लैंबर्ट श्रृंखला: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (5 revisions imported from alpha:लैंबर्ट_श्रृंखला) |
(No difference)
|
Revision as of 12:43, 26 July 2023
गणित में, एक लैम्बर्ट श्रृंखला, जिसका नाम जोहान हेनरिक लैम्बर्ट के नाम पर रखा गया है, एक श्रृंखला (गणित) का रूप ले रही है
इसके हर का विस्तार करके औपचारिक रूप से फिर से प्रारम्भ किया जा सकता है:
जहां नई श्रृंखला के गुणांकan निरंतर फलन 1(n) = 1 के साथ डिरिचलेट कनवल्शन द्वारा दिए गए हैं:
इस श्रृंखला को मोबियस व्युत्क्रम सूत्र के माध्यम से उलटा किया जा सकता है, और यह मोबियस परिवर्तन का एक उदाहरण है।
उदाहरण
चूंकि यह अंतिम योग एक विशिष्ट संख्या-सैद्धांतिक योग है, लैंबर्ट श्रृंखला में उपयोग किए जाने पर लगभग कोई भी प्राकृतिक गुणक फलन सटीक रूप से योग्य होगा। इस प्रकार, उदाहरण के लिए,
कहाँ संख्या n के धनात्मक विभाजकों की संख्या है।
उच्च क्रम के विभाजक फलनों के योग के लिए,
कहाँ कोई सम्मिश्र संख्या है और
विभाजक फलन है. विशेष रूप से, , लैंबर्ट श्रृंखला जो मिलती है वह है
जो (के कारक तक) है विभाजन संख्याओं के लिए सामान्य उत्पादक फलन का लघुगणकीय व्युत्पन्न
पिछली पहचान से संबंधित अतिरिक्त लैंबर्ट श्रृंखला में इस प्रकार सम्मिलित हैं
मोबियस फलन नीचे दिया गया है :[2]
मोएबियस फलन पर संबंधित लैंबर्ट श्रृंखला में किसी भी अभाज्य के लिए निम्नलिखित पहचान सम्मिलित हैं
मुख्य :
उपरोक्त पहली पहचान का प्रमाण इन लैम्बर्ट श्रृंखला के बहु-खंड (या द्विभाजन) पहचान से निम्नलिखित रूप में फलन उत्पन्न करता है जहां हम निरूपित करते हैं
अंकगणितीय फलन f का लैंबर्ट श्रृंखला फलन होने के लिए:
- पिछले समीकरणों में दूसरी पहचान इस तथ्य से मिलती है कि बाईं ओर के योग के गुणांक दिए गए हैं
- जहां समारोह अंकगणितीय फलनों के डिरिचलेट कनवल्शन के संचालन के संबंध में गुणक पहचान है।
यूलर के अस्थायी फलन के लिए :
वॉन मैंगोल्ड्ट समारोह के लिए :
लिउविले के समारोह के लिए :
दाईं ओर का योग रामानुजन थीटा फलन, या जैकोबी थीटा फलन के समान है . ध्यान दें कि लैंबर्ट श्रृंखला जिसमें an त्रिकोणमितीय फलन हैं, उदाहरण के लिए, an = sin(2n x), का मूल्यांकन जैकोबी थीटा फलनों के लघुगणकीय व्युत्पन्नों के विभिन्न संयोजनों द्वारा किया जा सकता है।
सामान्यतया, हम पिछले उत्पादक फलन विस्तार को लेट करके बढ़ा सकते हैं के विशिष्ट फलन को निरूपित करें शक्तियाँ, , सकारात्मक प्राकृतिक संख्याओं के लिए और सामान्यीकृत एम-लिउविले लैम्ब्डा फलन को अंकगणितीय फलन संतोषजनक के रूप में परिभाषित करना . की यह परिभाषा का स्पष्ट अर्थ यह है , जो बदले में यह दर्शाता है
हमारे पास वर्गों के फलन का योग उत्पन्न करने वाला थोड़ा अधिक सामान्यीकृत लैंबर्ट श्रृंखला विस्तार भी है के रूप में
[3]
सामान्य तौर पर, यदि हम लैंबर्ट श्रृंखला को ऊपर लिखें जो अंकगणितीय फलन को उत्पन्न करता है , फलन के अगले जोड़े उनके लैंबर्ट श्रृंखला द्वारा व्यक्त किए गए अन्य प्रसिद्ध संकल्पों के अनुरूप हैं जो फलन उत्पन्न करते हैं
कहाँ डिरिचलेट कनवल्शन के लिए गुणात्मक पहचान है, के लिए पहचान फलन है शक्तियाँ, वर्गों के लिए विशेषता फलन को दर्शाता है, जो कि अलग-अलग अभाज्य कारकों की संख्या की गणना करता है (प्राइम ओमेगा फलन देखें), जॉर्डन का अस्थायी फलन है, और विभाजक फलन है (डिरिचलेट कनवल्शन देखें)।
सारांश में अक्षर q का पारंपरिक उपयोग एक ऐतिहासिक उपयोग है, जो अण्डाकार वक्रों और थीटा फलनों के सिद्धांत में इसकी उत्पत्ति को नोम (गणित) के रूप में संदर्भित करता है।
वैकल्पिक रूप
स्थानापन्न श्रृंखला के लिए एक और सामान्य रूप प्राप्त होता है, जैसे
कहाँ
इस रूप में लैंबर्ट श्रृंखला के उदाहरण, साथ , विषम पूर्णांक मानों के लिए रीमैन ज़ेटा फलन के व्यंजकों में होता है; विवरण के लिए जीटा स्थिरांक देखें।
वर्तमान उपयोग
साहित्य में हम पाते हैं कि लैंबर्ट श्रृंखला विभिन्न प्रकार की राशियों पर लागू होती है। उदाहरण के लिए, चूंकि एक बहु लघुगणक फलन है, हम प्रपत्र के किसी भी योग का उल्लेख कर सकते हैं
लैंबर्ट श्रृंखला के रूप में, यह मानते हुए कि पैरामीटर उपयुक्त रूप से प्रतिबंधित हैं। इस प्रकार
जो इकाई चक्र पर नहीं सभी जटिल q के लिए है, उसे लैंबर्ट श्रृंखला की पहचान माना जाएगा। यह पहचान भारतीय गणितज्ञ एस. रामानुजन द्वारा प्रकाशित कुछ पहचानों से सीधे तौर पर मिलती है। रामानुजन के फलनों की बहुत गहन खोज ब्रूस बर्नड्ट के फलनों में पाई जा सकती है।
गुणनखंडन प्रमेय
2017-2018 में हाल ही में प्रकाशित एक नया निर्माण फॉर्म के तथाकथित लैम्बर्ट श्रृंखला गुणनखंडन प्रमेयों से संबंधित है[4]
कहाँ प्रतिबंधित का संबंधित योग या अंतर है
विभाजन फलन जो की संख्या को दर्शाता है के सभी विभाजनों में है को अलग-अलग भागों की सम (क्रमशः, विषम) संख्या में बाँटें। उलटे निचले त्रिकोणीय अनुक्रम को निरूपित करें जिसके पहले कुछ मान नीचे दी गई तालिका में दिखाए गए हैं।
n \ k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 |
4 | -1 | 0 | -1 | 1 | 0 | 0 | 0 | 0 |
5 | -1 | -1 | -1 | -1 | 1 | 0 | 0 | 0 |
6 | 0 | 0 | 1 | -1 | -1 | 1 | 0 | 0 |
7 | 0 | 0 | -1 | 0 | -1 | -1 | 1 | 0 |
8 | 1 | 0 | 0 | 1 | 0 | -1 | -1 | 1 |
लैंबर्ट श्रृंखला गुणनखंडन प्रमेय विस्तार का एक अन्य विशिष्ट रूप दिया गया है[5]
कहाँ (अनंत) q-पोचहैमर प्रतीक है। पिछले समीकरण के दाईं ओर व्युत्क्रमणीय आव्यूह उत्पाद व्युत्क्रम आव्यूह उत्पादों के अनुरूप हैं जिनकी निचली त्रिकोणीय प्रविष्टियाँ विभाजन (संख्या सिद्धांत)फलन और विभाजक योगों द्वारा मोबियस फलन के संदर्भ में दी गई हैं।
अगली तालिका इन संगत व्युत्क्रम आव्यूहों की पहली कई पंक्तियों को सूचीबद्ध करती है।[6]
n \ k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
4 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
5 | 4 | 3 | 2 | 1 | 1 | 0 | 0 | 0 |
6 | 5 | 3 | 2 | 2 | 1 | 1 | 0 | 0 |
7 | 10 | 7 | 5 | 3 | 2 | 1 | 1 | 0 |
8 | 12 | 9 | 6 | 4 | 3 | 2 | 1 | 1 |
हम जाने अंतर्संबंधित पंचकोणीय संख्याओं के अनुक्रम को निरूपित करते हैं, अर्थात, ताकि पंचकोणीय संख्या प्रमेय का विस्तार इस रूप में हो
फिर किसी लैम्बर्ट श्रृंखला के लिए का क्रम उत्पन्न करना , हमारे पास ऊपर दिए गए गुणनखंडन प्रमेय का संबंधित व्युत्क्रम संबंध है[7]
लैम्बर्ट श्रृंखला गुणनखंडन प्रमेयों पर यह फलन [8] प्रपत्र के अधिक सामान्य विस्तार तक विस्तारित है
कहाँ कोई भी (विभाजन-संबंधी) पारस्परिक उत्पन्न करने वाला फलन है, कोई अंकगणितीय फलन है, और जहां
संशोधित गुणांक का विस्तार किया जाता है
उपरोक्त विस्तार में संगत व्युत्क्रम आव्यूह संतुष्ट करते हैं
ताकि ऊपर दिए गए लैम्बर्ट गुणनखंडन प्रमेय के पहले संस्करण की तरह हम प्रपत्र के दाईं ओर के गुणांकों के लिए एक व्युत्क्रम संबंध प्राप्त करें
पुनरावृत्ति संबंध
इस अनुभाग में हम प्राकृतिक संख्याओं के लिए निम्नलिखित फलनों को परिभाषित करते हैं :
- :
हम लैंबर्ट श्रृंखला#गुणनखंड प्रमेय से संकेतन को भी अपनाते हैं
कहाँ अनंत q-पोचहैमर प्रतीक है। फिर हमारे पास इन फलनों और सिद्ध पंचकोणीय संख्याओं को सम्मिलित करने के लिए निम्नलिखित पुनरावृत्ति संबंध हैं:[7]
- :
व्युत्पन्न
लैंबर्ट श्रृंखला के व्युत्पन्न श्रृंखला को शब्दानुसार विभेदित करके प्राप्त किए जा सकते हैं . हमारे पास शब्दानुसार निम्नलिखित सर्वसमिकाएँ हैं किसी के लिए लैंबर्ट श्रृंखला का व्युत्पन्न [9][10]
जहां पिछले समीकरणों में ब्रैकेटेड त्रिकोणीय गुणांक पहले और दूसरे प्रकार की स्टर्लिंग संख्याओं को दर्शाते हैं।
हमारे पास फॉर्म में दिए गए पिछले विस्तारों में निहित शब्दों के व्यक्तिगत गुणांक निकालने के लिए अगली पहचान भी है
अब यदि हम फलनों को परिभाषित करें किसी के लिए भी द्वारा
कहाँ इवरसन के सम्मेलन को दर्शाता है, तो हमारे पास इसके लिए गुणांक हैं द्वारा दी गई लैम्बर्ट श्रृंखला का व्युत्पन्न
निःसंदेह, एक विशिष्ट तर्क के अनुसार विशुद्ध रूप से औपचारिक शक्ति श्रृंखला पर संचालन के द्वारा हमारे पास भी वह है
यह भी देखें
- एर्डोस-बोर्विन स्थिरांक
- अंकगणितीय फलन
- डिरिचलेट कनवल्शन
संदर्भ
- ↑ "Jupyter Notebook Viewer".
- ↑ See the forum post here (or the article arXiv:1112.4911) and the conclusions section of arXiv:1712.00611 by Merca and Schmidt (2018) for usage of these two less standard Lambert series for the Moebius function in practical applications.
- ↑ Weisstein, Eric W. "लैंबर्ट श्रृंखला". MathWorld. Retrieved 22 April 2018.
- ↑ Merca, Mircea (13 January 2017). "लैम्बर्ट श्रृंखला गुणनखंडन प्रमेय". The Ramanujan Journal. 44 (2): 417–435. doi:10.1007/s11139-016-9856-3. S2CID 125286799.
- ↑ Merca, M. & Schmidt, M. D. (2019). "लैंबर्ट श्रृंखला गुणनखंडन द्वारा विशेष अंकगणितीय कार्य उत्पन्न करना". Contributions to Discrete Mathematics. 14 (1): 31–45. arXiv:1706.00393. Bibcode:2017arXiv170600393M. doi:10.11575/cdm.v14i1.62425.
- ↑ "A133732". Online Encyclopedia of Integer Sequences. Retrieved 22 April 2018.
- ↑ 7.0 7.1 Schmidt, Maxie D. (8 December 2017). "लैंबर्ट श्रृंखला द्वारा उत्पन्न अंकगणितीय कार्यों के लिए नए पुनरावृत्ति संबंध और मैट्रिक्स समीकरण". Acta Arithmetica. 181 (4): 355–367. arXiv:1701.06257. Bibcode:2017arXiv170106257S. doi:10.4064/aa170217-4-8. S2CID 119130467.
- ↑ M. Merca & Schmidt, M. D. (2017). "लैंबर्ट श्रृंखला जनरेटिंग फ़ंक्शंस के फ़ैक्टराइज़ेशन के लिए नए फ़ैक्टर जोड़े". arXiv:1706.02359 [math.CO].
- ↑ Schmidt, Maxie D. (2017). "परिबद्ध भाजक के साथ सामान्यीकृत भाजक कार्यों को शामिल करने वाले संयुक्त योग और पहचान". arXiv:1704.05595 [math.NT].
- ↑ Schmidt, Maxie D. (2017). "हैडामर्ड उत्पादों और लैंबर्ट सीरीज जनरेटिंग फ़ंक्शंस के उच्च-क्रम डेरिवेटिव के लिए फ़ैक्टराइज़ेशन प्रमेय". arXiv:1712.00608 [math.NT].
- Berry, Michael V. (2010). Functions of Number Theory. CAMBRIDGE UNIVERSITY PRESS. pp. 637–641. ISBN 978-0-521-19225-5.
- Lambert, Preston A. (1904). "Expansions of algebraic functions at singular points". Proc. Am. Philos. Soc. 43 (176): 164–172. JSTOR 983503.
- Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001
- "Lambert series", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Weisstein, Eric W. "Lambert Series". MathWorld.
- Schmidt, Maxie Dion (2020-04-06). "A catalog of interesting and useful Lambert series identities". arXiv:2004.02976 [math.NT].