खोवानोव सजातीय: Difference between revisions

From Vigyanwiki
No edit summary
Line 145: Line 145:
{{Knot theory}}
{{Knot theory}}


{{DEFAULTSORT:Khovanov Homology}}[[Category: समरूपता सिद्धांत]] [[Category: गाँठ अपरिवर्तनीय]]
{{DEFAULTSORT:Khovanov Homology}}


 
[[Category:Collapse templates|Khovanov Homology]]
 
[[Category:Created On 08/07/2023|Khovanov Homology]]
[[Category: Machine Translated Page]]
[[Category:Machine Translated Page|Khovanov Homology]]
[[Category:Created On 08/07/2023]]
[[Category:Navigational boxes| ]]
[[Category:Vigyan Ready]]
[[Category:Navigational boxes without horizontal lists|Khovanov Homology]]
[[Category:Pages with script errors|Khovanov Homology]]
[[Category:Sidebars with styles needing conversion|Khovanov Homology]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready|Khovanov Homology]]
[[Category:Templates generating microformats|Khovanov Homology]]
[[Category:Templates that are not mobile friendly|Khovanov Homology]]
[[Category:Templates using TemplateData|Khovanov Homology]]
[[Category:Wikipedia metatemplates|Khovanov Homology]]
[[Category:गाँठ अपरिवर्तनीय|Khovanov Homology]]
[[Category:समरूपता सिद्धांत|Khovanov Homology]]

Revision as of 10:40, 27 July 2023

गणित में, खोवानोव सजातीय एक उन्मुख निश्चर लिंक है जो कोचेन सम्मिश्र के सह-समरूपता के रूप में उत्पन्न होता है। इसे जोन्स बहुपद का वर्गीकरण माना जा सकता है।

इसे 1990 के दशक के अंत में मिखाइल खोवानोव द्वारा विकसित किया गया था, कैलिफोर्निया विश्वविद्यालय, डेविस और अब कोलंबिया विश्वविद्यालय में किया गया है।

अवलोकन

लिंक L का प्रतिनिधित्व करने वाले किसी भी लिंक आरेख D के लिए, हम खोवानोव ब्रैकेट [D], क्रमिक सदिश समष्टि का एक कोचेन सम्मिश्र निर्दिष्ट करते हैं। यह जोन्स बहुपद के निर्माण में कॉफ़मैन ब्रैकेट का एनालॉग है। इसके बाद, हम एक नया कोचेन सम्मिश्र C(D) प्राप्त करने के लिए डिग्री शिफ्ट (श्रेणीबद्ध सदिश समष्टि में) और ऊंचाई शिफ्ट (कोचेन सम्मिश्र में) की एक श्रृंखला द्वारा [D] को सामान्य करते हैं। इस कोचेन सम्मिश्र की समरूपता L का एक अपरिवर्तनीय (गणित) रूप है, और इसकी वर्गीकृत यूलर विशेषता L का जोन्स बहुपद है।

परिभाषा

यह परिभाषा ड्रॉर बार-नटन के 2002 के दस्तावेज़ में दी गई औपचारिकता का अनुकरण करती है।

मान लीजिए कि {l} श्रेणीबद्ध सदिश समष्टि पर डिग्री शिफ्ट संचालन को दर्शाता है - अर्थात, आयाम m में सजातीय घटक को आयाम m + l तक स्थानांतरित करता है।

इसी तरह, मान लीजिए कि [s] कोचेन सम्मिश्र पर ऊंचाई शिफ्ट संचालन को दर्शाता है - अर्थात, सम्मिश्र में rth सदिश समष्टि या मॉड्यूल (गणित) को (r+s) वें स्थान पर स्थानांतरित कर दिया जाता है, जिसके अनुसार सभी अंतर मानचित्रों को फलस्वरूप स्थानांतरित किया जाता है।

मान लीजिए V श्रेणीबद्ध सदिश समष्टि है जिसमें डिग्री 1 का एक जनरेटर q और डिग्री −1 का एक जनरेटर q−1 है।

अब लिंक L का प्रतिनिधित्व करने वाला एक स्वेच्छाचारी आरेख D है। 'खोवानोव ब्रैकेट' के लिए स्वयंसिद्ध कथन इस प्रकार हैं:

  1. [ø] = 0 → Z → 0, जहां ø रिक्त लिंक को दर्शाता है।
  2. [O D] = V[D], जहां O एक असंबद्ध तुच्छ घटक को दर्शाता है।
  3. [D] = F(0 → [D0][D1]{1} → 0)

इनमें से तीसरे में, F 'फ़्लैटनिंग' संचालन को दर्शाता है, जहां विकर्णों के साथ सीधे योग लेकर दोहरे सम्मिश्र से एक एकल सम्मिश्र बनाया जाता है। इसके अलावा, D0, D में चयन किये गए क्रॉसिंग के `0-स्मूथनिंग' को दर्शाता है, और D1 `1-स्मूथनिंग' को दर्शाता है, जो कॉफ़मैन ब्रैकेट के स्केन संबंध के अनुरूप है।

इसके बाद, हम 'सामान्यीकृत' सम्मिश्र C(D) = [D][−n]{n+ − 2n} का निर्माण करते हैं, जहां nD के लिए चयन किए गए आरेख में बाएं हाथ से क्रॉसिंग की संख्या को दर्शाता है, और n+ दाएं हाथ से क्रॉसिंग की संख्या को दर्शाता है।

L की खोवानोव समरूपता को इस सम्मिश्र C(D) के सहसमरूपता H(L) के रूप में परिभाषित किया गया है। यह पता चला है कि खोवानोव सजातीय वास्तव में L का एक अपरिवर्तनीय है, और आरेख की पसंद पर निर्भर नहीं करता है। H(L) की श्रेणीबद्ध यूलर विशेषता L का जोन्स बहुपद बन जाता है। हालाँकि, H(L) में जोन्स बहुपद की तुलना में L के बारे में अधिक जानकारी सम्मिलित है, लेकिन सटीक विवरण अभी तक पूरी तरह से समझ में नहीं आया है।

2006 में ड्रोर बार-नटन ने किसी भी नॉट के लिए खोवानोव सजातीय (या श्रेणी) की गणना करने के लिए एक कंप्यूटर क्रमादेश विकसित करता है।[1]

संबंधित सिद्धांत

खोवानोव की समरूपता के सबसे रोचक गुण में से एक यह है कि इसके सटीक अनुक्रम औपचारिक रूप से 3 बहुरूपता के फ़्लोर समरूपता में उत्पन्न होने वाले अनुक्रमों के समान हैं। इसके अलावा, इसका उपयोग गेज सिद्धांत और उसके समकक्षों का उपयोग करके पहली बार प्रदर्शित परिणाम और प्रमाण तैयार करने के लिए किया गया है: जैकब रासमुसेन का पीटर क्रोनहाइमर और टॉमाज़ म्रोवका के प्रमेय का नया प्रमाण, जिसे पहले मिल्नोर अनुमान (टोपोलॉजी) के रूप में जाना जाता था (नीचे देखें)। पीटर ओज़स्वथ और ज़ोल्टन स्ज़ाबो (डॉवलिन 2018) की नॉट फ़्लोर सजातीय के साथ खोवानोव सजातीय से संबंधित एक वर्णक्रमीय अनुक्रम है।[2] इस वर्णक्रमीय अनुक्रम ने दो सिद्धांतों (डनफील्ड एट अल. 2005) के मध्य संबंधों पर पहले के अनुमान को निश्चित किया है। एक अन्य वर्णक्रमीय अनुक्रम (ओज़स्वथ-स्ज़ाबो 2005) खोवानोव समरूपता के एक प्रकार को एक गाँठ के साथ शाखित दोहरे आवरण के हीगार्ड फ़्लोर समरूपता से जोड़ता है। एक तिहाई (ब्लूम 2009) शाखित दोहरे आवरण के एकध्रुव फ़्लोर सजातीय के एक प्रकार में परिवर्तित होता है। 2010 में क्रोनहाइमर और म्रोवका ने[3] अपने इंस्टेंटन नॉट फ़्लोर सजातीय समूह से प्रतिस्पर्शी एक वर्णक्रमीय अनुक्रम का प्रदर्शन किया और इसका उपयोग यह दिखाने के लिए किया कि खोवानोव सजातीय (इंस्टेंटन नॉट फ़्लोर सजातीय की तरह) अनकॉट का पता लगाता है।

खोवानोव सजातीय लाई बीजगणित sl2 के प्रतिनिधित्व सिद्धांत से संबंधित है। मिखाइल खोवानोव और लेव रोज़ान्स्की ने तब से सभी n के लिए sln से संबंधित समरूपता सिद्धांतों को परिभाषित किया है। 2003 में, कैथरीन स्ट्रॉपेल ने खोवानोव सजातीय को टेंगल्स के एक निश्चन (रेशेतिखिन-तुराएव निश्चन का एक वर्गीकृत संस्करण) तक विस्तारित किया, जो सभी n के लिए sln को सामान्यीकृत करता है। पॉल सीडेल और इवान स्मिथ ने लैग्रेंजियन प्रतिच्छेदन फ़्लोर सजातीय का उपयोग करके एक एकल वर्गीकृत नॉट सजातीय सिद्धांत का निर्माण किया है, जिसे वे खोवानोव सजातीय के एकल वर्गीकृत संस्करण के लिए समरूपी होने का अनुमान लगाते हैं। सिप्रियन मनोलेस्कु ने तब से उनके निर्माण को सरल बना दिया है और दिखाया है कि सीडेल-स्मिथ निश्चर के अपने संस्करण के अंतर्निहित कोचेन सम्मिश्र से जोन्स बहुपद को कैसे पुनर्प्राप्त किया हैं।

लिंक (नॉट) बहुपदों से संबंध

2006 में गणितज्ञों की अंतर्राष्ट्रीय कांग्रेस में मिखाइल खोवानोव ने खोवानोव समरूपता के दृष्टिकोण से नॉट बहुपदों के संबंध के लिए निम्नलिखित स्पष्टीकरण प्रदान किया है। तीन लिंक और के लिए स्केन संबंध को इस प्रकार वर्णित किया गया है।

को प्रतिस्थापित करने से एक लिंक बहुपद अपरिवर्तनीय बनता है, जिसे सामान्यीकृत किया जाता है।

के लिए बहुपद की व्याख्या क्वांटम समूह और के प्रतिनिधित्व सिद्धांत के माध्यम से क्वांटम लाई सुपरबीजगणित के माध्यम से किया जाता है।

  • अलेक्जेंडर बहुपद एक बिगग्रेडेड नॉट सजातीय सिद्धांत की यूलर विशेषता है।
  • तुच्छ है।
  • जोन्स बहुपद एक बिगग्रेडेड लिंक सजातीय सिद्धांत की यूलर विशेषता है।
  • संपूर्ण होमफ्लाई-पीटी बहुपद एक त्रिगुणित श्रेणीबद्ध लिंक सजातीय सिद्धांत की यूलर विशेषता है।

अनुप्रयोग

खोवानोव सजातीय का पहला अनुप्रयोग जैकब रासमुसेन द्वारा प्रदान किया गया था, जिन्होंने खोवानोव सजातीय का उपयोग करके s-निश्चर (गणित) को परिभाषित किया था। एक नॉट का यह पूर्णांक मूल्यवान अपरिवर्तनीय स्लाइस जीनस पर एक श्रेणी देता है, और मिल्नोर अनुमान (टोपोलॉजी) को सिद्ध करने के लिए पर्याप्त करता है।

2010 में, क्रोनहाइमर और म्रोवका ने सिद्ध किया कि खोवानोव सजातीय अनकॉट का पता लगाता है। वर्गीकृत सिद्धांत में गैर-वर्गीकृत सिद्धांत की तुलना में अधिक जानकारी होती है। हालाँकि खोवानोव समरूपता अनकनॉट का पता लगाता है, लेकिन यह अभी तक ज्ञात नहीं है कि जोन्स बहुपद करता है या नहीं करता है।

टिप्पणियाँ

  1. New Scientist 18 Oct 2008
  2. Dowlin, Nathan (2018-11-19). "खोवानोव होमोलॉजी से नॉट फ़्लोर होमोलॉजी तक एक वर्णक्रमीय अनुक्रम". arXiv:1811.07848 [math.GT].
  3. Kronheimer, Peter B.; Mrowka, Tomasz (2011). "खोवानोव होमोलॉजी एक अननॉट-डिटेक्टर है।". Publ. Math. Inst. Hautes Études Sci. 113: 97–208. arXiv:1005.4346. doi:10.1007/s10240-010-0030-y. S2CID 119586228.

संदर्भ

बाहरी संबंध