व्युत्क्रम अनिहितार्थ: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 28: Line 28:
* <math display="inline">p \not\subset q</math>, जो विपरीत निहितार्थ <math>\subset</math> को जोड़ता है, एक स्ट्रोक ({{math|size=100%|/}}) से नकार जाता है।
* <math display="inline">p \not\subset q</math>, जो विपरीत निहितार्थ <math>\subset</math> को जोड़ता है, एक स्ट्रोक ({{math|size=100%|/}}) से नकार जाता है।
* <math display="inline">p \tilde{\leftarrow} q</math>, जो व्युत्क्रम निहितार्थ के बाएँ तीर (<math display="inline">\leftarrow</math>) को निषेध के टिल्डे (<math display="inline">\sim</math>) के साथ जोड़ता है।
* <math display="inline">p \tilde{\leftarrow} q</math>, जो व्युत्क्रम निहितार्थ के बाएँ तीर (<math display="inline">\leftarrow</math>) को निषेध के टिल्डे (<math display="inline">\sim</math>) के साथ जोड़ता है।
* ''एमपीक्यू'', बोचेंस्की संकेतन में
* ''एमपीक्यू'', बोचेंस्की संकेतन में  


==गुण==
==गुण==


झूठा-संरक्षण: वह व्याख्या जिसके तहत सभी चरों को 'झूठा' का सत्य मान दिया जाता है, विपरीत गैर-निहितार्थ के परिणामस्वरूप 'झूठा' का सत्य मान उत्पन्न करता है
'''असत्य-संरक्षण''': वह व्याख्या जिसके तहत सभी चरों को 'असत्य' का सत्य मान दिया जाता है, विपरीत गैर-निहितार्थ के परिणामस्वरूप 'असत्य' का सत्य मान उत्पन्न करता है


==प्राकृतिक भाषा==
==प्राकृतिक भाषा==
Line 40: Line 40:
उदाहरण,
उदाहरण,


अगर बारिश होती है (पी) तो मैं भीग जाता हूं (क्यू), सिर्फ इसलिए कि मैं गीला हूं (क्यू) इसका मतलब यह नहीं है कि बारिश हो रही है, असल में मैं अपने कपड़ों में सह-शिक्षा कर्मचारियों के साथ एक पूल पार्टी में गया था (~पी) ) और यही कारण है कि मैं इस राज्य (क्यू) में इस व्याख्यान की सुविधा प्रदान कर रहा हूं।
अगर वर्षा (P) होती है तो मैं भीग (Q) जाता हूं, सिर्फ इसलिए कि मैं गीला (Q) हूं इसका मतलब यह नहीं है कि बारिश हो रही है, असल में मैं अपने कपड़ों (~P) में सह-शिक्षा कर्मचारियों के साथ एक पूल पार्टी में गया था और यही कारण है कि मैं इस स्थिति (Q) में इस व्याख्यान की सुविधा प्रदान कर रहा हूं।


===अलंकारिक===
===अलंकारिक===
Line 50: Line 50:
==बूलियन बीजगणित==
==बूलियन बीजगणित==
<div आईडी= परिभाषा >
<div आईडी= परिभाषा >
एक सामान्य [[बूलियन बीजगणित (संरचना)]] में व्युत्क्रम गैर-निहितार्थ को इस प्रकार परिभाषित किया गया है <math display="inline">q \nleftarrow p=q'p</math>.
एक सामान्य [[बूलियन बीजगणित (संरचना)|बूलियन बीजगणित]] में व्युत्क्रम गैर-निहितार्थ को <math display="inline">q \nleftarrow p=q'p</math> इस प्रकार परिभाषित किया गया है।


<div आईडी= दो तत्व >
<div आईडी= दो तत्व >

Revision as of 18:34, 23 July 2023

का वेन आरेख
(लाल क्षेत्र सत्य है)

तर्क में, व्युत्क्रम अनिहितार्थ[1] एक तार्किक संयोजक है जो विपरीत निहितार्थ का निषेध है (समकक्ष रूप से, निहितार्थ के व्युत्क्रम का निषेध)।

परिभाषा

विपरीत गैर-निहितार्थ को , या नोट किया गया है, और यह तार्किक रूप से और इसके बराबर है।

ट्रुथ टेबल

की ट्रुथ टेबल है।[2]

True True False
True False False
False True True
False False False


नोटेशन

उलटा अनिहितार्थ नोट किया गया है, जो व्युत्क्रम निहितार्थ () से बायां तीर है, जिसे एक स्ट्रोक (/) से नकार दिया जाता है।

विकल्पों में सम्मिलित हैं

  • , जो विपरीत निहितार्थ को जोड़ता है, एक स्ट्रोक (/) से नकार जाता है।
  • , जो व्युत्क्रम निहितार्थ के बाएँ तीर () को निषेध के टिल्डे () के साथ जोड़ता है।
  • एमपीक्यू, बोचेंस्की संकेतन में

गुण

असत्य-संरक्षण: वह व्याख्या जिसके तहत सभी चरों को 'असत्य' का सत्य मान दिया जाता है, विपरीत गैर-निहितार्थ के परिणामस्वरूप 'असत्य' का सत्य मान उत्पन्न करता है

प्राकृतिक भाषा

व्याकरणिक

उदाहरण,

अगर वर्षा (P) होती है तो मैं भीग (Q) जाता हूं, सिर्फ इसलिए कि मैं गीला (Q) हूं इसका मतलब यह नहीं है कि बारिश हो रही है, असल में मैं अपने कपड़ों (~P) में सह-शिक्षा कर्मचारियों के साथ एक पूल पार्टी में गया था और यही कारण है कि मैं इस स्थिति (Q) में इस व्याख्यान की सुविधा प्रदान कर रहा हूं।

अलंकारिक

Q का अर्थ P नहीं है।

बोलचाल

बूलियन बीजगणित

एक सामान्य बूलियन बीजगणित में व्युत्क्रम गैर-निहितार्थ को इस प्रकार परिभाषित किया गया है।

2-तत्व बूलियन बीजगणित का उदाहरण: 2 तत्व {0,1} जिसमें 0 शून्य और 1 एकता तत्व, ऑपरेटर हैं पूरक ऑपरेटर के रूप में, जॉइन ऑपरेटर के रूप में और मीट ऑपरेटर के रूप में, प्रस्तावात्मक तर्क के बूलियन बीजगणित का निर्माण करें।

1 0
x 0 1
और
y
1 1 1
0 0 1
0 1 x
और
y
1 0 1
0 0 0
0 1 x
फिर साधन
y
1 0 0
0 0 1
0 1 x
(नकार) (समावेशी या) (और) (विपरीत गैर-निरूपण)

4-तत्व बूलियन बीजगणित का उदाहरण: 6 के 4 विभाजक {1,2,3,6} जिनमें 1 शून्य और 6 एकता तत्व, संचालक हैं (6 का कोडिवाइजर) पूरक ऑपरेटर के रूप में, (न्यूनतम समापवर्त्य) जॉइन ऑपरेटर के रूप में और (सबसे बड़ा सामान्य भाजक) मीट ऑपरेटर के रूप में, एक बूलियन बीजगणित बनाएं।

6 3 2 1
x 1 2 3 6
और
y
6 6 6 6 6
3 3 6 3 6
2 2 2 6 6
1 1 2 3 6
1 2 3 6 x
और
y
6 1 2 3 6
3 1 1 3 3
2 1 2 1 2
1 1 1 1 1
1 2 3 6 x
फिर साधन
y
6 1 1 1 1
3 1 2 1 2
2 1 1 3 3
1 1 2 3 6
1 2 3 6 x
(कोडिवाइजर 6) (न्यूनतम समापवर्त्य) (सबसे बड़ा सामान्य भाजक) (x का सबसे बड़ा भाजक y के साथ सहअभाज्य है)

गुण

असंगत

अगर और केवल अगर #NonAssociative|#s5 (दो-तत्व बूलियन बीजगणित में बाद की स्थिति को कम कर दिया गया है या ). इसलिए एक गैर-तुच्छ बूलियन बीजगणित में कन्वर्स नॉनइम्प्लिकेशन नॉनसोशिएटिव है।

स्पष्टतः, यह साहचर्य है यदि और केवल यदि .

नॉन-कम्यूटेटिव

  • अगर और केवल अगर #नॉनकम्यूटेटिव|#s6. इसलिए कन्वर्स नॉनइम्प्लीकेशन नॉनकम्यूटेटिव है।

तटस्थ और अवशोषक तत्व

  • 0 एक वाम तटस्थ तत्व है () और एक सही अवशोषित तत्व ().
  • , , और .
  • निहितार्थ व्युत्क्रम अनिहितीकरण का द्वैत है #दोहरी|#s7.

Converse Nonimplication is noncommutative
Step Make use of Resulting in
s.1 Definition
s.2 Definition
s.3 s.1 s.2
s.4
s.5 s.4.right - expand Unit element
s.6 s.5.right - evaluate expression
s.7 s.4.left = s.6.right
s.8
s.9 s.8 - regroup common factors
s.10 s.9 - join of complements equals unity
s.11 s.10.right - evaluate expression
s.12 s.8 s.11
s.13
s.14 s.12 s.13
s.15 s.3 s.14

Implication is the dual of Converse Nonimplication
Step Make use of Resulting in
s.1 Definition
s.2 s.1.right - .'s dual is +
s.3 s.2.right - Involution complement
s.4 s.3.right - De Morgan's laws applied once
s.5 s.4.right - Commutative law
s.6 s.5.right
s.7 s.6.right
s.8 s.7.right
s.9 s.1.left = s.8.right

कंप्यूटर विज्ञान

किसी डेटाबेस से तालिकाओं के सेट पर जॉइन (एसक्यूएल)#राइट आउटर जॉइन निष्पादित करते समय कंप्यूटर विज्ञान में कॉनवर्स नॉनइम्प्लिकेशन का एक उदाहरण पाया जा सकता है, यदि बाईं तालिका से जॉइन-कंडीशन से मेल नहीं खाने वाले रिकॉर्ड को बाहर रखा जा रहा है।[3]


संदर्भ

  1. Lehtonen, Eero, and Poikonen, J.H.
  2. Knuth 2011, p. 49
  3. "एसक्यूएल जॉइन का एक दृश्य स्पष्टीकरण". 11 October 2007.


बाहरी संबंध