समनिरंतरता: Difference between revisions

From Vigyanwiki
(Text)
Line 1: Line 1:
{{Short description|Relation among continuous functions}}
{{Short description|Relation among continuous functions}}
[[गणितीय विश्लेषण]] में, यदि सभी फलन सतत फलन हैं और यहां वर्णित सटीक अर्थ में, किसी दिए गए [[पड़ोस (गणित)|सामीप्य]] पर उनमें समान भिन्नता है, तो फलनों का एक समूह '''समसतत्''' होता है।विशेष रूप से, यह अवधारणा गणनीय सेट समूहों और इस प्रकार फलनों के ''अनुक्रमों'' पर अनप्रयुक्‍त होती है।
[[गणितीय विश्लेषण]] में, यदि सभी फलन सतत फलन हैं और यहां वर्णित सटीक अर्थ में, किसी दिए गए [[पड़ोस (गणित)|सामीप्य]] पर उनमें समान भिन्नता है, तो फलनों का एक समूह '''समनिरंतर''' होता है।विशेष रूप से, यह अवधारणा गणनीय सेट समूहों और इस प्रकार फलनों के ''अनुक्रमों'' पर अनप्रयुक्‍त होती है।


एस्कोली के प्रमेय के निर्माण में समसतत्ता दिखाई देती है, जिसमें कहा गया है कि ''C''(''X'') का एक उपसमुच्चय, एक सघन(कॉम्पैक्ट) हॉसडॉर्फ स्पेस ''X''  पर सतत फलनों का स्थान, सघन है यदि और केवल यदि यह बंद है, बिंदुवार घिरा हुआ है और समसतत् है। एक उपप्रमेय के रूप में, ''C''(''X'') में एक अनुक्रम समान रूप से अभिसरण होता है यदि और केवल यदि यह समसतत् है और बिंदुवार रूप से एक फलन में अभिसरण करता है (जरूरी नहीं कि संतत एक-प्राथमिकता हो)। विशेष रूप से, मीट्रिक समष्टि पर या स्थानीय रूप से सतत स्थान पर<ref>More generally, on any [[compactly generated space]]; e.g., a [[first-countable space]].</ref> सतत फलनों ''f<sub>n</sub>'' के एक समसतत् बिंदुवार अभिसरण अनुक्रम की सीमा या तो सतत है। यदि, इसके अतिरिक्त, ''f<sub>n</sub>''[[ होलोमार्फिक | होलोमार्फिक]] हैं, तो सीमा भी होलोमोर्फिक है।
एस्कोली के प्रमेय के निर्माण में समनिरंतरता दिखाई देती है, जिसमें कहा गया है कि ''C''(''X'') का एक अर्धसमुच्चय, एक सघन(कॉम्पैक्ट) हॉसडॉर्फ समष्टि ''X''  पर सतत फलनों की समष्टि, सघन है यदि और केवल यदि यह विवृत है, बिंदुवार घिरा हुआ है और समनिरंतर है। एक उपप्रमेय के रूप में, ''C''(''X'') में एक अनुक्रम समान रूप से अभिसरण होता है यदि और केवल यदि यह समनिरंतर है और बिंदुवार रूप से एक फलन में अभिसरण करता है (जरूरी नहीं कि संतत एक-प्राथमिकता हो)। विशेष रूप से, मीट्रिक समष्टि पर या स्थानीय रूप से सतत समष्टि पर<ref>More generally, on any [[compactly generated space]]; e.g., a [[first-countable space]].</ref> सतत फलनों ''f<sub>n</sub>'' के एक समनिरंतर बिंदुवार अभिसरण अनुक्रम की सीमा या तो सतत है। यदि, इसके अतिरिक्त, ''f<sub>n</sub>''[[ होलोमार्फिक | होलोमार्फिक]] हैं, तो सीमा भी होलोमोर्फिक है।


एकसमान सीमाबद्धता सिद्धांत बताता है कि बानाच स्थानों के बीच सतत रैखिक ऑपरेटरों का एक बिंदुवार बंधा हुआ समूह समसतत् है।{{sfn|Rudin|1991|p=44 §2.5}}  
एकसमान सीमाबद्धता सिद्धांत बताता है कि बानाच समष्टियों के बीच सतत रैखिक ऑपरेटरों का एक बिंदुवार बंधा हुआ समूह समनिरंतर है।{{sfn|Rudin|1991|p=44 §2.5}}  


==[[मीट्रिक स्थान|मीट्रिक समष्टि]] के बीच समसतत्ता ==
==[[मीट्रिक स्थान|मीट्रिक समष्टि]] के बीच समनिरंतरता ==


मान लीजिए कि ''X'' और ''Y'' दो मीट्रिक समष्टि हैं, और ''F, X'' से ''Y'' तक फलनों का एक समूह है। हम इन स्थानों के संबंधित मैट्रिक्स को ''d'' द्वारा निरूपित करेंगे।
मान लीजिए कि ''X'' और ''Y'' दो मीट्रिक समष्टि हैं, और ''F, X'' से ''Y'' तक फलनों का एक समूह है। हम इन समष्टियों के संबंधित मैट्रिक्स को ''d'' द्वारा निरूपित करेंगे।


समूह F एक x<sub>0</sub>∈ X '''बिंदु पर समसतत्''' है यदि प्रत्येक ε > 0 के लिए, एक δ > 0 निहित है जैसे कि d(ƒ(x)<sub>0</sub>), ''ƒ''(x)) < ε सभी ''ƒ'' ∈ F के लिए और सभी x जैसे कि d(x)<sub>0</sub>, x) < δ है। यदि समूह X के प्रत्येक बिंदु पर समसंतत है, तो वह '''बिंदुवार समसंतत''' है।<ref name=RS29>{{harvtxt|Reed|Simon|1980}}, p. 29; {{harvtxt|Rudin|1987}}, p. 245</ref>
समूह F एक x<sub>0</sub>∈ X '''बिंदु पर समनिरंतर''' है यदि प्रत्येक ε > 0 के लिए, एक δ > 0 निहित है जैसे कि d(ƒ(x)<sub>0</sub>), ''ƒ''(x)) < ε सभी ''ƒ'' ∈ F के लिए और सभी x जैसे कि d(x)<sub>0</sub>, x) < δ है। यदि समूह X के प्रत्येक बिंदु पर समसंतत है, तो वह '''बिंदुवार समसंतत''' है।<ref name=RS29>{{harvtxt|Reed|Simon|1980}}, p. 29; {{harvtxt|Rudin|1987}}, p. 245</ref>


समूह F '''समान रूप से समसतत्''' है यदि प्रत्येक ε > 0 के लिए, एक δ > 0 निहित है जैसे कि d(ƒ(x)<sub>1</sub>), ''ƒ''(x<sub>2</sub>)) < ε सभी ƒ ∈ F और सभी x<sub>1</sub>, x<sub>2</sub>के लिए,∈ X जैसे कि d(x<sub>1</sub>, x<sub>2</sub>) <δ है।<ref>{{harvtxt|Reed|Simon|1980}}, p. 29</ref>
समूह F '''समान रूप से समनिरंतर''' है यदि प्रत्येक ε > 0 के लिए, एक δ > 0 निहित है जैसे कि d(ƒ(x)<sub>1</sub>), ''ƒ''(x<sub>2</sub>)) < ε सभी ƒ ∈ F और सभी x<sub>1</sub>, x<sub>2</sub>के लिए,∈ X जैसे कि d(x<sub>1</sub>, x<sub>2</sub>) <δ है।<ref>{{harvtxt|Reed|Simon|1980}}, p. 29</ref>


तुलना के लिए, कथन ''F'' में सभी फलन सतत हैं' का अर्थ है कि प्रत्येक ε > 0, प्रत्येक ''ƒ'' ∈ F, और प्रत्येक x<sub>0</sub> ∈ X के लिए, वहाँ एक δ > 0 निहित है जैसे कि d(ƒ(x<sub>0</sub>), ƒ(x)) < ε सभी x ∈ X के लिए जैसे कि d(x<sub>0</sub>, x) < δ है।
तुलना के लिए, कथन ''F'' में सभी फलन सतत हैं' का अर्थ है कि प्रत्येक ε > 0, प्रत्येक ''ƒ'' ∈ F, और प्रत्येक x<sub>0</sub> ∈ X के लिए, वहाँ एक δ > 0 निहित है जैसे कि d(ƒ(x<sub>0</sub>), ƒ(x)) < ε सभी x ∈ X के लिए जैसे कि d(x<sub>0</sub>, x) < δ है।
Line 18: Line 18:
* ''निरंतरता'' के लिए, δ  ε, ƒ, और x<sub>0</sub> पर निर्भर हो सकता है.
* ''निरंतरता'' के लिए, δ  ε, ƒ, और x<sub>0</sub> पर निर्भर हो सकता है.
* [[एकसमान निरंतरता|''एकसमान निरंतरता'']] के लिए, δ  ε और ƒ पर निर्भर हो सकता है।
* [[एकसमान निरंतरता|''एकसमान निरंतरता'']] के लिए, δ  ε और ƒ पर निर्भर हो सकता है।
* ''बिंदुवार समसतत्ता'' के लिए, δ  ε और x पर निर्भर हो सकता है<sub>0</sub>.
* ''बिंदुवार समनिरंतरता'' के लिए, δ  ε और x पर निर्भर हो सकता है<sub>0</sub>.
* ''एकसमान समसतत्ता'' के लिए, δ केवल ε पर निर्भर हो सकता है।
* ''एकसमान समनिरंतरता'' के लिए, δ केवल ε पर निर्भर हो सकता है।


अधिक प्रायः, जब ''X'' एक सांस्थितिक स्पेस होता है, तो ''X'' से ''Y'' तक के फलनों के एक समुच्चय ''F'' को ''x'' पर समसतत् कहा जाता है यदि प्रत्येक ε > 0 के लिए, ''x'' में एक निकटवर्ती ''U<sub>x</sub>'' होता है जैसे कि     
अधिक प्रायः, जब ''X'' एक सांस्थितिक समष्टि होता है, तो ''X'' से ''Y'' तक के फलनों के एक समुच्चय ''F'' को ''x'' पर समनिरंतर कहा जाता है यदि प्रत्येक ε > 0 के लिए, ''x'' में एक निकटवर्ती ''U<sub>x</sub>'' होता है जैसे कि     
: <math>d_Y(f(y), f(x)) < \epsilon </math>
: <math>d_Y(f(y), f(x)) < \epsilon </math>
सभी {{nowrap|''y'' ∈ ''U<sub>x</sub>''}}  और ∈F  के लिए है। यह परिभाषा प्रायः [[टोपोलॉजिकल वेक्टर स्पेस|सांस्थितिक वेक्टर स्पेस]] के संदर्भ में दिखाई देती है।
सभी {{nowrap|''y'' ∈ ''U<sub>x</sub>''}}  और ∈F  के लिए है। यह परिभाषा प्रायः [[टोपोलॉजिकल वेक्टर स्पेस|सांस्थितिक सदिश समष्टि]] के संदर्भ में दिखाई देती है।


जब ''X'' संहत होता है, तो एक समुच्चय समान रूप से समसतत् होता है यदि और केवल यदि यह प्रत्येक बिंदु पर समसतत् हो, अनिवार्य रूप से उसी कारण से क्योंकि एकसमान निरंतरता और निरंतरता संहत स्थानों पर मेल खाती है। अपने आप में प्रयुक्त, "समसतत्ता" शब्द संदर्भ के आधार पर या तो बिंदुवार या एकसमान धारणा को संदर्भित कर सकता है। एक सघन समष्टि पर, ये धारणाएँ मेल खाती हैं।
जब ''X'' संहत होता है, तो एक समुच्चय समान रूप से समनिरंतर होता है यदि और केवल यदि यह प्रत्येक बिंदु पर समनिरंतर हो, अनिवार्य रूप से उसी कारण से क्योंकि एकसमान निरंतरता और निरंतरता संहत समष्टियों पर मेल खाती है। अपने आप में प्रयुक्त, "समनिरंतरता" शब्द संदर्भ के आधार पर या तो बिंदुवार या एकसमान धारणा को संदर्भित कर सकता है। एक सघन समष्टि पर, ये धारणाएँ मेल खाती हैं।


कुछ बुनियादी गुण परिभाषा से तुरंत अनुसरण करते हैं। सतत फलनों का प्रत्येक परिमित समुच्चय समसतत् है। एक समसतत् समुच्चय का समापन पुनः समसतत् है। फलनों  प्रके समान रूप से समसतत् समूह का प्रत्येक सदस्य समान रूप से निरंतर है, और समान रूप से निरंतर फलनों का प्रत्येक परिमित समुच्चय समान रूप से समसतत् है।
कुछ बुनियादी गुण परिभाषा से तुरंत अनुसरण करते हैं। सतत फलनों का प्रत्येक परिमित समुच्चय समनिरंतर है। एक समनिरंतर समुच्चय का समापन पुनः समनिरंतर है। फलनों  प्रके समान रूप से समनिरंतर समूह का प्रत्येक सदस्य समान रूप से निरंतर है, और समान रूप से निरंतर फलनों का प्रत्येक परिमित समुच्चय समान रूप से समनिरंतर है।


=== उदाहरण ===
=== उदाहरण ===


*एक सामान्य [[लिप्सचिट्ज़ स्थिरांक]] के साथ फलनों का एक समुच्चय (समान रूप से) समसतत् है। विशेष रूप से, यह स्थिति है यदि समुच्चय में समान स्थिरांक से घिरे व्युत्पन्न  फलन होते हैं।
*एक सामान्य [[लिप्सचिट्ज़ स्थिरांक]] के साथ फलनों का एक समुच्चय (समान रूप से) समनिरंतर है। विशेष रूप से, यह स्थिति है यदि समुच्चय में समान स्थिरांक से घिरे व्युत्पन्न  फलन होते हैं।
*समान सीमाबद्धता सिद्धांत निरंतर रैखिक ऑपरेटरों के एक समुच्चय के लिए समसतत् होने के लिए पर्याप्त परिस्थिति देता है।
*समान सीमाबद्धता सिद्धांत निरंतर रैखिक ऑपरेटरों के एक समुच्चय के लिए समनिरंतर होने के लिए पर्याप्त परिस्थिति देता है।
*विश्लेषणात्मक फलन के पुनरावृत्तों का एक समूह[[ फ़तौ सेट | फ़तौ समुच्चय]] पर समसतत् है।<ref>Alan F. Beardon, S. Axler, F.W. Gehring, K.A. Ribet : Iteration of Rational Functions: Complex Analytic Dynamical Systems. Springer, 2000; {{ISBN|0-387-95151-2}}, {{ISBN|978-0-387-95151-5}}; page 49</ref><ref>Joseph H. Silverman : The arithmetic of dynamical systems. Springer, 2007. {{ISBN|0-387-69903-1}}, {{ISBN|978-0-387-69903-5}}; page 22</ref>
*विश्लेषणात्मक फलन के पुनरावृत्तों का एक समूह[[ फ़तौ सेट | फ़तौ समुच्चय]] पर समनिरंतर है।<ref>Alan F. Beardon, S. Axler, F.W. Gehring, K.A. Ribet : Iteration of Rational Functions: Complex Analytic Dynamical Systems. Springer, 2000; {{ISBN|0-387-95151-2}}, {{ISBN|978-0-387-95151-5}}; page 49</ref><ref>Joseph H. Silverman : The arithmetic of dynamical systems. Springer, 2007. {{ISBN|0-387-69903-1}}, {{ISBN|978-0-387-69903-5}}; page 22</ref>
===प्रतिउदाहरण ===
===प्रतिउदाहरण ===


*फलनों का अनुक्रम f<sub>n</sub>(x) = आर्कटेन(nx), समसतत् नहीं है क्योंकि x<sub>0</sub>=0 पर परिभाषा का उल्लंघन होता है।
*फलनों का अनुक्रम f<sub>n</sub>(x) = आर्कटेन(nx), समनिरंतर नहीं है क्योंकि x<sub>0</sub>=0 पर परिभाषा का उल्लंघन होता है।


== सांस्थितिक समूहों में मानचित्रों मानों की समरूपता ==
== सांस्थितिक समूहों में मानचित्रों मानों की समरूपता ==


मान लीजिए कि {{mvar|T}} एक सांस्थितिक स्पेस है और {{mvar|Y}} एक योज्य [[टोपोलॉजिकल समूह|सांस्थितिक समूह]] है (यानी एक [[समूह (बीजगणित)|समूह]] एक टोपोलॉजी से संपन्न है जो इसके संचालन को निरंतर बनाता है)। सांस्थितिक वेक्टर स्पेस सांस्थितिक समूहों के प्रमुख उदाहरण हैं और प्रत्येक सांस्थितिक समूह में एक संबद्ध विहित [[एकसमान स्थान|एकरूपता]] होती है।
मान लीजिए कि {{mvar|T}} एक सांस्थितिक समष्टि है और {{mvar|Y}} एक योज्य [[टोपोलॉजिकल समूह|सांस्थितिक समूह]] है (यानी एक [[समूह (बीजगणित)|समूह]] एक टोपोलॉजी से संपन्न है जो इसके संचालन को निरंतर बनाता है)। सांस्थितिक सदिश समष्टि सांस्थितिक समूहों के प्रमुख उदाहरण हैं और प्रत्येक सांस्थितिक समूह में एक संबद्ध विहित [[एकसमान स्थान|एकरूपता]] होती है।


:'''परिभाषा''':{{sfn | Narici|Beckenstein | 2011 | pp=133-136}} {{mvar|T}} से {{mvar|Y}} तक के मानचित्रों के एक समूह {{mvar|H}} को {{math|''t'' ∈ ''T''}}  '''पर समसतत्''' कहा जाता है  यदि {{mvar|Y}} में {{mvar|0}} के प्रत्येक सामीप्य {{mvar|V}} के लिए {{mvar|T}} में {{mvar|t}} के कुछ सामीप्य {{mvar|U}} निहित  जैसे कि प्रत्येक {{math|''h'' ∈ ''H''}} के लिए {{math|''h''(''U'') ⊆ ''h''(''t'') + ''V''}} है। हम कहते हैं कि {{mvar|H}} '''समसतत्''' है यदि यह {{mvar|T}} के प्रत्येक बिंदु पर समसतत् है।
:'''परिभाषा''':{{sfn | Narici|Beckenstein | 2011 | pp=133-136}} {{mvar|T}} से {{mvar|Y}} तक के मानचित्रों के एक समूह {{mvar|H}} को {{math|''t'' ∈ ''T''}}  '''पर समनिरंतर''' कहा जाता है  यदि {{mvar|Y}} में {{mvar|0}} के प्रत्येक सामीप्य {{mvar|V}} के लिए {{mvar|T}} में {{mvar|t}} के कुछ सामीप्य {{mvar|U}} निहित  जैसे कि प्रत्येक {{math|''h'' ∈ ''H''}} के लिए {{math|''h''(''U'') ⊆ ''h''(''t'') + ''V''}} है। हम कहते हैं कि {{mvar|H}} '''समनिरंतर''' है यदि यह {{mvar|T}} के प्रत्येक बिंदु पर समनिरंतर है।


ध्यान दें कि यदि {{mvar|H}} एक बिंदु पर समसतत् है {{mvar|H}} में प्रत्येक मानचित्र बिंदु पर सतत है। स्पष्टतः, {{mvar|T}} से {{mvar|Y}} तक सतत मानचित्रों का प्रत्येक परिमित समुच्चय समसतत् है।
ध्यान दें कि यदि {{mvar|H}} एक बिंदु पर समनिरंतर है {{mvar|H}} में प्रत्येक मानचित्र बिंदु पर सतत है। स्पष्टतः, {{mvar|T}} से {{mvar|Y}} तक सतत मानचित्रों का प्रत्येक परिमित समुच्चय समनिरंतर है।


==समसतत् रैखिक मानचित्र==
==समनिरंतर रैखिक मानचित्र==
क्योंकि प्रत्येक टोपोलॉजिकल वेक्टर स्पेस (टीवीएस) एक सांस्थितिक समूह है, इसलिए सांस्थितिक समूहों के लिए दिए गए मानचित्रों के एक समसतत् समूह की परिभाषा बिना किसी बदलाव के टीवीएस में स्थानांतरित हो जाती है।
क्योंकि प्रत्येक टोपोलॉजिकल सदिश समष्टि (टीवीएस) एक सांस्थितिक समूह है, इसलिए सांस्थितिक समूहों के लिए दिए गए मानचित्रों के एक समनिरंतर समूह की परिभाषा बिना किसी बदलाव के टीवीएस में स्थानांतरित हो जाती है।


===समसतत् रैखिक मानचित्रों का लक्षण वर्णन===
===समनिरंतर रैखिक मानचित्रों का लक्षण वर्णन===


दो सांस्थितिक वेक्टर स्पेस के बीच फॉर्म <math>X \to Y</math> के मानचित्रों के एक समूह <math>H</math> को एक बिंदु <math>x \in X</math> पर समसतत् कहा जाता है यदि <math>Y</math> में मूल के प्रत्येक सामीप्य <math>V</math> के लिए <math>X</math> में मूल के कुछ सामीप्य <math>U</math> निहित हैं जैसे कि <math>h(x + U) \subseteq h(x) + V</math> सभी <math>h \in H</math> के लिए है।
दो सांस्थितिक सदिश समष्टि के बीच फॉर्म <math>X \to Y</math> के मानचित्रों के एक समूह <math>H</math> को एक बिंदु <math>x \in X</math> पर समनिरंतर कहा जाता है यदि <math>Y</math> में मूल के प्रत्येक सामीप्य <math>V</math> के लिए <math>X</math> में मूल के कुछ सामीप्य <math>U</math> निहित हैं जैसे कि <math>h(x + U) \subseteq h(x) + V</math> सभी <math>h \in H</math> के लिए है।


यदि <math>H</math> मानचित्रों का एक समूह है और <math>U</math> एक समुच्चय है तो मान लीजिए <math>H(U) := \bigcup_{h \in H} h(U)</math> है। संकेतन के साथ, यदि  <math>U</math> और <math>V</math> तो समुच्चय हैं तो सभी <math>h \in H</math> के लिए <math>h(U) \subseteq V</math> यदि केवल <math>H(U) \subseteq V</math> है।
यदि <math>H</math> मानचित्रों का एक समूह है और <math>U</math> एक समुच्चय है तो मान लीजिए <math>H(U) := \bigcup_{h \in H} h(U)</math> है। संकेतन के साथ, यदि  <math>U</math> और <math>V</math> तो समुच्चय हैं तो सभी <math>h \in H</math> के लिए <math>h(U) \subseteq V</math> यदि केवल <math>H(U) \subseteq V</math> है।


मान लीजिए कि  <math>X</math> और <math>Y</math> सांस्थितिक वेक्टर स्पेस (टीवीएस) हैं <math>H</math>  <math>X</math> से <math>Y</math> तक रैखिक ऑपरेटरों का एक समूह है। उसके बाद निम्न बराबर हैं:
मान लीजिए कि  <math>X</math> और <math>Y</math> सांस्थितिक सदिश समष्टि (टीवीएस) हैं <math>H</math>  <math>X</math> से <math>Y</math> तक रैखिक ऑपरेटरों का एक समूह है। उसके बाद निम्न बराबर हैं:
<ol>
<ol>
<li> <math>H</math> समसतत् है।<li>
<li> <math>H</math> समनिरंतर है।<li>


<li>  <math>H</math>, <math>X</math> के प्रत्येक बिंदु पर समसतत् है।<li>
<li>  <math>H</math>, <math>X</math> के प्रत्येक बिंदु पर समनिरंतर है।<li>


<li> <math>H</math>, <math>X</math> के किसी बिंदु पर समसतत् है।<li>
<li> <math>H</math>, <math>X</math> के किसी बिंदु पर समनिरंतर है।<li>


<li> <math>H</math> मूल बिंदु पर समसतत् है।
<li> <math>H</math> मूल बिंदु पर समनिरंतर है।
* अर्थात्  <math>Y</math> में मूल के प्रत्येक सामीप्य <math>V</math> के लिए के लिए, <math>X</math> में मूल के एक सामीप्य  <math>U</math> का अस्तित्व है जैसे कि <math>H(U) \subseteq V</math> (या समकक्ष, प्रत्येक <math>h(U) \subseteq V</math> के लिए <math>h \in H</math> है)।{{sfn|Rudin|1991|p=44 Theorem 2.4}}<li>  <math>Y</math> में मूल बिंदु के प्रत्येक सामीप्य <math>V</math> के लिए <math>\bigcap_{h \in H} h^{-1}(V)</math>, <math>X</math>  में मूल बिंदु का सामीप्य है।</li>
* अर्थात्  <math>Y</math> में मूल के प्रत्येक सामीप्य <math>V</math> के लिए के लिए, <math>X</math> में मूल के एक सामीप्य  <math>U</math> का अस्तित्व है जैसे कि <math>H(U) \subseteq V</math> (या समकक्ष, प्रत्येक <math>h(U) \subseteq V</math> के लिए <math>h \in H</math> है)।{{sfn|Rudin|1991|p=44 Theorem 2.4}}<li>  <math>Y</math> में मूल बिंदु के प्रत्येक सामीप्य <math>V</math> के लिए <math>\bigcap_{h \in H} h^{-1}(V)</math>, <math>X</math>  में मूल बिंदु का सामीप्य है।</li>


<li> <math>L_{\sigma}(X; Y)</math> में <math>H</math> का बंद होना समसतत् हैl</li>   
<li> <math>L_{\sigma}(X; Y)</math> में <math>H</math> का विवृत होना समनिरंतर हैl</li>   


* <math>L_{\sigma}(X; Y)</math> बिंदु-वार अभिसरण की टोपोलॉजी से संपन्न <math>L(X; Y)</math> को दर्शाता है।</li>                                                                                                                                                     <li> <math>H</math> का [[संतुलित सेट]] समसतत् है।</li>
* <math>L_{\sigma}(X; Y)</math> बिंदु-वार अभिसरण की टोपोलॉजी से संपन्न <math>L(X; Y)</math> को दर्शाता है।                                                                                                                                                      <li> <math>H</math> का [[संतुलित सेट]] समनिरंतर है।</li>
</ol>
</ol>


जबकि यदि <math>Y</math> [[स्थानीय रूप से उत्तल]] है तो इस सूची को सम्मिलित करने के लिए बढ़ाया जा सकता है:
जबकि यदि <math>Y</math> [[स्थानीय रूप से उत्तल]] है तो इस सूची को सम्मिलित करने के लिए बढ़ाया जा सकता है:
<ol start=8>
<ol start=8>
<li>  <math>H</math> का उत्तल सेट समसतत् है।{{sfn|Narici|Beckenstein|2011|pp=225-273}}</li>
<li>  <math>H</math> का उत्तल सेट समनिरंतर है।{{sfn|Narici|Beckenstein|2011|pp=225-273}}</li>


<li>  <math>H</math> का [[बिल्कुल उत्तल सेट|संतुलित उत्तल सेट]]  समसतत् है।{{sfn|Trèves|2006|pp=335-345}}{{sfn|Narici|Beckenstein|2011|pp=225-273}}</li>
<li>  <math>H</math> का [[बिल्कुल उत्तल सेट|संतुलित उत्तल सेट]]  समनिरंतर है।{{sfn|Trèves|2006|pp=335-345}}{{sfn|Narici|Beckenstein|2011|pp=225-273}}</li>
</ol>
</ol>


Line 89: Line 89:
<li> <math>H</math>, <math>L_{\sigma}(X; Y)</math> में परिबद्ध है;{{sfn|Trèves|2006|pp=346-350}}<li>
<li> <math>H</math>, <math>L_{\sigma}(X; Y)</math> में परिबद्ध है;{{sfn|Trèves|2006|pp=346-350}}<li>
<li> <math>H</math>, <math>L_b(X; Y)</math> में परिबद्ध है।  {{sfn|Trèves|2006|pp=346-350}}
<li> <math>H</math>, <math>L_b(X; Y)</math> में परिबद्ध है।  {{sfn|Trèves|2006|pp=346-350}}
* <math>L_b(X; Y)</math> परिबद्ध अभिसरण की टोपोलॉजी से संपन्न <math>L(X; Y)</math> को दर्शाता है (अर्थात, <math>X</math> के परिबद्ध उपसमुच्चय पर एकसमान अभिसरण)। </li>
* <math>L_b(X; Y)</math> परिबद्ध अभिसरण की टोपोलॉजी से संपन्न <math>L(X; Y)</math> को दर्शाता है (अर्थात, <math>X</math> के परिबद्ध अर्धसमुच्चय पर एकसमान अभिसरण)। </li>
</ol>
</ol>


जबकि यदि <math>X</math> और <math>Y</math> यदि बानाच स्थान हैं तो इस सूची को इसमें सम्मिलित करने के लिए बढ़ाया जा सकता है:
जबकि यदि <math>X</math> और <math>Y</math> यदि बानाच समष्टि हैं तो इस सूची को इसमें सम्मिलित करने के लिए बढ़ाया जा सकता है:
<ol start=13>
<ol start=13>
<li> <math>\sup \{\|T\| : T \in H\} < \infty</math> (अर्थात, <math>H</math> [[ऑपरेटर मानदंड]] में समान रूप से बंधा हुआ है)।</li>
<li> <math>\sup \{\|T\| : T \in H\} < \infty</math> (अर्थात, <math>H</math> [[ऑपरेटर मानदंड]] में समान रूप से बंधा हुआ है)।</li>
</ol>
</ol>


====समसतत् रैखिक '''समसतत्''' का लक्षण वर्णन====
====समनिरंतर रैखिक '''समनिरंतर''' का लक्षण वर्णन====
मान लीजिए कि <math>X</math> निरंतर दोहरे स्थान <math>X^{\prime}</math> के साथ फ़ील्ड <math>\mathbb{F}</math> पर एक टोपोलॉजिकल वेक्टर स्पेस (टीवीएस) है। <math>X</math> पर रैखिक कार्यात्मकताओं के एक समूह <math>H</math> को ''एक बिंदु''  <math>x \in X</math> पर समसतत् कहा जाता है यदि <math>\mathbb{F}</math> में मूल के प्रत्येक सामीप्य <math>V</math> के लिए <math>X</math> में मूल के कुछ  सामीप्य <math>U</math> निहित हैं। ऐसा कि सभी <math>h \in H</math> के लिए <math>h(x + U) \subseteq h(x) + V</math> सभी के लिए है।  
मान लीजिए कि <math>X</math> निरंतर दोहरी समष्टि <math>X^{\prime}</math> के साथ फ़ील्ड <math>\mathbb{F}</math> पर एक टोपोलॉजिकल सदिश समष्टि (टीवीएस) है। <math>X</math> पर रैखिक कार्यात्मकताओं के एक समूह <math>H</math> को ''एक बिंदु''  <math>x \in X</math> पर समनिरंतर कहा जाता है यदि <math>\mathbb{F}</math> में मूल के प्रत्येक सामीप्य <math>V</math> के लिए <math>X</math> में मूल के कुछ  सामीप्य <math>U</math> निहित हैं। ऐसा कि सभी <math>h \in H</math> के लिए <math>h(x + U) \subseteq h(x) + V</math> सभी के लिए है।  


किसी भी उपसमुच्चय <math>H \subseteq X^{\prime}</math> के लिए, निम्नलिखित समतुल्य हैं:{{sfn|Narici|Beckenstein|2011|pp=225-273}}
किसी भी अर्धसमुच्चय <math>H \subseteq X^{\prime}</math> के लिए, निम्नलिखित समतुल्य हैं:{{sfn|Narici|Beckenstein|2011|pp=225-273}}
<ol>
<ol>
<li> <math>H</math> समसतत् है।</li>
<li> <math>H</math> समनिरंतर है।</li>
<li> <math>H</math> मूल बिंदु पर समसतत् है।</li>
<li> <math>H</math> मूल बिंदु पर समनिरंतर है।</li>
<li> <math>H</math>, <math>X</math> के किसी बिंदु पर समसतत् है। </li>
<li> <math>H</math>, <math>X</math> के किसी बिंदु पर समनिरंतर है। </li>
<li> <math>H</math>, <math>X</math> मूल के कुछ सामीप्य के [[ध्रुवीय सेट]] में समाहित है। {{sfn|Trèves|2006|pp=335-345}}</li>
<li> <math>H</math>, <math>X</math> मूल के कुछ सामीप्य के [[ध्रुवीय सेट]] में समाहित है। {{sfn|Trèves|2006|pp=335-345}}</li>
<li>  <math>H</math> का (पूर्व)ध्रुवीय, <math>X</math> में मूल बिंदु का सामीप्य है। </li>
<li>  <math>H</math> का (पूर्व)ध्रुवीय, <math>X</math> में मूल बिंदु का सामीप्य है। </li>
<li>  <math>X^{\prime}</math> में <math>H</math> का [[कमजोर-* टोपोलॉजी|कमजोर-*]] का बंद होना समसतत् है। </li>
<li>  <math>X^{\prime}</math> में <math>H</math> का [[कमजोर-* टोपोलॉजी|कमजोर-*]] का विवृत होना समनिरंतर है। </li>
<li>  <math>H</math> का संतुलित सेट समसतत् है। </li>
<li>  <math>H</math> का संतुलित सेट समनिरंतर है। </li>
<li>  <math>H</math> का उत्तल सेट समसतत् है।</li>
<li>  <math>H</math> का उत्तल सेट समनिरंतर है।</li>
<li>  <math>H</math> का उत्तल सेट समसतत् है।{{sfn|Trèves|2006|pp=335-345}}</li>
<li>  <math>H</math> का उत्तल सेट समनिरंतर है।{{sfn|Trèves|2006|pp=335-345}}</li>
</ol>
</ol>


जबकि यदि <math>X</math> को मानकीकृत किया गया है तो इस सूची को इसमें सम्मिलित करने के लिए बढ़ाया जा सकता है:
जबकि यदि <math>X</math> को मानकीकृत किया गया है तो इस सूची को इसमें सम्मिलित करने के लिए बढ़ाया जा सकता है:
<ol start="10">
<ol start="10">
<li> <math>H</math>, <math>X^{\prime}</math> का एक दृढ़ता से परिबद्ध उपसमुच्चय है। {{sfn|Trèves|2006|pp=335-345}}</li>
<li> <math>H</math>, <math>X^{\prime}</math> का एक दृढ़ता से परिबद्ध अर्धसमुच्चय है। {{sfn|Trèves|2006|pp=335-345}}</li>
</ol>
</ol>


जबकि यदि <math>X</math> एक बैरल वाला स्थान है तो इस सूची को इसमें सम्मिलित करने के लिए बढ़ाया जा सकता है:
जबकि यदि <math>X</math> एक बैरल वाली समष्टि है तो इस सूची को इसमें सम्मिलित करने के लिए बढ़ाया जा सकता है:
<ol start="11">
<ol start="11">
<li>  <math>X^{\prime}</math> [[कमज़ोर* टोपोलॉजी]] में <math>H</math> अपेक्षाकृत सघन है। {{sfn|Trèves|2006|pp=346-350}}</li>  
<li>  <math>X^{\prime}</math> [[कमज़ोर* टोपोलॉजी]] में <math>H</math> अपेक्षाकृत सघन है। {{sfn|Trèves|2006|pp=346-350}}</li>  
Line 136: Line 136:
[[Category:Templates that generate short descriptions]]
[[Category:Templates that generate short descriptions]]


===समसतत् रैखिक मानचित्रों के गुण===
===समनिरंतर रैखिक मानचित्रों के गुण===


एकसमान सीमा सिद्धांत (जिसे बानाच-स्टाइनहॉस प्रमेय के रूप में भी जाना जाता है) में कहा गया है कि बानाच स्थानों के बीच रैखिक मानचित्रों का एक सेट <math>H</math> समसतत् है यदि यह बिंदुवार घिरा हुआ है; अर्थात्, प्रत्येक <math>x \in X</math> के लिए <math>\sup_{h \in H} \|h(x)\| < \infty</math> है। परिणाम को ऐसे स्थिति में सामान्यीकृत किया जा सकता है जब <math>Y</math> स्थानीय रूप से उत्तल हो और <math>X</math> एक बैरल वाला स्थान हो।{{sfn|Schaefer|1966|loc= Theorem 4.2}}  
एकसमान सीमा सिद्धांत (जिसे बानाच-स्टाइनहॉस प्रमेय के रूप में भी जाना जाता है) में कहा गया है कि बानाच समष्टियों के बीच रैखिक मानचित्रों का एक सेट <math>H</math> समनिरंतर है यदि यह बिंदुवार घिरा हुआ है; अर्थात्, प्रत्येक <math>x \in X</math> के लिए <math>\sup_{h \in H} \|h(x)\| < \infty</math> है। परिणाम को ऐसे स्थिति में सामान्यीकृत किया जा सकता है जब <math>Y</math> स्थानीय रूप से उत्तल हो और <math>X</math> एक बैरल वाली समष्टि हो।{{sfn|Schaefer|1966|loc= Theorem 4.2}}  


====समसतत् रैखिक कार्यात्मकताओं के गुण====
====समनिरंतर रैखिक कार्यात्मकताओं के गुण====


अलाओग्लू के प्रमेय का तात्पर्य है कि <math>X^{\prime}</math> के एक समसतत् उपसमुच्चय का कमजोर-* बंद होना कमज़ोर है-* सघन है; इस प्रकार प्रत्येक समसतत् उपसमुच्चय कमजोर-* अपेक्षाकृत सघन होता है।{{sfn|Schaefer|1966|loc= Corollary 4.3}}{{sfn|Narici|Beckenstein|2011|pp=225-273}}
अलाओग्लू के प्रमेय का तात्पर्य है कि <math>X^{\prime}</math> के एक समनिरंतर अर्धसमुच्चय का कमजोर-* विवृत होना कमज़ोर है-* सघन है; इस प्रकार प्रत्येक समनिरंतर अर्धसमुच्चय कमजोर-* अपेक्षाकृत सघन होता है।{{sfn|Schaefer|1966|loc= Corollary 4.3}}{{sfn|Narici|Beckenstein|2011|pp=225-273}}


यदि <math>X</math> कोई स्थानीय रूप से उत्तल टीवीएस है, तो <math>X</math> सभी बैरल वाले स्थानों का समूह और <math>X^{\prime}</math>सभी उपसमुच्चय का समूह जो उत्तल, संतुलित, बंद और <math>X^{\prime}_{\sigma}</math> में घिरा हुआ हैं,  ध्रुवता द्वारा एक दूसरे के अनुरूप हैं (के संबंध में) <math>\left\langle X, X^{\#} \right\rangle</math>)।{{sfn|Schaefer|Wolff|1999|pp=123–128}} इसका तात्पर्य यह है कि स्थानीय रूप से उत्तल टी.वी.एस <math>X</math> को तभी बैरल किया जाता है जब <math>X^{\prime}_{\sigma}</math> का प्रत्येक परिबद्ध उपसमुच्चय समसतत् हो।{{sfn|Schaefer|Wolff|1999|pp=123–128}}
यदि <math>X</math> कोई स्थानीय रूप से उत्तल टीवीएस है, तो <math>X</math> सभी बैरल वाले समष्टियों का समूह और <math>X^{\prime}</math>सभी अर्धसमुच्चय का समूह जो उत्तल, संतुलित, विवृत और <math>X^{\prime}_{\sigma}</math> में घिरा हुआ हैं,  ध्रुवता द्वारा एक दूसरे के अनुरूप हैं (के संबंध में) <math>\left\langle X, X^{\#} \right\rangle</math>)।{{sfn|Schaefer|Wolff|1999|pp=123–128}} इसका तात्पर्य यह है कि स्थानीय रूप से उत्तल टी.वी.एस <math>X</math> को तभी बैरल किया जाता है जब <math>X^{\prime}_{\sigma}</math> का प्रत्येक परिबद्ध अर्धसमुच्चय समनिरंतर हो।{{sfn|Schaefer|Wolff|1999|pp=123–128}}


{{Math theorem|name=प्रमेय|math_statement=
{{Math theorem|name=प्रमेय|math_statement=
Line 163: Line 163:
==समान निरंतरता और एकसमान अभिसरण==
==समान निरंतरता और एकसमान अभिसरण==


मान लीजिए कि फिर अर्ज़ेला-एस्कोली प्रमेय बताता है कि C(X) का एक उपसमुच्चय सघन है यदि और केवल तभी जब वह बंद हो, जब समान रूप से घिरा हुआ हो और समसतत् हो। {{sfn|Rudin|1991|p=394 Appendix A5}} यह हेइन-बोरेल प्रमेय के अनुरूप है, जो बताता है कि '''R'''<sup>''n''</sup> के उपसमुच्चय संहत होते हैं यदि और केवल तभी जब वे बंद और परिबद्ध हों।{{sfn|Rudin|1991|p=18 Theorem 1.23}} परिणाम के रूप में, C(X) में प्रत्येक समान रूप से बंधे समसतत् अनुक्रम में एक अनुवर्ती होता है जो X पर एक निरंतर फलन में समान रूप से परिवर्तित होता है।
मान लीजिए कि फिर अर्ज़ेला-एस्कोली प्रमेय बताता है कि C(X) का एक अर्धसमुच्चय सघन है यदि और केवल तभी जब वह विवृत हो, जब समान रूप से घिरा हुआ हो और समनिरंतर हो। {{sfn|Rudin|1991|p=394 Appendix A5}} यह हेइन-बोरेल प्रमेय के अनुरूप है, जो बताता है कि '''R'''<sup>''n''</sup> के अर्धसमुच्चय संहत होते हैं यदि और केवल तभी जब वे विवृत और परिबद्ध हों।{{sfn|Rudin|1991|p=18 Theorem 1.23}} परिणाम के रूप में, C(X) में प्रत्येक समान रूप से बंधे समनिरंतर अनुक्रम में एक अनुवर्ती होता है जो X पर एक निरंतर फलन में समान रूप से परिवर्तित होता है।


अर्ज़ेला-एस्कोली प्रमेय दृष्टिकोण से, ''C''(''X'') में एक अनुक्रम समान रूप से परिवर्तित होता है यदि और केवल यदि यह समसतत् है और बिंदुवार रूप से परिवर्तित होता है। कथन की परिकल्पना को थोड़ा कमजोर किया जा सकता है: ''C''(''X'') में एक अनुक्रम समान रूप से परिवर्तित होता है यदि यह समवर्ती है और ''X'' पर कुछ फलन के घने उपसमुच्चय पर बिंदुवार परिवर्तित होता है (निरंतर नहीं माना जाता है)।
अर्ज़ेला-एस्कोली प्रमेय दृष्टिकोण से, ''C''(''X'') में एक अनुक्रम समान रूप से परिवर्तित होता है यदि और केवल यदि यह समनिरंतर है और बिंदुवार रूप से परिवर्तित होता है। कथन की परिकल्पना को थोड़ा कमजोर किया जा सकता है: ''C''(''X'') में एक अनुक्रम समान रूप से परिवर्तित होता है यदि यह समवर्ती है और ''X'' पर कुछ फलन के घने अर्धसमुच्चय पर बिंदुवार परिवर्तित होता है (निरंतर नहीं माना जाता है)।
{{Math proof|drop=hidden|proof=
{{Math proof|drop=hidden|proof=
Suppose ''f''<sub>''j''</sub> is an equicontinuous sequence of continuous functions on a dense subset ''D'' of ''X''.  
Suppose ''f''<sub>''j''</sub> is an equicontinuous sequence of continuous functions on a dense subset ''D'' of ''X''.  
Line 180: Line 180:
}}
}}


इस कमजोर संस्करण का उपयोग प्रायः अलग-अलग सघन समष्टि के लिए अर्ज़ेला-एस्कोली प्रमेय को प्रमाणित करने के लिए किया जाता है। एक और परिणाम यह है कि एक मीट्रिक समष्टि पर, या स्थानीय रूप से सघन समष्टि पर निरंतर फलनों के एक समसतत् बिंदुवार अभिसरण अनुक्रम की सीमा निरंतर है। (उदाहरण के लिए नीचे देखें।) उपरोक्त में, X  की सघनता की परिकल्पना को शिथिल नहीं किया जा सकता है। यह देखने के लिए, '''R''' पर g(0)= 1 के साथ एक सघन रूप से समर्थित निरंतर फलन g पर विचार करें, और फ़ंक्शंस के समसतत् अनुक्रम पर विचार करें, और ƒ<sub>''n''</sub>(x)= {{nowrap|''g''(''x'' − ''n'')}} द्वारा परिभाषित '''R''' पर फलन {{mset|''ƒ''<sub>''n''</sub>}} के समसतत् अनुक्रम पर विचार करें। फिर, ƒ<sub>''n''</sub> बिंदुवार 0 पर परिवर्तित होता है लेकिन समान रूप से 0 पर परिवर्तित नहीं होता है।
इस कमजोर संस्करण का उपयोग प्रायः अलग-अलग सघन समष्टि के लिए अर्ज़ेला-एस्कोली प्रमेय को प्रमाणित करने के लिए किया जाता है। एक और परिणाम यह है कि एक मीट्रिक समष्टि पर, या स्थानीय रूप से सघन समष्टि पर निरंतर फलनों के एक समनिरंतर बिंदुवार अभिसरण अनुक्रम की सीमा निरंतर है। (उदाहरण के लिए नीचे देखें।) उपरोक्त में, X  की सघनता की परिकल्पना को शिथिल नहीं किया जा सकता है। यह देखने के लिए, '''R''' पर g(0)= 1 के साथ एक सघन रूप से समर्थित निरंतर फलन g पर विचार करें, और फ़ंक्शंस के समनिरंतर अनुक्रम पर विचार करें, और ƒ<sub>''n''</sub>(x)= {{nowrap|''g''(''x'' − ''n'')}} द्वारा परिभाषित '''R''' पर फलन {{mset|''ƒ''<sub>''n''</sub>}} के समनिरंतर अनुक्रम पर विचार करें। फिर, ƒ<sub>''n''</sub> बिंदुवार 0 पर परिवर्तित होता है लेकिन समान रूप से 0 पर परिवर्तित नहीं होता है।


एकसमान अभिसरण का यह मानदंड प्रायः वास्तविक और जटिल विश्लेषण में उपयोगी होता है। मान लीजिए कि हमें निरंतर फलनों का एक क्रम दिया गया है जो '''R'''<sup>''n''</sup> के कुछ खुले उपसमुच्चय ''G'' पर बिंदुवार परिवर्तित होता है। जैसा कि ऊपर उल्लेख किया गया है, यह सचमुच में ''G'' के एक सघन उपसमुच्चय पर समान रूप से परिवर्तित होता है यदि यह सघन सेट पर समान है। व्यवहार में, सम-निरंतरता दिखाना प्रायः इतना कठिन नहीं होता है। उदाहरण के लिए, यदि अनुक्रम में कुछ नियमितता के साथ अलग-अलग फलन या फलन सम्मिलित हैं (उदाहरण के लिए, फलन एक अंतर समीकरण के समाधान हैं), तो अनुक्रम को समतुल्य दिखाने के लिए औसत मूल्य प्रमेय या कुछ अन्य प्रकार के अनुमानों का उपयोग किया जा सकता है। इसके बाद यह निष्कर्ष निकलता है कि अनुक्रम की सीमा G के प्रत्येक सघन उपसमुच्चय पर निरंतर है; इस प्रकार, G पर निरंतर है। एक समान तर्क तब दिया जा सकता है जब फलन होलोमोर्फिक हों। उदाहरण के लिए, कोई समसंगति (संक्षिप्त उपसमुच्चय पर) दिखाने के लिए कॉची के अनुमान का उपयोग कर सकता है और यह निष्कर्ष निकाल सकता है कि सीमा होलोमोर्फिक है। ध्यान दें कि यहां समसतत्ता आवश्यक है। उदाहरण के लिए, ''ƒ<sub>n</sub>''(''x'') = {{nowrap|आर्कटैन ''n''&thinsp;''x''}} असंतत [[साइन फ़ंक्शन|चिह्न फलन]] के गुणक में परिवर्तित हो जाता है।
एकसमान अभिसरण का यह मानदंड प्रायः वास्तविक और जटिल विश्लेषण में उपयोगी होता है। मान लीजिए कि हमें निरंतर फलनों का एक क्रम दिया गया है जो '''R'''<sup>''n''</sup> के कुछ संवृत अर्धसमुच्चय ''G'' पर बिंदुवार परिवर्तित होता है। जैसा कि ऊपर उल्लेख किया गया है, यह सचमुच में ''G'' के एक सघन अर्धसमुच्चय पर समान रूप से परिवर्तित होता है यदि यह सघन सेट पर समान है। व्यवहार में, सम-निरंतरता दिखाना प्रायः इतना कठिन नहीं होता है। उदाहरण के लिए, यदि अनुक्रम में कुछ नियमितता के साथ अलग-अलग फलन या फलन सम्मिलित हैं (उदाहरण के लिए, फलन एक अंतर समीकरण के समाधान हैं), तो अनुक्रम को समतुल्य दिखाने के लिए औसत मूल्य प्रमेय या कुछ अन्य प्रकार के अनुमानों का उपयोग किया जा सकता है। इसके बाद यह निष्कर्ष निकलता है कि अनुक्रम की सीमा G के प्रत्येक सघन अर्धसमुच्चय पर निरंतर है; इस प्रकार, G पर निरंतर है। एक समान तर्क तब दिया जा सकता है जब फलन होलोमोर्फिक हों। उदाहरण के लिए, कोई समसंगति (संक्षिप्त अर्धसमुच्चय पर) दिखाने के लिए कॉची के अनुमान का उपयोग कर सकता है और यह निष्कर्ष निकाल सकता है कि सीमा होलोमोर्फिक है। ध्यान दें कि यहां समनिरंतरता आवश्यक है। उदाहरण के लिए, ''ƒ<sub>n</sub>''(''x'') = {{nowrap|आर्कटैन ''n''&thinsp;''x''}} असंतत [[साइन फ़ंक्शन|चिह्न फलन]] के गुणक में परिवर्तित हो जाता है।


==सामान्यीकरण==
==सामान्यीकरण==


===टोपोलॉजिकल सामयिक स्थानों में समसतत्ता===
===टोपोलॉजिकल सामयिक समष्टियों में समनिरंतरता===


सबसे सामान्य परिदृश्य जिसमें समरूपता को परिभाषित किया जा सकता है, वह सांस्थितिक समष्टि के लिए है, जबकि समान समरूपता के लिए एक बिंदु के सामीप्य के [[फ़िल्टर (सेट सिद्धांत)|फ़िल्टर]] की आवश्यकता होती है, जो किसी अन्य बिंदु के सामीप्य के फ़िल्टर के साथ तुलनीय हो। उत्तरार्द्ध प्रायः एक समान संरचना के माध्यम से किया जाता है, जिससे एक समान स्थान मिलता है। इन स्थितियों में उपयुक्त परिभाषाएँ इस प्रकार हैं:
सबसे सामान्य परिदृश्य जिसमें समरूपता को परिभाषित किया जा सकता है, वह सांस्थितिक समष्टि के लिए है, जबकि समान समरूपता के लिए एक बिंदु के सामीप्य के [[फ़िल्टर (सेट सिद्धांत)|फ़िल्टर]] की आवश्यकता होती है, जो किसी अन्य बिंदु के सामीप्य के फ़िल्टर के साथ तुलनीय हो। उत्तरार्द्ध प्रायः एक समान संरचना के माध्यम से किया जाता है, जिससे एक समान समष्टि मिलती है। इन स्थितियों में उपयुक्त परिभाषाएँ इस प्रकार हैं:


: दो [[टोपोलॉजिकल स्पेस|सांस्थितिक समष्टि]] ''X'' और ''Y'' के बीच निरंतर फलनों का एक सेट ''A'' बिंदु ''x'' ∈ ''X'' और ''y'' ∈ ''Y'' बिंदुओं पर '''सांस्थितिक रूप से समसतत्''' है यदि ''Y''  के बारे में किसी भी खुले सेट ''O'' के लिए, ''X'' के सामीप्य यू और Y के V हैं जैसे कि प्रत्येक f ∈ A के लिए, यदि f[U] और V का प्रतिच्छेदन गैर-रिक्त है, तो f[U] ⊆ O  है। तब A को '''सांस्थितिक रूप से समसतत्''' कहा जाता है यदि यह प्रत्येक y ∈ Y के लिए  x और y पर सांस्थितिक रूप से समसतत् है। अंत में, A '''समसतत्''' है यदि यह सभी बिंदुओं x ∈ X के लिए x पर समसतत् है।  
: दो [[टोपोलॉजिकल स्पेस|सांस्थितिक समष्टि]] ''X'' और ''Y'' के बीच निरंतर फलनों का एक सेट ''A'' बिंदु ''x'' ∈ ''X'' और ''y'' ∈ ''Y'' बिंदुओं पर '''सांस्थितिक रूप से समनिरंतर''' है यदि ''Y''  के बारे में किसी भी संवृत सेट ''O'' के लिए, ''X'' के सामीप्य यू और Y के V हैं जैसे कि प्रत्येक f ∈ A के लिए, यदि f[U] और V का प्रतिच्छेदन गैर-रिक्त है, तो f[U] ⊆ O  है। तब A को '''सांस्थितिक रूप से समनिरंतर''' कहा जाता है यदि यह प्रत्येक y ∈ Y के लिए  x और y पर सांस्थितिक रूप से समनिरंतर है। अंत में, A '''समनिरंतर''' है यदि यह सभी बिंदुओं x ∈ X के लिए x पर समनिरंतर है।


:दो एकसमान स्थानों ''X'' और ''Y''  के बीच निरंतर फलनों का एक सेट ''A'' '''समान रूप से''' '''समसतत्''' है यदि ''Y'' पर एकरूपता के प्रत्येक तत्व W के लिए, सेट
:दो एकसमान समष्टियों ''X'' और ''Y''  के बीच निरंतर फलनों का एक सेट ''A'' '''समान रूप से''' '''समनिरंतर''' है यदि ''Y'' पर एकरूपता के प्रत्येक तत्व W के लिए, सेट
::{{mset| (''u,v'') ∈ ''X × X'': for all ''f'' ∈ ''A''. (''f''(''u''),''f''(''v'')) ∈ ''W'' }}
::{{mset| (''u,v'') ∈ ''X × X'': for all ''f'' ∈ ''A''. (''f''(''u''),''f''(''v'')) ∈ ''W'' }}
:''X'' पर एकरूपता का सदस्य है
:''X'' पर एकरूपता का सदस्य है
Line 201: Line 201:
अब हम एकरूपता में अंतर्निहित मूल विचार का संक्षेप में वर्णन करते हैं।
अब हम एकरूपता में अंतर्निहित मूल विचार का संक्षेप में वर्णन करते हैं।


एकरूपता {{mvar|𝒱}}  {{math|''Y'' &times; ''Y''}} के उपसमुच्चय का एक गैर-रिक्त संग्रह है, जहां, कई अन्य गुणों के बीच, प्रत्येक {{math|''V'' &isin; 𝒱}}, {{mvar|V}} में {{mvar|Y}} विकर्ण होता है (अर्थात {{math|{{(}}(''y'', ''y'') &isin; ''Y''{{)}}}})। {{mvar|𝒱}}का प्रत्येक तत्व को प्रतिवेश कहा जाता है।
एकरूपता {{mvar|𝒱}}  {{math|''Y'' &times; ''Y''}} के अर्धसमुच्चय का एक गैर-रिक्त संग्रह है, जहां, कई अन्य गुणों के बीच, प्रत्येक {{math|''V'' &isin; 𝒱}}, {{mvar|V}} में {{mvar|Y}} विकर्ण होता है (अर्थात {{math|{{(}}(''y'', ''y'') &isin; ''Y''{{)}}}})। {{mvar|𝒱}}का प्रत्येक तत्व को प्रतिवेश कहा जाता है।


एकरूपताएं उन बिंदुओं के विचार ([[मीट्रिक रिक्त स्थान|मीट्रिक समष्टि]] से ली गई) को सामान्यीकृत करती हैं <nowiki>''</nowiki>{{mvar|r}}-क्लोज़<nowiki>''</nowiki> करें ({{math|''r'' > 0}}के लिए ), जिसका अर्थ है कि उनकी दूरी <{{mvar|r}} है।  इसे स्पष्ट करने के लिए मान लीजिये {{math|(''Y'', ''d'')}} एक मीट्रिक समष्टि है (इसलिए {{mvar|Y}} इसका विकर्ण सेट है {{math|{{(}}(''y'', ''z'') &isin; ''Y'' &times; ''Y'' : ''d''(''y'', ''z'') {{=}} 0{{)}}}}) किसी भी {{math|''r'' > 0}} के लिए है, मान लीजिए
एकरूपताएं उन बिंदुओं के विचार ([[मीट्रिक रिक्त स्थान|मीट्रिक समष्टि]] से ली गई) को सामान्यीकृत करती हैं <nowiki>''</nowiki>{{mvar|r}}-क्लोज़<nowiki>''</nowiki> करें ({{math|''r'' > 0}}के लिए ), जिसका अर्थ है कि उनकी दूरी <{{mvar|r}} है।  इसे स्पष्ट करने के लिए मान लीजिये {{math|(''Y'', ''d'')}} एक मीट्रिक समष्टि है (इसलिए {{mvar|Y}} इसका विकर्ण सेट है {{math|{{(}}(''y'', ''z'') &isin; ''Y'' &times; ''Y'' : ''d''(''y'', ''z'') {{=}} 0{{)}}}}) किसी भी {{math|''r'' > 0}} के लिए है, मान लीजिए
:{{math|''U''{{sub|''r''}} {{=}} {{(}}(''y'', ''z'') &isin; ''Y'' &times; ''Y'' : ''d''(''y'', ''z'') < ''r''{{)}}}}
:{{math|''U''{{sub|''r''}} {{=}} {{(}}(''y'', ''z'') &isin; ''Y'' &times; ''Y'' : ''d''(''y'', ''z'') < ''r''{{)}}}}
बिंदुओं के सभी युग्मों के समुच्चय को निरूपित करें {{mvar|r}}-बंद हैं। ध्यान दें कि अगर हम यह "भूल" जाएं कि  {{mvar|d}} तब अस्तित्व में था, तो किसी भी {{math|''r'' > 0}} के लिए, हम अभी भी केवल सेट {{math|''U''{{sub|''r''}}}} का उपयोग करके यह निर्धारित करने में सक्षम होंगे कि {{mvar|Y}}  के दो बिंदु {{mvar|r}}-बंद हैं या नहीं। इस तरह, सेट {{math|''U''{{sub|''r''}}}} किसी भी मीट्रिक समष्टि की आवश्यकता के बिना समान निरंतरता और समान अभिसरण जैसी चीजों को परिभाषित करने के लिए आवश्यक सभी जानकारी को समाहित करता है।इन सेटों के सबसे बुनियादी गुणों को स्वयंसिद्ध करने से एकरूपता की परिभाषा प्राप्त होती है। दरअसल, सेट {{math|''U''{{sub|''r''}}}} एकरूपता उत्पन्न करता है जो कि मीट्रिक समष्टि {{math|(''Y'', ''d'')}} के साथ प्रामाणिक रूप से जुड़ा हुआ है।
बिंदुओं के सभी युग्मों के समुच्चय को निरूपित करें {{mvar|r}}-विवृत हैं। ध्यान दें कि अगर हम यह "भूल" जाएं कि  {{mvar|d}} तब अस्तित्व में था, तो किसी भी {{math|''r'' > 0}} के लिए, हम अभी भी केवल सेट {{math|''U''{{sub|''r''}}}} का उपयोग करके यह निर्धारित करने में सक्षम होंगे कि {{mvar|Y}}  के दो बिंदु {{mvar|r}}-विवृत हैं या नहीं। इस तरह, सेट {{math|''U''{{sub|''r''}}}} किसी भी मीट्रिक समष्टि की आवश्यकता के बिना समान निरंतरता और समान अभिसरण जैसी चीजों को परिभाषित करने के लिए आवश्यक सभी जानकारी को समाहित करता है।इन सेटों के सबसे बुनियादी गुणों को स्वयंसिद्ध करने से एकरूपता की परिभाषा प्राप्त होती है। दरअसल, सेट {{math|''U''{{sub|''r''}}}} एकरूपता उत्पन्न करता है जो कि मीट्रिक समष्टि {{math|(''Y'', ''d'')}} के साथ प्रामाणिक रूप से जुड़ा हुआ है।


इस सामान्यीकरण का लाभ यह है कि अब हम कुछ महत्वपूर्ण परिभाषाओं का विस्तार कर सकते हैं जो मीट्रिक समष्टि (उदाहरण के लिए [[पूर्ण मीट्रिक स्थान|पूर्ण मीट्रिक समष्टि]]) के लिए सांस्थितिक समष्टि की व्यापक श्रेणी के लिए समझ में आते हैं। विशेष रूप से, सांस्थितिक समूहों और सांस्थितिक वेक्टर समष्टि के लिए हैं।
इस सामान्यीकरण का लाभ यह है कि अब हम कुछ महत्वपूर्ण परिभाषाओं का विस्तार कर सकते हैं जो मीट्रिक समष्टि (उदाहरण के लिए [[पूर्ण मीट्रिक स्थान|पूर्ण मीट्रिक समष्टि]]) के लिए सांस्थितिक समष्टि की व्यापक श्रेणी के लिए समझ में आते हैं। विशेष रूप से, सांस्थितिक समूहों और सांस्थितिक सदिश समष्टि के लिए हैं।


;एक सम निरंतरता की कमजोर अवधारणा  है:
;एक सम निरंतरता की कमजोर अवधारणा  है:


: दो सांस्थितिक समष्टियों ''X'' और के बीच निरंतर फलनों के एक सेट ''A'' को x ∈ X और ''y ∈ Y'' पर '''समान रूप से निरंतर''' कहा जाता है यदि कोई खुला सेट O दिया गया है जिसमें y है तो ''x'' के पड़ोस U और y के V इस प्रकार हैं कि f[U] ⊆ O जब भी f(x) ∈ V हैं। यदि यह प्रत्येक y ∈ Y के लिए x और y पर '''समान रूप से निरंतर''' है, और यदि यह प्रत्येक x ∈ X के लिए  x पर '''समान रूप से निरंतर''' है, तो यह समान रूप से निरंतर है।  
: दो सांस्थितिक समष्टियों ''X'' और के बीच निरंतर फलनों के एक सेट ''A'' को x ∈ X और ''y ∈ Y'' पर '''समान रूप से निरंतर''' कहा जाता है यदि कोई संवृत सेट O दिया गया है जिसमें y है तो ''x'' के पड़ोस U और y के V इस प्रकार हैं कि f[U] ⊆ O जब भी f(x) ∈ V हैं। यदि यह प्रत्येक y ∈ Y के लिए x और y पर '''समान रूप से निरंतर''' है, और यदि यह प्रत्येक x ∈ X के लिए  x पर '''समान रूप से निरंतर''' है, तो यह समान रूप से निरंतर है।  


===स्टोकेस्टिक समनिरंतरता===
===स्टोकेस्टिक समनिरंतरता===
Line 227: Line 227:
* सतत स्टोकेस्टिक प्रक्रिया - स्टोकेस्टिक प्रक्रिया जो समय या सूचकांक पैरामीटर का एक सतत फलन है}}
* सतत स्टोकेस्टिक प्रक्रिया - स्टोकेस्टिक प्रक्रिया जो समय या सूचकांक पैरामीटर का एक सतत फलन है}}
* दीनी निरंतरता}}
* दीनी निरंतरता}}
* दिशा-संरक्षण फलन- अलग-अलग स्थानों में निरंतर फलन का एक एनालॉग।
* दिशा-संरक्षण फलन- अलग-अलग समष्टियों में निरंतर फलन का एक एनालॉग।
* सूक्ष्म निरंतरता - गणितीय शब्द}}
* सूक्ष्म निरंतरता - गणितीय शब्द}}
* सामान्य फलन- गणित में क्रमसूचकों का फलन}}
* सामान्य फलन- गणित में क्रमसूचकों का फलन}}

Revision as of 14:28, 17 July 2023

गणितीय विश्लेषण में, यदि सभी फलन सतत फलन हैं और यहां वर्णित सटीक अर्थ में, किसी दिए गए सामीप्य पर उनमें समान भिन्नता है, तो फलनों का एक समूह समनिरंतर होता है।विशेष रूप से, यह अवधारणा गणनीय सेट समूहों और इस प्रकार फलनों के अनुक्रमों पर अनप्रयुक्‍त होती है।

एस्कोली के प्रमेय के निर्माण में समनिरंतरता दिखाई देती है, जिसमें कहा गया है कि C(X) का एक अर्धसमुच्चय, एक सघन(कॉम्पैक्ट) हॉसडॉर्फ समष्टि X पर सतत फलनों की समष्टि, सघन है यदि और केवल यदि यह विवृत है, बिंदुवार घिरा हुआ है और समनिरंतर है। एक उपप्रमेय के रूप में, C(X) में एक अनुक्रम समान रूप से अभिसरण होता है यदि और केवल यदि यह समनिरंतर है और बिंदुवार रूप से एक फलन में अभिसरण करता है (जरूरी नहीं कि संतत एक-प्राथमिकता हो)। विशेष रूप से, मीट्रिक समष्टि पर या स्थानीय रूप से सतत समष्टि पर[1] सतत फलनों fn के एक समनिरंतर बिंदुवार अभिसरण अनुक्रम की सीमा या तो सतत है। यदि, इसके अतिरिक्त, fn होलोमार्फिक हैं, तो सीमा भी होलोमोर्फिक है।

एकसमान सीमाबद्धता सिद्धांत बताता है कि बानाच समष्टियों के बीच सतत रैखिक ऑपरेटरों का एक बिंदुवार बंधा हुआ समूह समनिरंतर है।[2]

मीट्रिक समष्टि के बीच समनिरंतरता

मान लीजिए कि X और Y दो मीट्रिक समष्टि हैं, और F, X से Y तक फलनों का एक समूह है। हम इन समष्टियों के संबंधित मैट्रिक्स को d द्वारा निरूपित करेंगे।

समूह F एक x0∈ X बिंदु पर समनिरंतर है यदि प्रत्येक ε > 0 के लिए, एक δ > 0 निहित है जैसे कि d(ƒ(x)0), ƒ(x)) < ε सभी ƒ ∈ F के लिए और सभी x जैसे कि d(x)0, x) < δ है। यदि समूह X के प्रत्येक बिंदु पर समसंतत है, तो वह बिंदुवार समसंतत है।[3]

समूह F समान रूप से समनिरंतर है यदि प्रत्येक ε > 0 के लिए, एक δ > 0 निहित है जैसे कि d(ƒ(x)1), ƒ(x2)) < ε सभी ƒ ∈ F और सभी x1, x2के लिए,∈ X जैसे कि d(x1, x2) <δ है।[4]

तुलना के लिए, कथन F में सभी फलन सतत हैं' का अर्थ है कि प्रत्येक ε > 0, प्रत्येक ƒ ∈ F, और प्रत्येक x0 ∈ X के लिए, वहाँ एक δ > 0 निहित है जैसे कि d(ƒ(x0), ƒ(x)) < ε सभी x ∈ X के लिए जैसे कि d(x0, x) < δ है।

  • निरंतरता के लिए, δ ε, ƒ, और x0 पर निर्भर हो सकता है.
  • एकसमान निरंतरता के लिए, δ ε और ƒ पर निर्भर हो सकता है।
  • बिंदुवार समनिरंतरता के लिए, δ ε और x पर निर्भर हो सकता है0.
  • एकसमान समनिरंतरता के लिए, δ केवल ε पर निर्भर हो सकता है।

अधिक प्रायः, जब X एक सांस्थितिक समष्टि होता है, तो X से Y तक के फलनों के एक समुच्चय F को x पर समनिरंतर कहा जाता है यदि प्रत्येक ε > 0 के लिए, x में एक निकटवर्ती Ux होता है जैसे कि

सभी yUx और ∈F के लिए है। यह परिभाषा प्रायः सांस्थितिक सदिश समष्टि के संदर्भ में दिखाई देती है।

जब X संहत होता है, तो एक समुच्चय समान रूप से समनिरंतर होता है यदि और केवल यदि यह प्रत्येक बिंदु पर समनिरंतर हो, अनिवार्य रूप से उसी कारण से क्योंकि एकसमान निरंतरता और निरंतरता संहत समष्टियों पर मेल खाती है। अपने आप में प्रयुक्त, "समनिरंतरता" शब्द संदर्भ के आधार पर या तो बिंदुवार या एकसमान धारणा को संदर्भित कर सकता है। एक सघन समष्टि पर, ये धारणाएँ मेल खाती हैं।

कुछ बुनियादी गुण परिभाषा से तुरंत अनुसरण करते हैं। सतत फलनों का प्रत्येक परिमित समुच्चय समनिरंतर है। एक समनिरंतर समुच्चय का समापन पुनः समनिरंतर है। फलनों प्रके समान रूप से समनिरंतर समूह का प्रत्येक सदस्य समान रूप से निरंतर है, और समान रूप से निरंतर फलनों का प्रत्येक परिमित समुच्चय समान रूप से समनिरंतर है।

उदाहरण

  • एक सामान्य लिप्सचिट्ज़ स्थिरांक के साथ फलनों का एक समुच्चय (समान रूप से) समनिरंतर है। विशेष रूप से, यह स्थिति है यदि समुच्चय में समान स्थिरांक से घिरे व्युत्पन्न फलन होते हैं।
  • समान सीमाबद्धता सिद्धांत निरंतर रैखिक ऑपरेटरों के एक समुच्चय के लिए समनिरंतर होने के लिए पर्याप्त परिस्थिति देता है।
  • विश्लेषणात्मक फलन के पुनरावृत्तों का एक समूह फ़तौ समुच्चय पर समनिरंतर है।[5][6]

प्रतिउदाहरण

  • फलनों का अनुक्रम fn(x) = आर्कटेन(nx), समनिरंतर नहीं है क्योंकि x0=0 पर परिभाषा का उल्लंघन होता है।

सांस्थितिक समूहों में मानचित्रों मानों की समरूपता

मान लीजिए कि T एक सांस्थितिक समष्टि है और Y एक योज्य सांस्थितिक समूह है (यानी एक समूह एक टोपोलॉजी से संपन्न है जो इसके संचालन को निरंतर बनाता है)। सांस्थितिक सदिश समष्टि सांस्थितिक समूहों के प्रमुख उदाहरण हैं और प्रत्येक सांस्थितिक समूह में एक संबद्ध विहित एकरूपता होती है।

परिभाषा:[7] T से Y तक के मानचित्रों के एक समूह H को tT पर समनिरंतर कहा जाता है यदि Y में 0 के प्रत्येक सामीप्य V के लिए T में t के कुछ सामीप्य U निहित जैसे कि प्रत्येक hH के लिए h(U) ⊆ h(t) + V है। हम कहते हैं कि H समनिरंतर है यदि यह T के प्रत्येक बिंदु पर समनिरंतर है।

ध्यान दें कि यदि H एक बिंदु पर समनिरंतर है H में प्रत्येक मानचित्र बिंदु पर सतत है। स्पष्टतः, T से Y तक सतत मानचित्रों का प्रत्येक परिमित समुच्चय समनिरंतर है।

समनिरंतर रैखिक मानचित्र

क्योंकि प्रत्येक टोपोलॉजिकल सदिश समष्टि (टीवीएस) एक सांस्थितिक समूह है, इसलिए सांस्थितिक समूहों के लिए दिए गए मानचित्रों के एक समनिरंतर समूह की परिभाषा बिना किसी बदलाव के टीवीएस में स्थानांतरित हो जाती है।

समनिरंतर रैखिक मानचित्रों का लक्षण वर्णन

दो सांस्थितिक सदिश समष्टि के बीच फॉर्म के मानचित्रों के एक समूह को एक बिंदु पर समनिरंतर कहा जाता है यदि में मूल के प्रत्येक सामीप्य के लिए में मूल के कुछ सामीप्य निहित हैं जैसे कि सभी के लिए है।

यदि मानचित्रों का एक समूह है और एक समुच्चय है तो मान लीजिए है। संकेतन के साथ, यदि और तो समुच्चय हैं तो सभी के लिए यदि केवल है।

मान लीजिए कि और सांस्थितिक सदिश समष्टि (टीवीएस) हैं से तक रैखिक ऑपरेटरों का एक समूह है। उसके बाद निम्न बराबर हैं:

  1. समनिरंतर है।
  2. , के प्रत्येक बिंदु पर समनिरंतर है।
  3. , के किसी बिंदु पर समनिरंतर है।
  4. मूल बिंदु पर समनिरंतर है।
    • अर्थात् में मूल के प्रत्येक सामीप्य के लिए के लिए, में मूल के एक सामीप्य का अस्तित्व है जैसे कि (या समकक्ष, प्रत्येक के लिए है)।[8]
    • में मूल बिंदु के प्रत्येक सामीप्य के लिए , में मूल बिंदु का सामीप्य है।
  5. में का विवृत होना समनिरंतर हैl
    • बिंदु-वार अभिसरण की टोपोलॉजी से संपन्न को दर्शाता है।
    • का संतुलित सेट समनिरंतर है।

जबकि यदि स्थानीय रूप से उत्तल है तो इस सूची को सम्मिलित करने के लिए बढ़ाया जा सकता है:

  1. का उत्तल सेट समनिरंतर है।[9]
  2. का संतुलित उत्तल सेट समनिरंतर है।[10][9]

जबकि यदि और स्थानीय रूप से उत्तल हैं तो इस सूची को सम्मिलित करने के लिए बढ़ाया जा सकता है:

  1. पर प्रत्येक सतत सेमिनोर्म के लिए, पर एक सतत सेमिनॉर्म निहित है, पर जैसे कि सभी सभी के लिए है। [9]
    • यहाँ, का अर्थ है कि के लिए है।

जबकि यदि को बैरल किया गया है और स्थानीय रूप से उत्तल है तो इस सूची को सम्मिलित करने के लिए बढ़ाया जा सकता है:

  1. , में परिबद्ध है;[11]
  2. , में परिबद्ध है। [11]
    • परिबद्ध अभिसरण की टोपोलॉजी से संपन्न को दर्शाता है (अर्थात, के परिबद्ध अर्धसमुच्चय पर एकसमान अभिसरण)।

जबकि यदि और यदि बानाच समष्टि हैं तो इस सूची को इसमें सम्मिलित करने के लिए बढ़ाया जा सकता है:

  1. (अर्थात, ऑपरेटर मानदंड में समान रूप से बंधा हुआ है)।

समनिरंतर रैखिक समनिरंतर का लक्षण वर्णन

मान लीजिए कि निरंतर दोहरी समष्टि के साथ फ़ील्ड पर एक टोपोलॉजिकल सदिश समष्टि (टीवीएस) है। पर रैखिक कार्यात्मकताओं के एक समूह को एक बिंदु पर समनिरंतर कहा जाता है यदि में मूल के प्रत्येक सामीप्य के लिए में मूल के कुछ सामीप्य निहित हैं। ऐसा कि सभी के लिए सभी के लिए है।

किसी भी अर्धसमुच्चय के लिए, निम्नलिखित समतुल्य हैं:[9]

  1. समनिरंतर है।
  2. मूल बिंदु पर समनिरंतर है।
  3. , के किसी बिंदु पर समनिरंतर है।
  4. , मूल के कुछ सामीप्य के ध्रुवीय सेट में समाहित है। [10]
  5. का (पूर्व)ध्रुवीय, में मूल बिंदु का सामीप्य है।
  6. में का कमजोर-* का विवृत होना समनिरंतर है।
  7. का संतुलित सेट समनिरंतर है।
  8. का उत्तल सेट समनिरंतर है।
  9. का उत्तल सेट समनिरंतर है।[10]

जबकि यदि को मानकीकृत किया गया है तो इस सूची को इसमें सम्मिलित करने के लिए बढ़ाया जा सकता है:

  1. , का एक दृढ़ता से परिबद्ध अर्धसमुच्चय है। [10]

जबकि यदि एक बैरल वाली समष्टि है तो इस सूची को इसमें सम्मिलित करने के लिए बढ़ाया जा सकता है:

  1. कमज़ोर* टोपोलॉजी में अपेक्षाकृत सघन है। [11]
  2. कमजोर* परिबद्ध है (अर्थात्, , में परिबद्ध है।)
  3. [11]
  4. परिबद्ध अभिसरण की टोपोलॉजी में परिबद्ध है (अर्थात्, में परिबद्ध है।)[11]

समनिरंतर रैखिक मानचित्रों के गुण

एकसमान सीमा सिद्धांत (जिसे बानाच-स्टाइनहॉस प्रमेय के रूप में भी जाना जाता है) में कहा गया है कि बानाच समष्टियों के बीच रैखिक मानचित्रों का एक सेट समनिरंतर है यदि यह बिंदुवार घिरा हुआ है; अर्थात्, प्रत्येक के लिए है। परिणाम को ऐसे स्थिति में सामान्यीकृत किया जा सकता है जब स्थानीय रूप से उत्तल हो और एक बैरल वाली समष्टि हो।[12]

समनिरंतर रैखिक कार्यात्मकताओं के गुण

अलाओग्लू के प्रमेय का तात्पर्य है कि के एक समनिरंतर अर्धसमुच्चय का कमजोर-* विवृत होना कमज़ोर है-* सघन है; इस प्रकार प्रत्येक समनिरंतर अर्धसमुच्चय कमजोर-* अपेक्षाकृत सघन होता है।[13][9]

यदि कोई स्थानीय रूप से उत्तल टीवीएस है, तो सभी बैरल वाले समष्टियों का समूह और सभी अर्धसमुच्चय का समूह जो उत्तल, संतुलित, विवृत और में घिरा हुआ हैं, ध्रुवता द्वारा एक दूसरे के अनुरूप हैं (के संबंध में) )।[14] इसका तात्पर्य यह है कि स्थानीय रूप से उत्तल टी.वी.एस को तभी बैरल किया जाता है जब का प्रत्येक परिबद्ध अर्धसमुच्चय समनिरंतर हो।[14]

प्रमेय — Suppose that is a separable TVS. Then every closed equicontinuous subset of is a compact metrizable space (under the subspace topology). If in addition is metrizable then is separable.[14]

समान निरंतरता और एकसमान अभिसरण

मान लीजिए कि फिर अर्ज़ेला-एस्कोली प्रमेय बताता है कि C(X) का एक अर्धसमुच्चय सघन है यदि और केवल तभी जब वह विवृत हो, जब समान रूप से घिरा हुआ हो और समनिरंतर हो। [15] यह हेइन-बोरेल प्रमेय के अनुरूप है, जो बताता है कि Rn के अर्धसमुच्चय संहत होते हैं यदि और केवल तभी जब वे विवृत और परिबद्ध हों।[16] परिणाम के रूप में, C(X) में प्रत्येक समान रूप से बंधे समनिरंतर अनुक्रम में एक अनुवर्ती होता है जो X पर एक निरंतर फलन में समान रूप से परिवर्तित होता है।

अर्ज़ेला-एस्कोली प्रमेय दृष्टिकोण से, C(X) में एक अनुक्रम समान रूप से परिवर्तित होता है यदि और केवल यदि यह समनिरंतर है और बिंदुवार रूप से परिवर्तित होता है। कथन की परिकल्पना को थोड़ा कमजोर किया जा सकता है: C(X) में एक अनुक्रम समान रूप से परिवर्तित होता है यदि यह समवर्ती है और X पर कुछ फलन के घने अर्धसमुच्चय पर बिंदुवार परिवर्तित होता है (निरंतर नहीं माना जाता है)।

Proof

Suppose fj is an equicontinuous sequence of continuous functions on a dense subset D of X. Let ε > 0 be given. By equicontinuity, for each zD, there exists a neighborhood Uz of z such that

for all j and xUz. By denseness and compactness, we can find a finite subset D′D such that X is the union of Uz over zD′. Since fj converges pointwise on D′, there exists N > 0 such that

whenever zD′ and j, k > N. It follows that

for all j, k > N. In fact, if xX, then xUz for some zD′ and so we get:

.

Hence, fj is Cauchy in C(X) and thus converges by completeness.

इस कमजोर संस्करण का उपयोग प्रायः अलग-अलग सघन समष्टि के लिए अर्ज़ेला-एस्कोली प्रमेय को प्रमाणित करने के लिए किया जाता है। एक और परिणाम यह है कि एक मीट्रिक समष्टि पर, या स्थानीय रूप से सघन समष्टि पर निरंतर फलनों के एक समनिरंतर बिंदुवार अभिसरण अनुक्रम की सीमा निरंतर है। (उदाहरण के लिए नीचे देखें।) उपरोक्त में, X  की सघनता की परिकल्पना को शिथिल नहीं किया जा सकता है। यह देखने के लिए, R पर g(0)= 1 के साथ एक सघन रूप से समर्थित निरंतर फलन g पर विचार करें, और फ़ंक्शंस के समनिरंतर अनुक्रम पर विचार करें, और ƒn(x)= g(xn) द्वारा परिभाषित R पर फलन {ƒn} के समनिरंतर अनुक्रम पर विचार करें। फिर, ƒn बिंदुवार 0 पर परिवर्तित होता है लेकिन समान रूप से 0 पर परिवर्तित नहीं होता है।

एकसमान अभिसरण का यह मानदंड प्रायः वास्तविक और जटिल विश्लेषण में उपयोगी होता है। मान लीजिए कि हमें निरंतर फलनों का एक क्रम दिया गया है जो Rn के कुछ संवृत अर्धसमुच्चय G पर बिंदुवार परिवर्तित होता है। जैसा कि ऊपर उल्लेख किया गया है, यह सचमुच में G के एक सघन अर्धसमुच्चय पर समान रूप से परिवर्तित होता है यदि यह सघन सेट पर समान है। व्यवहार में, सम-निरंतरता दिखाना प्रायः इतना कठिन नहीं होता है। उदाहरण के लिए, यदि अनुक्रम में कुछ नियमितता के साथ अलग-अलग फलन या फलन सम्मिलित हैं (उदाहरण के लिए, फलन एक अंतर समीकरण के समाधान हैं), तो अनुक्रम को समतुल्य दिखाने के लिए औसत मूल्य प्रमेय या कुछ अन्य प्रकार के अनुमानों का उपयोग किया जा सकता है। इसके बाद यह निष्कर्ष निकलता है कि अनुक्रम की सीमा G के प्रत्येक सघन अर्धसमुच्चय पर निरंतर है; इस प्रकार, G पर निरंतर है। एक समान तर्क तब दिया जा सकता है जब फलन होलोमोर्फिक हों। उदाहरण के लिए, कोई समसंगति (संक्षिप्त अर्धसमुच्चय पर) दिखाने के लिए कॉची के अनुमान का उपयोग कर सकता है और यह निष्कर्ष निकाल सकता है कि सीमा होलोमोर्फिक है। ध्यान दें कि यहां समनिरंतरता आवश्यक है। उदाहरण के लिए, ƒn(x) = आर्कटैन nx असंतत चिह्न फलन के गुणक में परिवर्तित हो जाता है।

सामान्यीकरण

टोपोलॉजिकल सामयिक समष्टियों में समनिरंतरता

सबसे सामान्य परिदृश्य जिसमें समरूपता को परिभाषित किया जा सकता है, वह सांस्थितिक समष्टि के लिए है, जबकि समान समरूपता के लिए एक बिंदु के सामीप्य के फ़िल्टर की आवश्यकता होती है, जो किसी अन्य बिंदु के सामीप्य के फ़िल्टर के साथ तुलनीय हो। उत्तरार्द्ध प्रायः एक समान संरचना के माध्यम से किया जाता है, जिससे एक समान समष्टि मिलती है। इन स्थितियों में उपयुक्त परिभाषाएँ इस प्रकार हैं:

दो सांस्थितिक समष्टि X और Y के बीच निरंतर फलनों का एक सेट A बिंदु xX और yY बिंदुओं पर सांस्थितिक रूप से समनिरंतर है यदि Y के बारे में किसी भी संवृत सेट O के लिए, X के सामीप्य यू और Y के V हैं जैसे कि प्रत्येक f ∈ A के लिए, यदि f[U] और V का प्रतिच्छेदन गैर-रिक्त है, तो f[U] ⊆ O है। तब A को सांस्थितिक रूप से समनिरंतर कहा जाता है यदि यह प्रत्येक y ∈ Y के लिए x और y पर सांस्थितिक रूप से समनिरंतर है। अंत में, A समनिरंतर है यदि यह सभी बिंदुओं x ∈ X के लिए x पर समनिरंतर है।
दो एकसमान समष्टियों X और Y के बीच निरंतर फलनों का एक सेट A समान रूप से समनिरंतर है यदि Y पर एकरूपता के प्रत्येक तत्व W के लिए, सेट
{ (u,v) ∈ X × X: for all fA. (f(u),f(v)) ∈ W }
X पर एकरूपता का सदस्य है
समान समष्टि का परिचय

अब हम एकरूपता में अंतर्निहित मूल विचार का संक्षेप में वर्णन करते हैं।

एकरूपता 𝒱 Y × Y के अर्धसमुच्चय का एक गैर-रिक्त संग्रह है, जहां, कई अन्य गुणों के बीच, प्रत्येक V ∈ 𝒱, V में Y विकर्ण होता है (अर्थात {(y, y) ∈ Y})। 𝒱का प्रत्येक तत्व को प्रतिवेश कहा जाता है।

एकरूपताएं उन बिंदुओं के विचार (मीट्रिक समष्टि से ली गई) को सामान्यीकृत करती हैं ''r-क्लोज़'' करें (r > 0के लिए ), जिसका अर्थ है कि उनकी दूरी <r है। इसे स्पष्ट करने के लिए मान लीजिये (Y, d) एक मीट्रिक समष्टि है (इसलिए Y इसका विकर्ण सेट है {(y, z) ∈ Y × Y : d(y, z) = 0}) किसी भी r > 0 के लिए है, मान लीजिए

Ur = {(y, z) ∈ Y × Y : d(y, z) < r}

बिंदुओं के सभी युग्मों के समुच्चय को निरूपित करें r-विवृत हैं। ध्यान दें कि अगर हम यह "भूल" जाएं कि d तब अस्तित्व में था, तो किसी भी r > 0 के लिए, हम अभी भी केवल सेट Ur का उपयोग करके यह निर्धारित करने में सक्षम होंगे कि Y के दो बिंदु r-विवृत हैं या नहीं। इस तरह, सेट Ur किसी भी मीट्रिक समष्टि की आवश्यकता के बिना समान निरंतरता और समान अभिसरण जैसी चीजों को परिभाषित करने के लिए आवश्यक सभी जानकारी को समाहित करता है।इन सेटों के सबसे बुनियादी गुणों को स्वयंसिद्ध करने से एकरूपता की परिभाषा प्राप्त होती है। दरअसल, सेट Ur एकरूपता उत्पन्न करता है जो कि मीट्रिक समष्टि (Y, d) के साथ प्रामाणिक रूप से जुड़ा हुआ है।

इस सामान्यीकरण का लाभ यह है कि अब हम कुछ महत्वपूर्ण परिभाषाओं का विस्तार कर सकते हैं जो मीट्रिक समष्टि (उदाहरण के लिए पूर्ण मीट्रिक समष्टि) के लिए सांस्थितिक समष्टि की व्यापक श्रेणी के लिए समझ में आते हैं। विशेष रूप से, सांस्थितिक समूहों और सांस्थितिक सदिश समष्टि के लिए हैं।

एक सम निरंतरता की कमजोर अवधारणा है
दो सांस्थितिक समष्टियों X और के बीच निरंतर फलनों के एक सेट A को x ∈ X और y ∈ Y पर समान रूप से निरंतर कहा जाता है यदि कोई संवृत सेट O दिया गया है जिसमें y है तो x के पड़ोस U और y के V इस प्रकार हैं कि f[U] ⊆ O जब भी f(x) ∈ V हैं। यदि यह प्रत्येक y ∈ Y के लिए x और y पर समान रूप से निरंतर है, और यदि यह प्रत्येक x ∈ X के लिए x पर समान रूप से निरंतर है, तो यह समान रूप से निरंतर है।

स्टोकेस्टिक समनिरंतरता

स्टोकेस्टिक समनिरंतरता, समनिरंतरता का एक संस्करण है जिसका उपयोग यादृच्छिक चर के फलनों के अनुक्रम और यादृच्छिक चर के उनके अभिसरण के संदर्भ में किया जाता है।[17]


यह भी देखें

  • पूर्ण निरंतरता - फलनों के लिए निरंतरता का रूप}}
  • असंततताओं का वर्गीकरण - असंतत बिंदुओं का गणितीय विश्लेषण}}
  • स्थूल फलन}}
  • निरंतर फलन (सेट सिद्धांत) - क्रमसूचकों का अनुक्रम, जैसे कि सीमा चरणों में ग्रहण किए गए मान पिछले चरणों में सभी मूल्यों की सीमाएं (सीमा उच्च और सीमा निम्नतम) हैं}}
  • सतत स्टोकेस्टिक प्रक्रिया - स्टोकेस्टिक प्रक्रिया जो समय या सूचकांक पैरामीटर का एक सतत फलन है}}
  • दीनी निरंतरता}}
  • दिशा-संरक्षण फलन- अलग-अलग समष्टियों में निरंतर फलन का एक एनालॉग।
  • सूक्ष्म निरंतरता - गणितीय शब्द}}
  • सामान्य फलन- गणित में क्रमसूचकों का फलन}}
  • खंडशः - कई उप-फलनों द्वारा परिभाषित फलन}}
  • एकसमान निरंतरता - फलनों में परिवर्तन का}}

टिप्पणियाँ

  1. More generally, on any compactly generated space; e.g., a first-countable space.
  2. Rudin 1991, p. 44 §2.5.
  3. Reed & Simon (1980), p. 29; Rudin (1987), p. 245
  4. Reed & Simon (1980), p. 29
  5. Alan F. Beardon, S. Axler, F.W. Gehring, K.A. Ribet : Iteration of Rational Functions: Complex Analytic Dynamical Systems. Springer, 2000; ISBN 0-387-95151-2, ISBN 978-0-387-95151-5; page 49
  6. Joseph H. Silverman : The arithmetic of dynamical systems. Springer, 2007. ISBN 0-387-69903-1, ISBN 978-0-387-69903-5; page 22
  7. Narici & Beckenstein 2011, pp. 133–136.
  8. Rudin 1991, p. 44 Theorem 2.4.
  9. 9.0 9.1 9.2 9.3 9.4 Narici & Beckenstein 2011, pp. 225–273.
  10. 10.0 10.1 10.2 10.3 Trèves 2006, pp. 335–345.
  11. 11.0 11.1 11.2 11.3 11.4 Trèves 2006, pp. 346–350.
  12. Schaefer 1966, Theorem 4.2.
  13. Schaefer 1966, Corollary 4.3.
  14. 14.0 14.1 14.2 Schaefer & Wolff 1999, pp. 123–128.
  15. Rudin 1991, p. 394 Appendix A5.
  16. Rudin 1991, p. 18 Theorem 1.23.
  17. de Jong, Robert M. (1993). "Stochastic Equicontinuity for Mixing Processes". अर्थमिति में पैरामीटर स्पेस विधियों और डेटा निर्भरता के विस्तार का स्पर्शोन्मुख सिद्धांत. Amsterdam. pp. 53–72. ISBN 90-5170-227-2.{{cite book}}: CS1 maint: location missing publisher (link)

संदर्भ