि सभी क्वांटम संचालन को एक उपयुक्त एंसीला (क्वांटम कंप्यूटिंग) को मूल प्रणाली में युग्मित करने के बाद एकात्मक विकास द्वारा कार्यान्वित किया जा सकता है।
टिप्पणियाँ
ये परिणाम पूरी तरह से सकारात्मक मानचित्रों पर चोई के प्रमेय से भी प्राप्त किए जा सकते हैं, जो ट्रेस के संबंध में एक अद्वितीय हर्मिटियन-पॉजिटिव घनत्व ऑपरेटर (चोई आव्यूह ) द्वारा पूरी तरह से सकारात्मक परिमित-आयामी मानचित्र की विशेषता बताता है। किसी दिए गए चैनल के सभी संभावित क्रॉस अभ्यावेदन के बीच, क्रॉस ऑपरेटरों के ऑर्थोगोनैलिटी संबंध द्वारा प्रतिष्ठित एक विहित रूप उपस्थित है, ऑर्थोगोनल क्रॉस ऑपरेटरों का ऐसा विहित सेट संबंधित चोई आव्यूह को विकर्ण करके और इसके आइजेनवेक्टरों को वर्ग आव्यूह में दोबारा आकार देकर प्राप्त किया जा सकता है।
चोई के प्रमेय का एक अनंत-आयामी बीजगणितीय सामान्यीकरण भी उपस्थित है, जिसे पूरी तरह से सकारात्मक मानचित्रों के लिए बेलावकिन के रेडॉन-निकोडिम प्रमेय के रूप में जाना जाता है, जो एक पूर्णतः सकारात्मक मानचित्र के संबंध में एक क्वांटम चैनल के रेडॉन-निकोडिम व्युत्पन्न के रूप में एक घनत्व ऑपरेटर को परिभाषित करता है (संदर्भ) चैनल) इसका उपयोग क्वांटम चैनलों के लिए सापेक्ष निष्ठा और पारस्परिक सूचनाओं को परिभाषित करने के लिए किया जाता है।
गतिशीलता
एक गैर-सापेक्षवादी क्वांटम यांत्रिक प्रणाली के लिए, इसके समय विकास को Q के ऑटोमोर्फिज्म {αt}t के एक-पैरामीटर समूह द्वारा वर्णित किया गया है। इसे एकात्मक परिवर्तनों तक सीमित किया जा सकता है: कुछ अशक्त तकनीकी स्थितियों के तहत (क्वांटम तर्क पर लेख देखें और वरदराजन संदर्भ), अंतर्निहित हिल्बर्ट स्थान के एकात्मक परिवर्तनों का एक दृढ़ता से निरंतर एक-पैरामीटर समूह {Ut}t है, जैसे कि Q के तत्व E सूत्र के अनुसार विकसित होते हैं
प्रणाली समय विकास को सांख्यिकीय राज्य स्थान के समय विकास के रूप में भी माना जा सकता है। सांख्यिकीय स्थिति का विकास ऑपरेटरों के एक वर्ग द्वारा दिया जाता है {βt}t ऐसा है कि
इसे आसानी से सामान्यीकृत किया जा सकता है: यदि G, Q की समरूपता का एक जुड़ा हुआ समूह है जो समान अशक्त निरंतरता स्थितियों को संतुष्ट करता है, तो G के किसी भी तत्व g की समूह क्रिया (गणित) एक एकात्मक ऑपरेटर U द्वारा दी जाती है:
क्वांटम माप
क्वांटम संचालन का उपयोग क्वांटम माप की प्रक्रिया का वर्णन करने के लिए किया जा सकता है। नीचे दी गई प्रस्तुति एक अलग करने योग्य कॉम्प्लेक्स हिल्बर्ट स्पेस एच पर स्व-सहायक अनुमानों के संदर्भ में माप का वर्णन करती है, अर्थात, पीवीएम (प्रक्षेपण-मूल्य माप) के संदर्भ में सामान्य स्थिति में, पीओवीएम की धारणाओं के माध्यम से, गैर-ऑर्थोगोनल ऑपरेटरों का उपयोग करके माप किया जा सकता है। गैर-ऑर्थोगोनल स्थिति रौचक है, क्योंकि यह क्वांटम उपकरण की समग्र दक्षता में सुधार कर सकता है।
बाइनरी माप
क्वांटम प्रणाली को हाँ-नहीं प्रश्नों की एक श्रृंखला प्रयुक्त करके मापा जा सकता है। प्रश्नों के इस सेट को क्वांटम तर्क में प्रस्तावों के ऑर्थोपूरक जाली Q से चुना हुआ समझा जा सकता है। जाली एक अलग जटिल हिल्बर्ट स्पेस h पर स्व-सहायक अनुमानों के स्थान के समान है।
यह निर्धारित करने के लक्ष्य के साथ कि क्या इसमें कुछ गुण E है, कुछ अवस्था S में एक प्रणाली पर विचार करें, जहां E क्वांटम हां-नहीं प्रश्नों की जाली का एक तत्व है। इस संदर्भ में, मापन का अर्थ यह निर्धारित करने के लिए प्रणाली को कुछ प्रक्रिया में प्रस्तुत करना है कि अवस्था गुण को संतुष्ट करता है या नहीं इस चर्चा में प्रणाली स्थिति के संदर्भ में, प्रणाली के सांख्यिकीय समूह पर विचार करके एक परिचालन परिभाषा दी जा सकती है। प्रत्येक माप से कुछ निश्चित मान 0 या 1 प्राप्त होता है; इसके अतिरिक्त माप प्रक्रिया को संयोजन में प्रयुक्त करने से सांख्यिकीय स्थिति में पूर्वानुमानित परिवर्तन होता है। सांख्यिकीय अवस्था का यह परिवर्तन क्वांटम ऑपरेशन द्वारा दिया जाता है
सामान्य स्थिति
सामान्य स्थिति में, माप दो से अधिक मान लेने वाली वेधशालाओं पर किया जाता है। जब किसी अवलोकन योग्य A में शुद्ध बिंदु स्पेक्ट्रम होता है, तो इसे ईजेनवेक्टरों के ऑर्थोनॉर्मल आधार के रूप में लिखा जा सकता है। अर्थात्, A में वर्णक्रमीय अपघटन है
अवलोकनीय A के मापन से A का आइगेनवैल्यू प्राप्त होता है। प्रणाली के सांख्यिकीय समूह S पर किए गए बार-बार माप से A के आइजेनवैल्यू स्पेक्ट्रम पर संभाव्यता वितरण होता है। यह एक असतत संभाव्यता वितरण है, और इसके द्वारा दिया जाता है
गैर-पूर्णतः सकारात्मक मानचित्र
शाजी और जॉर्ज सुदर्शन ने फिजिकल रिव्यू लेटर्स पेपर में तर्क दिया कि, निकटता से जांच करने पर, विवर्त क्वांटम विकास के अच्छे प्रतिनिधित्व के लिए पूर्ण सकारात्मकता की आवश्यकता नहीं है। उनकी गणना से पता चलता है कि, प्रेक्षित प्रणाली और पर्यावरण के बीच कुछ निश्चित प्रारंभिक सहसंबंधों के साथ प्रारंभ करने पर, प्रणाली तक सीमित मानचित्र आवश्यक रूप से सकारात्मक भी नहीं होता है। चूँकि यह केवल उन अवस्थाओ के लिए सकारात्मक नहीं है जो प्रारंभिक सहसंबंधों के रूप के बारे में धारणा को संतुष्ट नहीं करते हैं। इस प्रकार, वे दिखाते हैं कि क्वांटम विकास की पूरी समझ प्राप्त करने के लिए, गैर-पूरी तरह से सकारात्मक मानचित्रों पर भी विचार किया जाना चाहिए।[4][6][7]
यह भी देखें
संदर्भ
- ↑ Sudarshan, E. C. G.; Mathews, P. M.; Rau, Jayaseetha (1961-02-01). "क्वांटम-मैकेनिकल सिस्टम की स्टोकेस्टिक गतिशीलता". Physical Review. American Physical Society (APS). 121 (3): 920–924. Bibcode:1961PhRv..121..920S. doi:10.1103/physrev.121.920. ISSN 0031-899X.
- ↑ Weedbrook, Christian; Pirandola, Stefano; García-Patrón, Raúl; Cerf, Nicolas J.; Ralph, Timothy C.; et al. (2012-05-01). "गाऊसी क्वांटम जानकारी". Reviews of Modern Physics. 84 (2): 621–669. arXiv:1110.3234. Bibcode:2012RvMP...84..621W. doi:10.1103/revmodphys.84.621. hdl:1721.1/71588. ISSN 0034-6861. S2CID 119250535.
- ↑ Nielsen & Chuang (2010).
- ↑ 4.0 4.1 Pechukas, Philip (1994-08-22). "कम की गई गतिशीलता को पूरी तरह से सकारात्मक होने की आवश्यकता नहीं है". Physical Review Letters. American Physical Society (APS). 73 (8): 1060–1062. Bibcode:1994PhRvL..73.1060P. doi:10.1103/physrevlett.73.1060. ISSN 0031-9007. PMID 10057614.
- ↑ This theorem is proved in Nielsen & Chuang (2010), Theorems 8.1 and 8.3.
- ↑ Shaji, Anil; Sudarshan, E.C.G. (2005). "Who's afraid of not completely positive maps?". Physics Letters A. Elsevier BV. 341 (1–4): 48–54. Bibcode:2005PhLA..341...48S. doi:10.1016/j.physleta.2005.04.029. ISSN 0375-9601.
- ↑ Cuffaro, Michael E.; Myrvold, Wayne C. (2013). "क्वांटम डायनामिकल इवोल्यूशन के उचित लक्षण वर्णन के संबंध में बहस पर". Philosophy of Science. University of Chicago Press. 80 (5): 1125–1136. arXiv:1206.3794. doi:10.1086/673733. ISSN 0031-8248. S2CID 31842197.
- Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information (10th ed.). Cambridge: Cambridge University Press. ISBN 9781107002173. OCLC 665137861.
- Choi, Man-Duen (1975). "Completely positive linear maps on complex matrices". Linear Algebra and Its Applications. Elsevier BV. 10 (3): 285–290. doi:10.1016/0024-3795(75)90075-0. ISSN 0024-3795.
- Sudarshan, E. C. G.; Mathews, P. M.; Rau, Jayaseetha (1961-02-01). "Stochastic Dynamics of Quantum-Mechanical Systems". Physical Review. American Physical Society (APS). 121 (3): 920–924. Bibcode:1961PhRv..121..920S. doi:10.1103/physrev.121.920. ISSN 0031-899X.
- Belavkin, V.P.; Staszewski, P. (1986). "A Radon-Nikodym theorem for completely positive maps". Reports on Mathematical Physics. Elsevier BV. 24 (1): 49–55. Bibcode:1986RpMP...24...49B. doi:10.1016/0034-4877(86)90039-x. ISSN 0034-4877.
- K. Kraus, States, Effects and Operations: Fundamental Notions of Quantum Theory, Springer Verlag 1983
- W. F. Stinespring, Positive Functions on C*-algebras, Proceedings of the American Mathematical Society, 211–216, 1955
- V. Varadarajan, The Geometry of Quantum Mechanics vols 1 and 2, Springer-Verlag 1985