अभिज्ञेयता (आईडेन्टिफिएबिलिटी): Difference between revisions

From Vigyanwiki
(Created page with "{{For-multi|the related problem in economics|Parameter identification problem|the concept of identifiability in the area of system identification|Structural identifiability}}...")
 
No edit summary
Line 1: Line 1:
{{For-multi|the related problem in economics|Parameter identification problem|the concept of identifiability in the area of system identification|Structural identifiability}}
{{For-multi|अर्थशास्त्र में संबंधित समस्या|पैरामीटर पहचान समस्या|सिस्टम पहचान के क्षेत्र में पहचान की अवधारणा|संरचनात्मक पहचान}}


आंकड़ों में, पहचान एक ऐसी संपत्ति है जिसे एक [[सांख्यिकीय मॉडल]] को संभव होने के लिए सटीक सांख्यिकीय अनुमान के लिए संतुष्ट करना होगा। एक मॉडल की पहचान तब की जा सकती है जब अनंत संख्या में अवलोकन प्राप्त करने के बाद इस मॉडल के अंतर्निहित मापदंडों के वास्तविक मूल्यों को सीखना सैद्धांतिक रूप से संभव हो। गणितीय रूप से, यह कहने के बराबर है कि मापदंडों के विभिन्न मूल्यों को अवलोकन योग्य चर के विभिन्न संभाव्यता वितरण उत्पन्न करना चाहिए। आमतौर पर मॉडल को केवल कुछ तकनीकी प्रतिबंधों के तहत ही पहचाना जा सकता है, ऐसी स्थिति में इन आवश्यकताओं के सेट को पहचान की स्थिति कहा जाता है।
आंकड़ों में, '''पहचान''' ऐसी गुण है जिसे [[सांख्यिकीय मॉडल]] को संभव होने के लिए स्पष्ट सांख्यिकीय अनुमान के लिए संतुष्ट करना होगा। मॉडल की पहचान तब की जा सकती है जब अनंत संख्या में अवलोकन प्राप्त करने के बाद इस मॉडल के अंतर्निहित मापदंडों के वास्तविक मूल्यों को सीखना सैद्धांतिक रूप से संभव हो। गणितीय रूप से, यह कहने के सामान है कि मापदंडों के विभिन्न मूल्यों को अवलोकन योग्य वेरिएबल के विभिन्न संभाव्यता वितरण उत्पन्न करना चाहिए। सामान्यतः मॉडल को केवल कुछ तकनीकी प्रतिबंधों के तहत ही पहचाना जा सकता है, ऐसी स्थिति में इन आवश्यकताओं के समूह को पहचान की स्थिति कहा जाता है।


एक मॉडल जो पहचानने योग्य होने में विफल रहता है उसे गैर-पहचान योग्य या अज्ञात कहा जाता है: दो या दो से अधिक [[सांख्यिकीय पैरामीटर]] [[अवलोकन संबंधी तुल्यता]] हैं। कुछ मामलों में, भले ही एक मॉडल गैर-पहचान योग्य हो, फिर भी मॉडल मापदंडों के एक निश्चित उपसमूह के वास्तविक मूल्यों को सीखना संभव है। इस मामले में हम कहते हैं कि मॉडल आंशिक रूप से पहचाने जाने योग्य है। अन्य मामलों में पैरामीटर स्पेस के एक निश्चित सीमित क्षेत्र तक वास्तविक पैरामीटर का स्थान सीखना संभव हो सकता है, जिस स्थिति में मॉडल को पहचानने योग्य सेट किया जाता है।
इस प्रकार के मॉडल जो पहचानने योग्य होने में विफल रहता है उसे गैर-पहचान योग्य या अज्ञात कहा जाता है: दो या दो से अधिक [[सांख्यिकीय पैरामीटर]] [[अवलोकन संबंधी तुल्यता]] हैं। कुछ स्थितियों में, तथापि मॉडल गैर-पहचान योग्य हो, फिर भी मॉडल मापदंडों के निश्चित उपसमूह के वास्तविक मूल्यों को सीखना संभव है। इस स्थिति में हम कहते हैं कि मॉडल आंशिक रूप से पहचाने जाने योग्य है। अन्य स्थितियों में पैरामीटर स्पेस के निश्चित सीमित क्षेत्र तक वास्तविक पैरामीटर का स्थान सीखना संभव हो सकता है, जिस स्थिति में मॉडल को पहचानने योग्य समूह किया जाता है।


मॉडल गुणों की कड़ाई से सैद्धांतिक खोज के अलावा, पहचान योग्यता विश्लेषण का उपयोग करके प्रयोगात्मक डेटा सेट के साथ मॉडल का परीक्षण करते समय पहचान क्षमता को व्यापक दायरे में संदर्भित किया जा सकता है।<ref>
मॉडल गुणों की कड़ाई से सैद्धांतिक खोज के अलावा, पहचान योग्यता विश्लेषण का उपयोग करके प्रयोगात्मक डेटा समूह के साथ मॉडल का परीक्षण करते समय पहचान क्षमता को व्यापक दायरे में संदर्भित किया जा सकता है।<ref>
{{Cite journal| doi = 10.1093/bioinformatics/btp358| volume = 25| issue = 15| pages = 1923–1929| last1 = Raue| first1 = A.| last2 = Kreutz| first2 = C.| last3 = Maiwald| first3 = T.| last4 = Bachmann| first4 = J.| last5 = Schilling| first5 = M.| last6 = Klingmuller| first6 = U.| last7 = Timmer| first7 = J.| title = Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood| journal = Bioinformatics| date = 2009-08-01| pmid=19505944| doi-access = free}}
{{Cite journal| doi = 10.1093/bioinformatics/btp358| volume = 25| issue = 15| pages = 1923–1929| last1 = Raue| first1 = A.| last2 = Kreutz| first2 = C.| last3 = Maiwald| first3 = T.| last4 = Bachmann| first4 = J.| last5 = Schilling| first5 = M.| last6 = Klingmuller| first6 = U.| last7 = Timmer| first7 = J.| title = Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood| journal = Bioinformatics| date = 2009-08-01| pmid=19505944| doi-access = free}}
</ref>
</ref>
==परिभाषा==
==परिभाषा==
होने देना <math> \mathcal{P}=\{P_\theta:\theta\in\Theta\} </math> पैरामीटर स्पेस के साथ एक सांख्यिकीय मॉडल बनें <math>\Theta</math>. हम ऐसा कहते हैं <math>\mathcal{P}</math> यदि मानचित्रण हो तो पहचान योग्य है <math>\theta\mapsto P_\theta</math> आक्षेप है|एक-से-एक:<ref>{{harvnb|Lehmann|Casella|1998|loc=Ch. 1, Definition 5.2}}</ref>
माना <math> \mathcal{P}=\{P_\theta:\theta\in\Theta\} </math> पैरामीटर स्पेस के साथ सांख्यिकीय मॉडल <math>\Theta</math> बनें . हम ऐसा कहते हैं <math>\mathcal{P}</math> यदि मानचित्रण हो तो पहचान योग्य है <math>\theta\mapsto P_\theta</math> आक्षेप है|:<ref>{{harvnb|Lehmann|Casella|1998|loc=Ch. 1, Definition 5.2}}</ref>
: <math>
: <math>
     P_{\theta_1}=P_{\theta_2} \quad\Rightarrow\quad \theta_1=\theta_2 \quad\ \text{for all } \theta_1,\theta_2\in\Theta.
     P_{\theta_1}=P_{\theta_2} \quad\Rightarrow\quad \theta_1=\theta_2 \quad\ \text{for all } \theta_1,\theta_2\in\Theta.
   </math>
   </math>
इस परिभाषा का अर्थ है कि θ के अलग-अलग मान अलग-अलग संभाव्यता वितरण के अनुरूप होने चाहिए: यदि θ<sub>1</sub>≠θ<sub>2</sub>, फिर भी पी<sub>''θ''<sub>1</sub></sub>≠P<sub>''θ''<sub>2</sub></उप>.<ref>{{harvnb|van der Vaart|1998|page=62}}</ref> यदि वितरण को संभाव्यता घनत्व फ़ंक्शन (पीडीएफ) के संदर्भ में परिभाषित किया गया है, तो दो पीडीएफ को केवल तभी अलग माना जाना चाहिए, जब वे गैर-शून्य माप के सेट पर भिन्न हों (उदाहरण के लिए दो फ़ंक्शन)<sub>1</sub>(x)='1'<sub>0&nbsp;&nbsp;''x''&nbsp;<&nbsp;1</sub> और<sub>2</sub>(x)='1'<sub>0&nbsp;&nbsp;''x''&nbsp;&nbsp;1</sub> केवल एक बिंदु x = 1 पर अंतर होता है - लेबेस्ग का एक सेट शून्य मापता है - और इस प्रकार इसे अलग पीडीएफ के रूप में नहीं माना जा सकता है)
इस परिभाषा का अर्थ है कि θ के अलग-अलग मान अलग-अलग संभाव्यता वितरण के अनुरूप होने चाहिए: यदि ''θ''<sub>1</sub>≠''θ''<sub>2</sub>, तो ''P<sub>θ</sub>''<sub>1</sub>≠''P<sub>θ</sub>''<sub>2</sub>.<ref>{{harvnb|van der Vaart|1998|page=62}}</ref> यदि वितरण को संभाव्यता घनत्व फलन (पीडीएफ) के संदर्भ में परिभाषित किया गया है, तो दो पीडीएफ को केवल तभी अलग माना जाना चाहिए, जब वे गैर-शून्य माप के समुच्चय पर भिन्न हों (उदाहरण के लिए दो फलन ƒ<sub>1</sub>(''x'') = '''1'''<sub>0 ≤ ''x'' < 1</sub> and ƒ<sub>2</sub>(''x'') = '''1'''<sub>0 ≤ ''x'' ≤ 1</sub> केवल एक बिंदु ''x = 1'' पर भिन्न होता है - माप शून्य का एक समुच्चय - और इस प्रकार इसे अलग पीडीएफ के रूप में नहीं माना जा सकता है)।।
 


मानचित्र की व्युत्क्रमणीयता के अर्थ में मॉडल की पहचान <math>\theta\mapsto P_\theta</math> यदि मॉडल को अनिश्चित काल तक देखा जा सकता है तो यह मॉडल के वास्तविक पैरामीटर को सीखने में सक्षम होने के बराबर है। वास्तव में, यदि {एक्स<sub>t</sub>} ⊆ एस मॉडल से अवलोकनों का क्रम है, फिर बड़ी संख्या के मजबूत कानून द्वारा,
मानचित्र की व्युत्क्रमणीयता के अर्थ में मॉडल की पहचान <math>\theta\mapsto P_\theta</math> यदि मॉडल को अनिश्चित काल तक देखा जा सकता है तो यह मॉडल के वास्तविक पैरामीटर को सीखने में सक्षम होने के सामान है। वास्तव में, यदि {''X<sub>t</sub>''} ⊆ ''S'' मॉडल से अवलोकनों का क्रम है, फिर बड़ी संख्या के शसक्त नियम द्वारा,
: <math>
: <math>
     \frac 1 T \sum_{t=1}^T \mathbf{1}_{\{X_t\in A\}} \ \xrightarrow{\text{a.s.}}\ \Pr[X_t\in A],
     \frac 1 T \sum_{t=1}^T \mathbf{1}_{\{X_t\in A\}} \ \xrightarrow{\text{a.s.}}\ \Pr[X_t\in A],
   </math>
   </math>
प्रत्येक मापने योग्य सेट ए एस के लिए (यहां '1'<sub>{...}</sub> [[सूचक कार्य]] है)। इस प्रकार, अनंत संख्या में प्रेक्षणों के साथ हम वास्तविक संभाव्यता वितरण P ज्ञात करने में सक्षम होंगे<sub>0</sub> मॉडल में, और चूंकि उपरोक्त पहचान की स्थिति के लिए मानचित्र की आवश्यकता है <math>\theta\mapsto P_\theta</math> उलटा हो, हम उस पैरामीटर का सही मान भी ढूंढने में सक्षम होंगे जो दिए गए वितरण पी उत्पन्न करता है<sub>0</sub>.
प्रत्येक मापने योग्य समूह ''A'' ''S'' के लिए (यहां '1'<sub>{...}</sub> [[सूचक कार्य]] है)। इस प्रकार, अनंत संख्या में प्रेक्षणों के साथ हम वास्तविक संभाव्यता वितरण P<sub>0</sub> ज्ञात करने में सक्षम होंगे मॉडल में, और चूंकि उपरोक्त पहचान की स्थिति के लिए मानचित्र की आवश्यकता है <math>\theta\mapsto P_\theta</math> विपरीत हो, हम उस पैरामीटर का सही मान भी ढूंढने में सक्षम होंगे जो दिए गए वितरण ''P''<sub>0</sub> उत्पन्न करता है.


==उदाहरण==
==उदाहरण==


===उदाहरण 1===
===उदाहरण 1===
होने देना <math>\mathcal{P}</math> [[सामान्य वितरण]] [[स्थान-पैमाने पर परिवार]] बनें:
माना <math>\mathcal{P}</math> [[सामान्य वितरण]] [[स्थान-पैमाने पर परिवार|स्थान-पैमाने पर वर्ग]] बनें:
: <math>
: <math>
     \mathcal{P} = \Big\{\ f_\theta(x) = \tfrac{1}{\sqrt{2\pi}\sigma} e^{ -\frac{1}{2\sigma^2}(x-\mu)^2 }\ \Big|\ \theta=(\mu,\sigma): \mu\in\mathbb{R}, \,\sigma\!>0 \ \Big\}.
     \mathcal{P} = \Big\{\ f_\theta(x) = \tfrac{1}{\sqrt{2\pi}\sigma} e^{ -\frac{1}{2\sigma^2}(x-\mu)^2 }\ \Big|\ \theta=(\mu,\sigma): \mu\in\mathbb{R}, \,\sigma\!>0 \ \Big\}.
   </math>
   </math>
तब
जब
: <math>
: <math>
\begin{align}
\begin{align}
Line 38: Line 37:
     \Longleftrightarrow {} & x^2 \left(\frac 1 {\sigma_1^2}-\frac 1 {\sigma_2^2}\right) - 2x\left(\frac{\mu_1}{\sigma_1^2}-\frac{\mu_2}{\sigma_2^2} \right) + \left(\frac{\mu_1^2}{\sigma_1^2}-\frac{\mu_2^2}{\sigma_2^2}+\ln\sigma_1-\ln\sigma_2\right) = 0
     \Longleftrightarrow {} & x^2 \left(\frac 1 {\sigma_1^2}-\frac 1 {\sigma_2^2}\right) - 2x\left(\frac{\mu_1}{\sigma_1^2}-\frac{\mu_2}{\sigma_2^2} \right) + \left(\frac{\mu_1^2}{\sigma_1^2}-\frac{\mu_2^2}{\sigma_2^2}+\ln\sigma_1-\ln\sigma_2\right) = 0
\end{align} </math>
\end{align} </math>
यह अभिव्यक्ति लगभग सभी x के लिए शून्य के बराबर है, जब इसके सभी गुणांक शून्य के बराबर हों, जो केवल तभी संभव है जब |σ<sub>1</sub>| = |पी<sub>2</sub>| और μ<sub>1</sub> = एम<sub>2</sub>. चूँकि स्केल पैरामीटर में σ शून्य से अधिक होने तक सीमित है, हम यह निष्कर्ष निकालते हैं कि मॉडल पहचानने योग्य है:<sub>''θ''<sub>1</sub></sub> = ƒ<sub>''θ''<sub>2</sub></sub> ⇔ i उप>1</sub> = θ<sub>2</sub>.
यह अभिव्यक्ति लगभग सभी x के लिए शून्य के सामान है, जब इसके सभी गुणांक शून्य के सामान हों, जो केवल तभी संभव है जब |''σ''<sub>1</sub>| = |''σ''<sub>2</sub>| और ''μ''<sub>1</sub> = ''μ''<sub>2</sub>. चूँकि स्केल पैरामीटर में σ शून्य से अधिक होने तक सीमित है, हम यह निष्कर्ष निकालते हैं कि मॉडल पहचानने योग्य है:
 
ƒ<sub>''θ''1</sub> = ƒ<sub>''θ''2</sub> ⇔ ''θ''<sub>1</sub> = ''θ''<sub>2</sub>.


===उदाहरण 2===
===उदाहरण 2===
होने देना <math>\mathcal{P}</math> मानक [[रैखिक प्रतिगमन मॉडल]] बनें:
माना <math>\mathcal{P}</math> मानक [[रैखिक प्रतिगमन मॉडल]] बनें:
: <math>
: <math>
     y = \beta'x + \varepsilon, \quad \mathrm{E}[\,\varepsilon\mid x\,]=0
     y = \beta'x + \varepsilon, \quad \mathrm{E}[\,\varepsilon\mid x\,]=0                                                                                                                                        
   </math>
   </math>
(जहाँ ′ मैट्रिक्स [[ खिसकाना ]] को दर्शाता है)। तब पैरामीटर β पहचाने जाने योग्य है यदि और केवल यदि मैट्रिक्स <math> \mathrm{E}[xx'] </math> उलटा है. इस प्रकार, यह मॉडल में पहचान की स्थिति है।
(जहाँ ′ अव्युह [[ खिसकाना |स्थानांतरित]] को दर्शाता है)। तब पैरामीटर β पहचाने जाने योग्य है यदि और केवल यदि अव्युह <math> \mathrm{E}[xx'] </math> विपरीत है. इस प्रकार, यह मॉडल में पहचान की स्थिति है।


===उदाहरण 3===
===उदाहरण 3===
कल्पना करना <math>\mathcal{P}</math> चर में शास्त्रीय त्रुटि [[रैखिक मॉडल]] है:
कल्पना करना <math>\mathcal{P}</math> वेरिएबल में शास्त्रीय त्रुटि [[रैखिक मॉडल]] है:
: <math>\begin{cases}
: <math>\begin{cases}
     y = \beta x^* + \varepsilon, \\
     y = \beta x^* + \varepsilon, \\                                                                                                                                                                    
     x = x^* + \eta,
     x = x^* + \eta,                                                                                                                                                                                          
   \end{cases}</math>
   \end{cases}                                                                                                                                                                                               </math>
जहां (ε,η,x*) शून्य अपेक्षित मान और अज्ञात भिन्नताओं के साथ संयुक्त रूप से सामान्य स्वतंत्र यादृच्छिक चर हैं, और केवल चर (x,y) देखे जाते हैं। तब यह मॉडल पहचान योग्य नहीं है,<ref name="riersol">{{harvnb|Reiersøl|1950}}</ref> केवल उत्पाद βσ²<sub style=position:relative;left:-.5em >∗</sub> है (जहां σ²<sub style=position:relative;left:-.5em >∗</sub> का प्रसरण है अव्यक्त प्रतिगामी x*). यह भी एक निर्धारित पहचान मॉडल का एक उदाहरण है: यद्यपि β का सटीक मान नहीं सीखा जा सकता है, हम गारंटी दे सकते हैं कि यह अंतराल (β) में कहीं स्थित होना चाहिए उप>yx</sub>, 1÷β<sub>xy</sub>), जहां β<sub>yx</sub> x, और β पर y के सामान्य न्यूनतम वर्ग प्रतिगमन में गुणांक है<sub>xy</sub> y पर x के OLS प्रतिगमन में गुणांक है।<ref>{{harvnb|Casella|Berger|2001|page=583}}</ref>
जहां (ε,η,x*) शून्य अपेक्षित मान और अज्ञात भिन्नताओं के साथ संयुक्त रूप से सामान्य स्वतंत्र यादृच्छिक वेरिएबल हैं, और केवल वेरिएबल (x,y) देखे जाते हैं। तब यह मॉडल पहचान योग्य नहीं है,<ref name="riersol">{{harvnb|Reiersøl|1950}}</ref> केवल उत्पाद βσ²<sub style=position:relative;left:-.5em >∗</sub> है (जहां σ²<sub style=position:relative;left:-.5em >∗</sub> का प्रसरण है अव्यक्त प्रतिगामी x*). यह भी निर्धारित पहचान मॉडल का उदाहरण है: यद्यपि β का स्पष्ट मान नहीं सीखा जा सकता है, हम गारंटी दे सकते हैं कि यह अंतराल (β) में कहीं स्थित होना चाहिए (''β''<sub>yx</sub>, 1÷''β''<sub>xy</sub>), जहां ''β''<sub>yx</sub>, और ''β''<sub>xy</sub> पर y के सामान्य न्यूनतम वर्ग प्रतिगमन में गुणांक है y पर x के OLS प्रतिगमन में गुणांक है।<ref>{{harvnb|Casella|Berger|2001|page=583}}</ref>
यदि हम सामान्यता की धारणा को त्याग देते हैं और चाहते हैं कि x* सामान्य रूप से वितरित 'नहीं' हो, केवल स्वतंत्रता की स्थिति ε ⊥ η ⊥ x* को बनाए रखते हुए, तो मॉडल पहचानने योग्य हो जाता है।<ref name="riersol"/>


यदि हम सामान्यता की धारणा को त्याग देते हैं और चाहते हैं कि x* सामान्य रूप से वितरित 'नहीं' हो, केवल स्वतंत्रता की स्थिति ε ⊥ η ⊥ x* को बनाए रखते हुए, तो मॉडल पहचानने योग्य हो जाता है।<ref name="riersol" />


==यह भी देखें==
==यह भी देखें==
Line 61: Line 62:
* [[संरचनात्मक पहचान]]
* [[संरचनात्मक पहचान]]
* अवलोकनशीलता
* अवलोकनशीलता
* [[एक साथ समीकरण मॉडल]]
* [[एक साथ समीकरण मॉडल|समकालिक समीकरण मॉडल]]


== संदर्भ ==
== संदर्भ ==

Revision as of 11:33, 14 July 2023

आंकड़ों में, पहचान ऐसी गुण है जिसे सांख्यिकीय मॉडल को संभव होने के लिए स्पष्ट सांख्यिकीय अनुमान के लिए संतुष्ट करना होगा। मॉडल की पहचान तब की जा सकती है जब अनंत संख्या में अवलोकन प्राप्त करने के बाद इस मॉडल के अंतर्निहित मापदंडों के वास्तविक मूल्यों को सीखना सैद्धांतिक रूप से संभव हो। गणितीय रूप से, यह कहने के सामान है कि मापदंडों के विभिन्न मूल्यों को अवलोकन योग्य वेरिएबल के विभिन्न संभाव्यता वितरण उत्पन्न करना चाहिए। सामान्यतः मॉडल को केवल कुछ तकनीकी प्रतिबंधों के तहत ही पहचाना जा सकता है, ऐसी स्थिति में इन आवश्यकताओं के समूह को पहचान की स्थिति कहा जाता है।

इस प्रकार के मॉडल जो पहचानने योग्य होने में विफल रहता है उसे गैर-पहचान योग्य या अज्ञात कहा जाता है: दो या दो से अधिक सांख्यिकीय पैरामीटर अवलोकन संबंधी तुल्यता हैं। कुछ स्थितियों में, तथापि मॉडल गैर-पहचान योग्य हो, फिर भी मॉडल मापदंडों के निश्चित उपसमूह के वास्तविक मूल्यों को सीखना संभव है। इस स्थिति में हम कहते हैं कि मॉडल आंशिक रूप से पहचाने जाने योग्य है। अन्य स्थितियों में पैरामीटर स्पेस के निश्चित सीमित क्षेत्र तक वास्तविक पैरामीटर का स्थान सीखना संभव हो सकता है, जिस स्थिति में मॉडल को पहचानने योग्य समूह किया जाता है।

मॉडल गुणों की कड़ाई से सैद्धांतिक खोज के अलावा, पहचान योग्यता विश्लेषण का उपयोग करके प्रयोगात्मक डेटा समूह के साथ मॉडल का परीक्षण करते समय पहचान क्षमता को व्यापक दायरे में संदर्भित किया जा सकता है।[1]

परिभाषा

माना पैरामीटर स्पेस के साथ सांख्यिकीय मॉडल बनें . हम ऐसा कहते हैं यदि मानचित्रण हो तो पहचान योग्य है आक्षेप है|:[2]

इस परिभाषा का अर्थ है कि θ के अलग-अलग मान अलग-अलग संभाव्यता वितरण के अनुरूप होने चाहिए: यदि θ1θ2, तो Pθ1Pθ2.[3] यदि वितरण को संभाव्यता घनत्व फलन (पीडीएफ) के संदर्भ में परिभाषित किया गया है, तो दो पीडीएफ को केवल तभी अलग माना जाना चाहिए, जब वे गैर-शून्य माप के समुच्चय पर भिन्न हों (उदाहरण के लिए दो फलन ƒ1(x) = 10 ≤ x < 1 and ƒ2(x) = 10 ≤ x ≤ 1 केवल एक बिंदु x = 1 पर भिन्न होता है - माप शून्य का एक समुच्चय - और इस प्रकार इसे अलग पीडीएफ के रूप में नहीं माना जा सकता है)।।


मानचित्र की व्युत्क्रमणीयता के अर्थ में मॉडल की पहचान यदि मॉडल को अनिश्चित काल तक देखा जा सकता है तो यह मॉडल के वास्तविक पैरामीटर को सीखने में सक्षम होने के सामान है। वास्तव में, यदि {Xt} ⊆ S मॉडल से अवलोकनों का क्रम है, फिर बड़ी संख्या के शसक्त नियम द्वारा,

प्रत्येक मापने योग्य समूह AS के लिए (यहां '1'{...} सूचक कार्य है)। इस प्रकार, अनंत संख्या में प्रेक्षणों के साथ हम वास्तविक संभाव्यता वितरण P0 ज्ञात करने में सक्षम होंगे मॉडल में, और चूंकि उपरोक्त पहचान की स्थिति के लिए मानचित्र की आवश्यकता है विपरीत हो, हम उस पैरामीटर का सही मान भी ढूंढने में सक्षम होंगे जो दिए गए वितरण P0 उत्पन्न करता है.

उदाहरण

उदाहरण 1

माना सामान्य वितरण स्थान-पैमाने पर वर्ग बनें:

जब

यह अभिव्यक्ति लगभग सभी x के लिए शून्य के सामान है, जब इसके सभी गुणांक शून्य के सामान हों, जो केवल तभी संभव है जब |σ1| = |σ2| और μ1 = μ2. चूँकि स्केल पैरामीटर में σ शून्य से अधिक होने तक सीमित है, हम यह निष्कर्ष निकालते हैं कि मॉडल पहचानने योग्य है:

ƒθ1 = ƒθ2θ1 = θ2.

उदाहरण 2

माना मानक रैखिक प्रतिगमन मॉडल बनें:

(जहाँ ′ अव्युह स्थानांतरित को दर्शाता है)। तब पैरामीटर β पहचाने जाने योग्य है यदि और केवल यदि अव्युह विपरीत है. इस प्रकार, यह मॉडल में पहचान की स्थिति है।

उदाहरण 3

कल्पना करना वेरिएबल में शास्त्रीय त्रुटि रैखिक मॉडल है:

जहां (ε,η,x*) शून्य अपेक्षित मान और अज्ञात भिन्नताओं के साथ संयुक्त रूप से सामान्य स्वतंत्र यादृच्छिक वेरिएबल हैं, और केवल वेरिएबल (x,y) देखे जाते हैं। तब यह मॉडल पहचान योग्य नहीं है,[4] केवल उत्पाद βσ² है (जहां σ² का प्रसरण है अव्यक्त प्रतिगामी x*). यह भी निर्धारित पहचान मॉडल का उदाहरण है: यद्यपि β का स्पष्ट मान नहीं सीखा जा सकता है, हम गारंटी दे सकते हैं कि यह अंतराल (β) में कहीं स्थित होना चाहिए (βyx, 1÷βxy), जहां βyx, और βxy पर y के सामान्य न्यूनतम वर्ग प्रतिगमन में गुणांक है y पर x के OLS प्रतिगमन में गुणांक है।[5]

यदि हम सामान्यता की धारणा को त्याग देते हैं और चाहते हैं कि x* सामान्य रूप से वितरित 'नहीं' हो, केवल स्वतंत्रता की स्थिति ε ⊥ η ⊥ x* को बनाए रखते हुए, तो मॉडल पहचानने योग्य हो जाता है।[4]

यह भी देखें

संदर्भ

उद्धरण

  1. Raue, A.; Kreutz, C.; Maiwald, T.; Bachmann, J.; Schilling, M.; Klingmuller, U.; Timmer, J. (2009-08-01). "Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood". Bioinformatics. 25 (15): 1923–1929. doi:10.1093/bioinformatics/btp358. PMID 19505944.
  2. Lehmann & Casella 1998, Ch. 1, Definition 5.2
  3. van der Vaart 1998, p. 62
  4. 4.0 4.1 Reiersøl 1950
  5. Casella & Berger 2001, p. 583


स्रोत

अग्रिम पठन

  • Walter, É.; Pronzato, L. (1997), Identification of Parametric Models from Experimental Data, Springer



अर्थमिति


श्रेणी:अनुमान सिद्धांत