सुपरएलिप्सॉइड: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Family of geometric shapes}} | {{Short description|Family of geometric shapes}} | ||
[[File:Superellipsoid collection.png|right|400px|thumb|घातांक मापदंडों के साथ सुपरएलिप्सॉइड संग्रह, पीओवी-रे का उपयोग करके बनाया गया है। यहाँ, e = 2/r, और n = 2/t (समकक्ष, r = 2/e और t = 2/n) है।<ref>{{cite web |url=http://www.povray.org/documentation/view/3.6.1/285/ |title=POV-Ray: Documentation: 2.4.1.11 Superquadric Ellipsoid}}</ref>]] | [[File:Superellipsoid collection.png|right|400px|thumb|घातांक मापदंडों के साथ सुपरएलिप्सॉइड संग्रह, पीओवी-रे का उपयोग करके बनाया गया है। यहाँ, e = 2/r, और n = 2/t (समकक्ष, r = 2/e और t = 2/n) है।<ref>{{cite web |url=http://www.povray.org/documentation/view/3.6.1/285/ |title=POV-Ray: Documentation: 2.4.1.11 Superquadric Ellipsoid}}</ref>]]अंक शास्त्र में, एक [[Index.php?title=सुपरएलिप्सॉइड|सुपरएलिप्सॉइड]] एक ठोस होता है जिसके क्षैतिज खंड समान वर्ग पैरामीटर के साथ सुपरएलिप्सेज़ (लैम वक्र) होते हैं <math>\epsilon_2</math>, और जिसके केंद्र से हस्तांतरित करने वाले ऊर्ध्वाधर खंड वर्गाकार पैरामीटर के साथ सुपरलिप्स हैं। <math>\epsilon_1</math> यह एक दीर्घवृत्ताकार का सामान्यीकरण है, जो एक विशेष स्थिति है <math>\epsilon_1=\epsilon_2=1</math>.<ref name="barr81" /> | ||
सुपरएलिप्सॉइड्स को [[Index.php?title=कंप्यूटर ग्राफ़िक्स|कंप्यूटर ग्राफ़िक्स]] | सुपरएलिप्सॉइड्स को [[Index.php?title=कंप्यूटर ग्राफ़िक्स|कंप्यूटर ग्राफ़िक्स]] आदि के रूप में एलन एच. बर्र द्वारा लोकप्रिय बनाया गया था।<ref name="barr81">{{Cite journal |last=Barr |date=1981 |title=सुपरक्वाड्रिक्स और कोण-संरक्षण परिवर्तन|url=https://ieeexplore.ieee.org/document/1673799 |journal=IEEE Computer Graphics and Applications |volume=1 |issue=1 |pages=11–23 |doi=10.1109/MCG.1981.1673799 |s2cid=9389947 |issn=1558-1756}}</ref><ref name="barr92">Barr, A.H. (1992), ''Rigid Physically Based Superquadrics''. Chapter III.8 of ''Graphics Gems III'', edited by D. Kirk, pp. 137–159</ref> आधुनिक [[Index.php?title=कंप्यूटर विज़न|कंप्यूटर विज़न]] और [[Index.php?title=रोबोटिक्स|रोबोटिक्स]] साहित्य में, सुपरक्वाड्रिक्स और सुपरएलिप्सॉइड्स का परस्पर उपयोग किया जाता है, चूंकि सुपरएलिप्सॉइड्स सभी सुपरक्वाड्रिक्स के बीच सबसे अधिक प्रतिनिधि और व्यापक रूप से उपयोग की जाने वाली आकृति है।<ref name=":0">{{Cite journal |last1=Ruan |first1=Sipu |last2=Wang |first2=Xiaoli |last3=Chirikjian |first3=Gregory S. |date=2022 |title=बंद-फ़ॉर्म संपर्क स्थान पैरामीटरीकरण का उपयोग करके चिकनी सीमाओं के साथ उत्तल निकायों के संघों के लिए टकराव का पता लगाना|url=https://ieeexplore.ieee.org/document/9829274 |journal=IEEE Robotics and Automation Letters |volume=7 |issue=4 |pages=9485–9492 |doi=10.1109/LRA.2022.3190629 |s2cid=250543506 |issn=2377-3766}}</ref><ref name=":1">{{Cite journal |last1=Paschalidou |first1=Despoina |last2=Van Gool |first2=Luc |last3=Geiger |first3=Andreas |date=2020 |title=Learning Unsupervised Hierarchical Part Decomposition of 3D Objects From a Single RGB Image |url=https://ieeexplore.ieee.org/document/9157374 |journal=2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) |pages=1057–1067 |doi=10.1109/CVPR42600.2020.00114|isbn=978-1-7281-7168-5 |s2cid=214634317 }}</ref> | ||
सुपरएलिप्सॉइड्स में एक समृद्ध आकार शब्दावली होती है, जिसमें क्यूबॉइड्स, सिलेंडर, एलीप्सॉइड्स, ऑक्टाहेड्रा और उनके मध्यवर्ती | सुपरएलिप्सॉइड्स में एक समृद्ध आकार शब्दावली होती है, जिसमें क्यूबॉइड्स, सिलेंडर, एलीप्सॉइड्स, ऑक्टाहेड्रा और उनके मध्यवर्ती सम्मलित हैं।<ref name=":2">{{Cite journal |last1=Liu |first1=Weixiao |last2=Wu |first2=Yuwei |last3=Ruan |first3=Sipu |last4=Chirikjian |first4=Gregory S. |date=2022 |title=Robust and Accurate Superquadric Recovery: a Probabilistic Approach |url=https://ieeexplore.ieee.org/document/9878948 |journal=2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) |pages=2666–2675 |doi=10.1109/CVPR52688.2022.00270|arxiv=2111.14517 |isbn=978-1-6654-6946-3 |s2cid=244715106 }}</ref> यह कंप्यूटर दृष्टि,<ref name=":2" /><ref name=":1" /><ref name=":3">{{Cite journal |last1=Paschalidou |first1=Despoina |last2=Ulusoy |first2=Ali Osman |last3=Geiger |first3=Andreas |date=2019 |title=Superquadrics Revisited: Learning 3D Shape Parsing Beyond Cuboids |url=https://ieeexplore.ieee.org/document/8953499 |journal=2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) |pages=10336–10345 |doi=10.1109/CVPR.2019.01059|arxiv=1904.09970 |isbn=978-1-7281-3293-8 |s2cid=128265641 }}</ref> रोबोटिक्स,<ref name=":0" />और भौतिक अनुकरण में व्यापक रूप से उपयोग किया जाने वाला एक महत्वपूर्ण ज्यामितीय आदिम बन जाता है।<ref name=":4">{{Cite journal |last1=Lu |first1=G. |last2=Third |first2=J. R. |last3=Müller |first3=C. R. |date=2012-08-20 |title=डीईएम सिमुलेशन में सुपर-क्वाड्रिक आकार के कणों के बीच संपर्कों के मूल्यांकन के लिए दो दृष्टिकोणों का महत्वपूर्ण मूल्यांकन|url=https://www.sciencedirect.com/science/article/pii/S0009250912003223 |journal=Chemical Engineering Science |language=en |volume=78 |pages=226–235 |doi=10.1016/j.ces.2012.05.041 |issn=0009-2509}}</ref> सुपरएलिप्सॉइड्स के साथ वस्तुओं और वातावरण का वर्णन करने का मुख्य लाभ इसकी संक्षिप्तता और आकार में अभिव्यक्ति है।<ref name=":2" /> इसके अतिरिक्त, दो सुपरएलिप्सॉइड्स के बीच मिन्कोव्स्की योग की एक बंद-रूप अभिव्यक्ति उपलब्ध है।<ref>{{Cite journal |last1=Ruan |first1=Sipu |last2=Chirikjian |first2=Gregory S. |date=2022-02-01 |title=चिकनी सकारात्मक रूप से घुमावदार सीमाओं के साथ उत्तल निकायों का बंद-रूप मिन्कोव्स्की योग|url=https://www.sciencedirect.com/science/article/pii/S0010448521001445 |journal=Computer-Aided Design |language=en |volume=143 |pages=103133 |doi=10.1016/j.cad.2021.103133 |arxiv=2012.15461 |s2cid=229923980 |issn=0010-4485}}</ref> यह इसे रोबोट पकड़ने, टकराव का पता लगाने और गति योजना के लिए एक वांछनीय ज्यामितीय आदिम बनाता है।<ref name=":0" /> सुपरक्वाड्रिक दृश्यकरण, प्रतिचयन और पुन: प्राप्ति के लिए उपयोगी उपकरण और एल्गोरिदम यहां एक [https://github.com/bmlklwx/EMS-superquadric_fitting++ओपन-सोर्स ओपन-सोर्स] हैं। | ||
== विशेष स्थिति == | == विशेष स्थिति == |
Revision as of 12:54, 16 July 2023
अंक शास्त्र में, एक सुपरएलिप्सॉइड एक ठोस होता है जिसके क्षैतिज खंड समान वर्ग पैरामीटर के साथ सुपरएलिप्सेज़ (लैम वक्र) होते हैं , और जिसके केंद्र से हस्तांतरित करने वाले ऊर्ध्वाधर खंड वर्गाकार पैरामीटर के साथ सुपरलिप्स हैं। यह एक दीर्घवृत्ताकार का सामान्यीकरण है, जो एक विशेष स्थिति है .[2]
सुपरएलिप्सॉइड्स को कंप्यूटर ग्राफ़िक्स आदि के रूप में एलन एच. बर्र द्वारा लोकप्रिय बनाया गया था।[2][3] आधुनिक कंप्यूटर विज़न और रोबोटिक्स साहित्य में, सुपरक्वाड्रिक्स और सुपरएलिप्सॉइड्स का परस्पर उपयोग किया जाता है, चूंकि सुपरएलिप्सॉइड्स सभी सुपरक्वाड्रिक्स के बीच सबसे अधिक प्रतिनिधि और व्यापक रूप से उपयोग की जाने वाली आकृति है।[4][5]
सुपरएलिप्सॉइड्स में एक समृद्ध आकार शब्दावली होती है, जिसमें क्यूबॉइड्स, सिलेंडर, एलीप्सॉइड्स, ऑक्टाहेड्रा और उनके मध्यवर्ती सम्मलित हैं।[6] यह कंप्यूटर दृष्टि,[6][5][7] रोबोटिक्स,[4]और भौतिक अनुकरण में व्यापक रूप से उपयोग किया जाने वाला एक महत्वपूर्ण ज्यामितीय आदिम बन जाता है।[8] सुपरएलिप्सॉइड्स के साथ वस्तुओं और वातावरण का वर्णन करने का मुख्य लाभ इसकी संक्षिप्तता और आकार में अभिव्यक्ति है।[6] इसके अतिरिक्त, दो सुपरएलिप्सॉइड्स के बीच मिन्कोव्स्की योग की एक बंद-रूप अभिव्यक्ति उपलब्ध है।[9] यह इसे रोबोट पकड़ने, टकराव का पता लगाने और गति योजना के लिए एक वांछनीय ज्यामितीय आदिम बनाता है।[4] सुपरक्वाड्रिक दृश्यकरण, प्रतिचयन और पुन: प्राप्ति के लिए उपयोगी उपकरण और एल्गोरिदम यहां एक ओपन-सोर्स हैं।
विशेष स्थिति
मूल्यों का सही सेट दिए जाने पर मुट्ठी भर उल्लेखनीय गणितीय आंकड़े सुपरएलिप्सोइड के विशेष मामलों के रूप में सामने आ सकते हैं, जिन्हें उपरोक्त ग्राफ़िक में दर्शाया गया है:
- सिलेंडर
- वृत्त
- स्टाइनमेट्ज़ ठोस
- बिकोन
- नियमित अष्टफलक
- घन, एक सीमित मामले के रूप में जहां घातांक अनंत की ओर प्रवृत्त होते हैं
पीट हेन के सुपरएग्स भी सुपरएलिप्सॉइड्स के विशेष मामले हैं।
सूत्र
मूल (सामान्यीकृत) सुपरएलिप्सॉइड
मूल सुपरलिप्सॉइड को अंतर्निहित फ़ंक्शन द्वारा परिभाषित किया गया है
पैरामीटर और सकारात्मक वास्तविक संख्याएँ हैं जो आकृति की वर्गाकारता को नियंत्रित करती हैं।
सुपरएलिप्सॉइड की सतह को समीकरण द्वारा परिभाषित किया गया है:
किसी दिए गए बिंदु के लिए , बिंदु सुपरएलिप्सॉइड के अंदर स्थित है , और बाहर यदि है।
सुपरएलिप्सॉइड के अक्षांश का कोई भी समानांतर (-1 और +1 के बीच किसी भी स्थिरांक z पर एक क्षैतिज खंड) एक सुपरएलिप्से|घातांक वाला लैम वक्र है , द्वारा स्केल किया गया , जो है।
देशांतर का कोई भी मेरिडियन (मूल के माध्यम से किसी भी ऊर्ध्वाधर विमान द्वारा एक खंड) घातांक के साथ एक लैम वक्र है , एक कारक w द्वारा क्षैतिज रूप से फैला हुआ है जो सेक्शनिंग विमान पर निर्भर करता है। अर्थात्, यदि और , किसी प्रदत्त के लिए , तो अनुभाग है
जहाँ
विशेषकर, यदि 1 है, क्षैतिज क्रॉस-सेक्शन वृत्त हैं, और क्षैतिज खिंचाव है सभी तलों के लिए ऊर्ध्वाधर खंड 1 है। उस स्थिति में, सुपरएलिप्सॉइड क्रांति का एक ठोस है, जो घातांक के साथ लैमे वक्र को घुमाकर प्राप्त किया जाता है जो ऊर्ध्वाधर अक्ष के चारों ओर है।
सुपरएलिप्सॉइड
उपरोक्त मूल आकृति प्रत्येक समन्वय अक्ष के साथ -1 से +1 तक फैली हुई है। सामान्य सुपरलिप्सॉइड को कारकों द्वारा प्रत्येक अक्ष के साथ मूल आकार को स्केल करके प्राप्त किया जाता है , , , परिणामी ठोस का अर्ध-व्यास अंतर्निहित कार्य है। [2]
- .
इसी प्रकार, सुपरएलिप्सॉइड की सतह को समीकरण द्वारा परिभाषित किया गया है
किसी दिए गए बिंदु के लिए , बिंदु सुपरएलिप्सॉइड के अंदर स्थित है , और बाहर है।
इसलिए, अंतर्निहित फ़ंक्शन को सुपरलिप्सॉइड का अंदर-बाहर फ़ंक्शन भी कहा जाता है।[2]
सुपरएलिप्सॉइड में सतह मापदंडों के संदर्भ में एक पैरामीट्रिक प्रतिनिधित्व होता है , .[3]
सामान्य रूप से प्रस्तुत सुपरएलिप्सॉइड
कंप्यूटर विज़न और रोबोटिक अनुप्रयोगों में, 3डी यूक्लिडियन अंतरिक्ष में एक सामान्य मुद्रा वाला एक सुपरएलिप्सॉइड आमतौर पर अधिक रुचि रखता है।[6][5]
सुपरएलिप्सॉइड फ्रेम के दिए गए यूक्लिडियन परिवर्तन के लिए विश्व फ्रेम के सापेक्ष, विश्व फ्रेम को परिभाषित एक सामान्य रूप से प्रस्तुत सुपरलिप्सोइड सतह का अंतर्निहित कार्य है[6]
जहाँ परिवर्तन ऑपरेशन है जो बिंदु को मैप करता है दुनिया के फ्रेम में कैनोनिकल सुपरलिप्सॉइड फ्रेम में से एक है।
सुपरएलिप्सॉइड का आयतन
सुपरएल्लिप्सॉइड सतह से घिरा आयतन बीटा फ़ंक्शन के संदर्भ में व्यक्त किया जा सकता है ,[10]
या गामा फ़ंक्शन के समकक्ष , है।
डेटा से पुनर्प्राप्ति
कच्चे डेटा (जैसे, पॉइंट क्लाउड, मेश, इमेज और वोक्सल्स) से सुपरएलिप्सॉइड (या सुपरक्वाड्रिक्स) प्रतिनिधित्व को पुनर्प्राप्त करना कंप्यूटर विज़न में एक महत्वपूर्ण कार्य है,[11][7][6][5] रोबोटिक्स,[4]और भौतिक अनुकरण है।[8]
पारंपरिक कम्प्यूटेशनल विधियाँ समस्या को न्यूनतम-वर्ग समस्या के रूप में प्रस्तुत करती हैं।[11] लक्ष्य सुपरएलिप्सॉइड मापदंडों के इष्टतम सेट का पता लगाना है जो एक वस्तुनिष्ठ फ़ंक्शन को छोटा करता है। आकार मापदंडों के अलावा, विश्व समन्वय के संबंध में सुपरएलिप्सॉइड फ्रेम की मुद्रा है।
आमतौर पर उपयोग किए जाने वाले दो वस्तुनिष्ठ कार्य हैं।[12] पहले वाले का निर्माण सीधे अंतर्निहित कार्य के आधार पर किया गया है।[11]
ऑब्जेक्टिव फ़ंक्शन का न्यूनतमकरण सभी इनपुट बिंदुओं के जितना संभव हो सके एक पुनर्प्राप्त सुपरलिप्सॉइड प्रदान करता है इस बीच, अदिश मान सुपरएलिप्सॉइड के आयतन के सकारात्मक रूप से आनुपातिक है, और इस प्रकार आयतन को कम करने का भी प्रभाव पड़ता है।
अन्य उद्देश्य फ़ंक्शन बिंदुओं और सुपरलिप्सॉइड के बीच रेडियल दूरी को कम करने का प्रयास करता है।[13][12]
, जहाँ
ईएमएस नामक एक संभाव्य विधि को शोर और बाहरी कारकों से निपटने के लिए डिज़ाइन किया गया है।[6] इस पद्धति में, सुपरएलिप्सॉइड पुनर्प्राप्ति को अधिकतम संभावना आकलन विषय के रूप में पुन: तैयार किया गया है, और सुपरएलिप्सॉइड्स की ज्यामितीय समानता का उपयोग करके स्थानीय मिनीमा से बचने के लिए एक अनुकूलन विधि प्रस्तावित है।
एक साथ कई सुपरएलिप्सॉइड्स को पुनर्प्राप्त करने के लिए गैरपैरामीट्रिक बायेसियन तकनीकों के साथ मॉडलिंग द्वारा विधि को आगे बढ़ाया गया है।[14]
संदर्भ
- ↑ "POV-Ray: Documentation: 2.4.1.11 Superquadric Ellipsoid".
- ↑ 2.0 2.1 2.2 2.3 Barr (1981). "सुपरक्वाड्रिक्स और कोण-संरक्षण परिवर्तन". IEEE Computer Graphics and Applications. 1 (1): 11–23. doi:10.1109/MCG.1981.1673799. ISSN 1558-1756. S2CID 9389947.
- ↑ 3.0 3.1 Barr, A.H. (1992), Rigid Physically Based Superquadrics. Chapter III.8 of Graphics Gems III, edited by D. Kirk, pp. 137–159
- ↑ 4.0 4.1 4.2 4.3 Ruan, Sipu; Wang, Xiaoli; Chirikjian, Gregory S. (2022). "बंद-फ़ॉर्म संपर्क स्थान पैरामीटरीकरण का उपयोग करके चिकनी सीमाओं के साथ उत्तल निकायों के संघों के लिए टकराव का पता लगाना". IEEE Robotics and Automation Letters. 7 (4): 9485–9492. doi:10.1109/LRA.2022.3190629. ISSN 2377-3766. S2CID 250543506.
- ↑ 5.0 5.1 5.2 5.3 Paschalidou, Despoina; Van Gool, Luc; Geiger, Andreas (2020). "Learning Unsupervised Hierarchical Part Decomposition of 3D Objects From a Single RGB Image". 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR): 1057–1067. doi:10.1109/CVPR42600.2020.00114. ISBN 978-1-7281-7168-5. S2CID 214634317.
- ↑ 6.0 6.1 6.2 6.3 6.4 6.5 6.6 Liu, Weixiao; Wu, Yuwei; Ruan, Sipu; Chirikjian, Gregory S. (2022). "Robust and Accurate Superquadric Recovery: a Probabilistic Approach". 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR): 2666–2675. arXiv:2111.14517. doi:10.1109/CVPR52688.2022.00270. ISBN 978-1-6654-6946-3. S2CID 244715106.
- ↑ 7.0 7.1 Paschalidou, Despoina; Ulusoy, Ali Osman; Geiger, Andreas (2019). "Superquadrics Revisited: Learning 3D Shape Parsing Beyond Cuboids". 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR): 10336–10345. arXiv:1904.09970. doi:10.1109/CVPR.2019.01059. ISBN 978-1-7281-3293-8. S2CID 128265641.
- ↑ 8.0 8.1 Lu, G.; Third, J. R.; Müller, C. R. (2012-08-20). "डीईएम सिमुलेशन में सुपर-क्वाड्रिक आकार के कणों के बीच संपर्कों के मूल्यांकन के लिए दो दृष्टिकोणों का महत्वपूर्ण मूल्यांकन". Chemical Engineering Science (in English). 78: 226–235. doi:10.1016/j.ces.2012.05.041. ISSN 0009-2509.
- ↑ Ruan, Sipu; Chirikjian, Gregory S. (2022-02-01). "चिकनी सकारात्मक रूप से घुमावदार सीमाओं के साथ उत्तल निकायों का बंद-रूप मिन्कोव्स्की योग". Computer-Aided Design (in English). 143: 103133. arXiv:2012.15461. doi:10.1016/j.cad.2021.103133. ISSN 0010-4485. S2CID 229923980.
- ↑ "सुपरक्वाड्रिक्स और उनके ज्यामितीय गुण" (PDF).
- ↑ 11.0 11.1 11.2 Bajcsy, R.; Solina, F. (1987). "त्रि-आयामी वस्तु प्रतिनिधित्व पर दोबारा गौर किया गया". Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV): 231–240.
- ↑ 12.0 12.1 Zhang, Yan (2003-10-01). "सुपरक्वाड्रिक फिटिंग वस्तुनिष्ठ कार्यों की प्रायोगिक तुलना". Pattern Recognition Letters (in English). 24 (14): 2185–2193. Bibcode:2003PaReL..24.2185Z. doi:10.1016/S0167-8655(02)00400-2. ISSN 0167-8655.
- ↑ Gross, A.D.; Boult, T.E. (1988). "पैरामीट्रिक ठोस पुनर्प्राप्ति के लिए फ़िट उपायों की त्रुटि". [1988 Proceedings] Second International Conference on Computer Vision: 690–694. doi:10.1109/CCV.1988.590052. ISBN 0-8186-0883-8. S2CID 43541446.
- ↑ Wu, Yuwei; Liu, Weixiao; Ruan, Sipu; Chirikjian, Gregory S. (2022). Avidan, Shai; Brostow, Gabriel; Cissé, Moustapha; Farinella, Giovanni Maria; Hassner, Tal (eds.). "नॉनपैरामीट्रिक बायेसियन अनुमान के माध्यम से आदिम-आधारित आकार अमूर्तन". Computer Vision – ECCV 2022. Lecture Notes in Computer Science (in English). Cham: Springer Nature Switzerland. 13687: 479–495. arXiv:2203.14714. doi:10.1007/978-3-031-19812-0_28. ISBN 978-3-031-19812-0.
ग्रन्थसूची
- Barr, "Superquadrics and Angle-Preserving Transformations," in IEEE Computer Graphics and Applications, vol. 1, no. 1, pp. 11-23, Jan. 1981, doi: 10.1109/MCG.1981.1673799.
- Aleš Jaklič, Aleš Leonardis, Franc Solina, Segmentation and Recovery of Superquadrics. Kluwer Academic Publishers, Dordrecht, 2000.
- Aleš Jaklič, Franc Solina (2003) Moments of Superellipsoids and their Application to Range Image Registration. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, 33 (4). pp. 648–657
- W. Liu, Y. Wu, S. Ruan and G. S. Chirikjian, "Robust and Accurate Superquadric Recovery: a Probabilistic Approach," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 2666-2675, doi: 10.1109/CVPR52688.2022.00270.