गुणा और पुनरावृत्त जोड़: Difference between revisions

From Vigyanwiki
No edit summary
Line 3: Line 3:


==चर्चा की पृष्ठभूमि==
==चर्चा की पृष्ठभूमि==
1990 के दशक की शुरुआत में लेस्ली स्टेफ़ ने गिनती योजना का प्रस्ताव रखा जिसका उपयोग बच्चे अपने गणितीय ज्ञान में गुणन को आत्मसात करने के लिए करते हैं। जेरे कन्फ्रे ने गणना योजना की तुलना विभाजन अनुमान से की। कन्फ्रे ने सुझाव दिया कि गिनती और विभाजन दो अलग, स्वतंत्र संज्ञानात्मक आदिम हैं। इसने सम्मेलन प्रस्तुतियों, लेखों और पुस्तक अध्यायों के रूप में अकादमिक चर्चाओं को जन्म दिया।<ref>{{Cite journal |last=Confrey |first=Jere |last2=Maloney |first2=Alan |date=2015-10-01 |title=समविभाजन पर सीखने के प्रक्षेप पथ के लिए पाठ्यक्रम और नैदानिक ​​मूल्यांकन प्रणाली का एक डिजाइन अनुसंधान अध्ययन|url=https://doi.org/10.1007/s11858-015-0699-y |journal=ZDM |language=en |volume=47 |issue=6 |pages=919–932 |doi=10.1007/s11858-015-0699-y |issn=1863-9704}}</ref>
1990 के दशक के प्रारंभ में लेस्ली स्टेफ़ ने गणना प्रारूप का प्रस्ताव रखा जिसका उपयोग बच्चे अपने गणितीय ज्ञान में गुणन को आत्मसात करने के लिए करते हैं। जेरे कन्फ्रे ने गणना प्रारूप की तुलना विभाजन अनुमान से की। कन्फ्रे ने सुझाव दिया कि गणना और विभाजन, दो भिन्न, स्वतंत्र संज्ञानात्मक आधार हैं। इसने सम्मेलन प्रस्तुतियों, लेखों और पुस्तक अध्यायों के रूप में अकादमिक चर्चाओं को जन्म दिया।<ref>{{Cite journal |last=Confrey |first=Jere |last2=Maloney |first2=Alan |date=2015-10-01 |title=समविभाजन पर सीखने के प्रक्षेप पथ के लिए पाठ्यक्रम और नैदानिक ​​मूल्यांकन प्रणाली का एक डिजाइन अनुसंधान अध्ययन|url=https://doi.org/10.1007/s11858-015-0699-y |journal=ZDM |language=en |volume=47 |issue=6 |pages=919–932 |doi=10.1007/s11858-015-0699-y |issn=1863-9704}}</ref>
यह चर्चा पाठ्यक्रम के व्यापक प्रसार के साथ शुरू हुई, जिसमें प्रारंभिक वर्षों में गणितीय कार्यों को स्केलिंग, ज़ूमिंग, फोल्डिंग और मापने पर जोर दिया गया था। ऐसे कार्यों के लिए गुणन के मॉडल की आवश्यकता होती है और उनका समर्थन भी किया जाता है जो गिनती या बार-बार जोड़ने पर आधारित नहीं होते हैं। इस प्रश्न के इर्द-गिर्द चर्चा होती है कि क्या गुणन वास्तव में बार-बार जोड़ा जाता है? 1990 के दशक के मध्य में माता-पिता और शिक्षक चर्चा मंचों पर दिखाई दिए। {{Citation needed|date=March 2012}}
 
यह चर्चा पाठ्यक्रम के व्यापक प्रसार के साथ प्रारंभ हुई, जिसमें प्रारंभिक वर्षों में गणितीय कार्यों के प्रवर्द्धन, आकारण, वलय तथा मापन पर जोर दिया गया था। ऐसे कार्यों के लिए गुणन प्रारूप तथा उनके समर्थन की आवश्यकता होती है जो गणना या पुनरावर्ती जोड़ पर आधारित नहीं होते हैं। इस प्रश्न के आस-पास चर्चा होती है कि क्या गुणन वास्तव में पुनरावर्ती जोड़ होता है? 1990 के दशक के मध्य में कई माता-पिता और शिक्षक चर्चा मंचों पर दिखाई दिए।
 
[[कीथ डेवलिन]] ने "मैथमेटिकल एसोसिएशन ऑफ अमेरिका" खंड लिखा, जिसका शीर्षक था, "इट इज़ नॉट नो रिपीटेड एडिशन" जो शिक्षकों के साथ उनके ईमेल विनिमय पर आधारित था, जिसका संक्षिप्त उल्लेख उन्होंने पहले के एक लेख में किया था।<ref>{{cite web|last=Devlin|first=Keith|title=यह कोई बार-बार जोड़ा जाने वाला जोड़ नहीं है|url=http://www.maa.org/external_archive/devlin/devlin_06_08.html|publisher=Mathematical Association of America|access-date=30 March 2012|date=June 2008}}</ref> इस खंड ने अकादमिक चर्चाओं को व्यावसायिक चर्चाओं से जोड़ा। इसने अनुसंधान और व्यवसायी ब्लॉगों और मंचों पर कई चर्चाओं को जन्म दिया। कीथ डेवलिन ने इस विषय पर लिखना जारी रखा है।<ref>{{cite web|last=Devlin|first=Keith|title=इसे अभी भी दोहराया नहीं गया है|url=http://www.maa.org/external_archive/devlin/devlin_0708_08.html|publisher=Mathematical Association of America|access-date=2 April 2012|date=July–August 2008}}</ref><ref>{{cite web|last=Devlin|first=Keith|title=गुणन और वो अजीब ब्रिटिश वर्तनी|url=http://www.maa.org/external_archive/devlin/devlin_09_08.html|publisher=Mathematical Association of America|access-date=2 April 2012|date=September 2008}}</ref><ref>{{cite web|last=Devlin|first=Keith|title=What Exactly is Multiplication?|url=http://www.maa.org/external_archive/devlin/devlin_01_11.html|publisher=Mathematical Association of America|access-date=2 April 2012|date=January 2011}}</ref>


[[कीथ डेवलिन]] ने एक गणितीय एसोसिएशन ऑफ अमेरिका कॉलम लिखा, जिसका शीर्षक था, इट इज़ नॉट नो रिपीटेड एडिशन, जो शिक्षकों के साथ उनके ईमेल एक्सचेंजों पर आधारित था, जब उन्होंने पहले के एक लेख में इस विषय का संक्षेप में उल्लेख किया था।<ref>{{cite web|last=Devlin|first=Keith|title=यह कोई बार-बार जोड़ा जाने वाला जोड़ नहीं है|url=http://www.maa.org/external_archive/devlin/devlin_06_08.html|publisher=Mathematical Association of America|access-date=30 March 2012|date=June 2008}}</ref> कॉलम ने अकादमिक चर्चाों को प्रैक्टिशनर चर्चाों से जोड़ा। इसने अनुसंधान और व्यवसायी ब्लॉगों और मंचों पर कई चर्चाओं को जन्म दिया। कीथ डेवलिन ने इस विषय पर लिखना जारी रखा है।<ref>{{cite web|last=Devlin|first=Keith|title=इसे अभी भी दोहराया नहीं गया है|url=http://www.maa.org/external_archive/devlin/devlin_0708_08.html|publisher=Mathematical Association of America|access-date=2 April 2012|date=July–August 2008}}</ref><ref>{{cite web|last=Devlin|first=Keith|title=गुणन और वो अजीब ब्रिटिश वर्तनी|url=http://www.maa.org/external_archive/devlin/devlin_09_08.html|publisher=Mathematical Association of America|access-date=2 April 2012|date=September 2008}}</ref><ref>{{cite web|last=Devlin|first=Keith|title=What Exactly is Multiplication?|url=http://www.maa.org/external_archive/devlin/devlin_01_11.html|publisher=Mathematical Association of America|access-date=2 April 2012|date=January 2011}}</ref>




Line 12: Line 14:


===गिनती से गुणा तक===
===गिनती से गुणा तक===
विशिष्ट गणित पाठ्यक्रम और मानकों में, जैसे कि [[सामान्य कोर राज्य मानक पहल]], वास्तविक संख्याओं के उत्पाद का अर्थ धारणाओं की एक श्रृंखला के माध्यम से होता है जो आम तौर पर बार-बार जोड़ने से शुरू होता है और अंततः स्केलिंग में रहता है।
विशिष्ट गणित पाठ्यक्रम और मानकों में, जैसे कि [[सामान्य कोर राज्य मानक पहल]], वास्तविक संख्याओं के उत्पाद का अर्थ धारणाओं की एक श्रृंखला के माध्यम से होता है जो आम तौर पर पुनरावर्ती जोड़ से शुरू होता है और अंततः स्केलिंग में रहता है।


एक बार जब प्राकृतिक (या पूर्ण) संख्याओं को परिभाषित किया जाता है और गिनने के साधन के रूप में समझा जाता है, तो एक बच्चे को इस क्रम में अंकगणित के बुनियादी संचालन से परिचित कराया जाता है: जोड़, घटाव, गुणा और भाग। ये ऑपरेशन, हालांकि बच्चे की गणित शिक्षा के बहुत प्रारंभिक चरण में शुरू किए गए थे, उन्नत संख्यात्मक क्षमताओं के रूप में छात्रों में संख्या बोध के विकास पर स्थायी प्रभाव डालते हैं।
एक बार जब प्राकृतिक (या पूर्ण) संख्याओं को परिभाषित किया जाता है और गिनने के साधन के रूप में समझा जाता है, तो एक बच्चे को इस क्रम में अंकगणित के बुनियादी संचालन से परिचित कराया जाता है: जोड़, घटाव, गुणा और भाग। ये ऑपरेशन, हालांकि बच्चे की गणित शिक्षा के बहुत प्रारंभिक चरण में शुरू किए गए थे, उन्नत संख्यात्मक क्षमताओं के रूप में छात्रों में संख्या बोध के विकास पर स्थायी प्रभाव डालते हैं।


इन पाठ्यक्रमों में, बार-बार जोड़ने से संबंधित प्रश्न पूछने के तुरंत बाद गुणन शुरू किया जाता है, जैसे: प्रत्येक 8 सेब के 3 बैग हैं। कुल कितने सेब हैं? एक छात्र यह कर सकता है:
इन पाठ्यक्रमों में, पुनरावर्ती जोड़ से संबंधित प्रश्न पूछने के तुरंत बाद गुणन शुरू किया जाता है, जैसे: प्रत्येक 8 सेब के 3 बैग हैं। कुल कितने सेब हैं? एक छात्र यह कर सकता है:


: <math>8 + 8 + 8 = 24,</math>
: <math>8 + 8 + 8 = 24,</math>
Line 28: Line 30:


: <math>0 \times 3 = 0.</math>
: <math>0 \times 3 = 0.</math>
इस प्रकार, दोहराया गया जोड़ पूर्ण संख्याओं (0, 1, 2, 3, 4, ...) तक विस्तारित होता है। इस धारणा के लिए पहली चुनौती कि गुणन बार-बार जोड़ा जाना है, तब प्रकट होती है जब छात्र भिन्नों के साथ काम करना शुरू करते हैं। गणितीय दृष्टिकोण से, गुणा को बार-बार जोड़ने के रूप में भिन्नों में बढ़ाया जा सकता है। उदाहरण के लिए,
इस प्रकार, दोहराया गया जोड़ पूर्ण संख्याओं (0, 1, 2, 3, 4, ...) तक विस्तारित होता है। इस धारणा के लिए पहली चुनौती कि गुणन बार-बार जोड़ा जाना है, तब प्रकट होती है जब छात्र भिन्नों के साथ काम करना शुरू करते हैं। गणितीय दृष्टिकोण से, गुणा को पुनरावर्ती जोड़ के रूप में भिन्नों में बढ़ाया जा सकता है। उदाहरण के लिए,


: <math> 7/4 \times 5/6 </math>
: <math> 7/4 \times 5/6 </math>
इसका शाब्दिक अर्थ है "पाँच-छठे का एक और तीन-चौथाई।" यह बाद में महत्वपूर्ण है क्योंकि छात्रों को सिखाया जाता है कि, शब्द समस्याओं में, "का" शब्द आमतौर पर गुणन को इंगित करता है। हालाँकि, यह विस्तार कई छात्रों के लिए समस्याग्रस्त है, जो भिन्न पेश किए जाने पर गणित से जूझना शुरू कर देते हैं।{{citation needed|date=March 2012}} इसके अलावा, जब [[अपरिमेय संख्या]]ओं को चलन में लाया जाता है तो बार-बार जोड़े जाने वाले मॉडल को काफी हद तक संशोधित किया जाना चाहिए।
इसका शाब्दिक अर्थ है "पाँच-छठे का एक और तीन-चौथाई।" यह बाद में महत्वपूर्ण है क्योंकि छात्रों को सिखाया जाता है कि, शब्द समस्याओं में, "का" शब्द आमतौर पर गुणन को इंगित करता है। हालाँकि, यह विस्तार कई छात्रों के लिए समस्याग्रस्त है, जो भिन्न पेश किए जाने पर गणित से जूझना शुरू कर देते हैं।{{citation needed|date=March 2012}} इसके अलावा, जब [[अपरिमेय संख्या]]ओं को चलन में लाया जाता है तो बार-बार जोड़े जाने वाले मॉडल को काफी हद तक संशोधित किया जाना चाहिए।


इन मुद्दों के संबंध में, गणित के शिक्षकों ने इस बात पर चर्चा की है कि क्या भिन्नों और अपरिमेय संख्याओं के साथ छात्रों की कठिनाइयां इन संख्याओं को पेश करने से पहले लंबे समय तक गुणन को बार-बार जोड़ने के रूप में देखने से बढ़ जाती हैं, और संबंधित रूप से क्या प्रारंभिक शिक्षा के लिए कठोर गणित को महत्वपूर्ण रूप से संशोधित करना स्वीकार्य है, जिससे अग्रणी बच्चे उन कथनों पर विश्वास करें जो बाद में गलत साबित होते हैं।
इन मुद्दों के संबंध में, गणित के शिक्षकों ने इस बात पर चर्चा की है कि क्या भिन्नों और अपरिमेय संख्याओं के साथ छात्रों की कठिनाइयां इन संख्याओं को पेश करने से पहले लंबे समय तक गुणन को पुनरावर्ती जोड़ के रूप में देखने से बढ़ जाती हैं, और संबंधित रूप से क्या प्रारंभिक शिक्षा के लिए कठोर गणित को महत्वपूर्ण रूप से संशोधित करना स्वीकार्य है, जिससे अग्रणी बच्चे उन कथनों पर विश्वास करें जो बाद में गलत साबित होते हैं।


===स्केलिंग से गुणा तक===
===स्केलिंग से गुणा तक===
Line 40: Line 42:
गुणन सीखने का एक अन्य सिद्धांत सन्निहित अनुभूति का अध्ययन करने वालों से लिया गया है, जिन्होंने गुणन के लिए अंतर्निहित रूपकों की जांच की।
गुणन सीखने का एक अन्य सिद्धांत सन्निहित अनुभूति का अध्ययन करने वालों से लिया गया है, जिन्होंने गुणन के लिए अंतर्निहित रूपकों की जांच की।


इन जांचों ने मिलकर छोटे बच्चों के लिए स्वाभाविक रूप से गुणात्मक कार्यों वाले पाठ्यक्रम को प्रेरित किया है।{{citation needed|date=March 2012}} इन कार्यों के उदाहरणों में सम्मिलित हैं: इलास्टिक स्ट्रेचिंग, ज़ूम, फोल्डिंग, छाया प्रक्षेपित करना, या छाया गिराना। ये कार्य गिनती पर निर्भर नहीं हैं, और इन्हें बार-बार जोड़ने के संदर्भ में आसानी से संकल्पित नहीं किया जा सकता है।
इन जांचों ने मिलकर छोटे बच्चों के लिए स्वाभाविक रूप से गुणात्मक कार्यों वाले पाठ्यक्रम को प्रेरित किया है।{{citation needed|date=March 2012}} इन कार्यों के उदाहरणों में सम्मिलित हैं: इलास्टिक स्ट्रेचिंग, ज़ूम, फोल्डिंग, छाया प्रक्षेपित करना, या छाया गिराना। ये कार्य गिनती पर निर्भर नहीं हैं, और इन्हें पुनरावर्ती जोड़ के संदर्भ में आसानी से संकल्पित नहीं किया जा सकता है।


इन पाठ्यक्रमों से संबंधित चर्चा के मुद्दों में सम्मिलित हैं:{{bulleted list |
इन पाठ्यक्रमों से संबंधित चर्चा के मुद्दों में सम्मिलित हैं:{{bulleted list |
Line 56: Line 58:
गणित शिक्षा के संदर्भ में, मॉडल अमूर्त गणितीय विचारों का ठोस प्रतिनिधित्व हैं जो विचार के कुछ, या सभी, आवश्यक गुणों को दर्शाते हैं। मॉडल अक्सर गणित और उनके साथ आने वाली पाठ्यचर्या सामग्री के लिए भौतिक या आभासी जोड़-तोड़ के रूप में विकसित किए जाते हैं।
गणित शिक्षा के संदर्भ में, मॉडल अमूर्त गणितीय विचारों का ठोस प्रतिनिधित्व हैं जो विचार के कुछ, या सभी, आवश्यक गुणों को दर्शाते हैं। मॉडल अक्सर गणित और उनके साथ आने वाली पाठ्यचर्या सामग्री के लिए भौतिक या आभासी जोड़-तोड़ के रूप में विकसित किए जाते हैं।


गुणा और बार-बार जोड़ने के बारे में चर्चा का एक हिस्सा विभिन्न मॉडलों और उनकी पाठ्यचर्या संबंधी सामग्रियों की तुलना है। विभिन्न मॉडल विभिन्न प्रकार की संख्याओं के गुणन का समर्थन कर भी सकते हैं और नहीं भी; उदाहरण के लिए सेट मॉडल<ref>{{cite book|last1=Lakoff|first1=George|last2=Nunez|first2=Rafael|title=Where mathematics comes from: How the embodied mind brings mathematics into being|url=https://archive.org/details/wheremathematics00lako|url-access=registration|year=2000|publisher=Basic Books|isbn=0-465-03771-2}}</ref> जिसमें संख्याओं को वस्तुओं के संग्रह के रूप में प्रस्तुत किया जाता है, और गुणन को प्रत्येक में समान संख्या में वस्तुओं के साथ कई सेटों के संघ के रूप में प्रस्तुत किया जाता है, जिसे भिन्नात्मक या वास्तविक संख्याओं के गुणन तक नहीं बढ़ाया जा सकता है।
गुणा और पुनरावर्ती जोड़ के बारे में चर्चा का एक हिस्सा विभिन्न मॉडलों और उनकी पाठ्यचर्या संबंधी सामग्रियों की तुलना है। विभिन्न मॉडल विभिन्न प्रकार की संख्याओं के गुणन का समर्थन कर भी सकते हैं और नहीं भी; उदाहरण के लिए सेट मॉडल<ref>{{cite book|last1=Lakoff|first1=George|last2=Nunez|first2=Rafael|title=Where mathematics comes from: How the embodied mind brings mathematics into being|url=https://archive.org/details/wheremathematics00lako|url-access=registration|year=2000|publisher=Basic Books|isbn=0-465-03771-2}}</ref> जिसमें संख्याओं को वस्तुओं के संग्रह के रूप में प्रस्तुत किया जाता है, और गुणन को प्रत्येक में समान संख्या में वस्तुओं के साथ कई सेटों के संघ के रूप में प्रस्तुत किया जाता है, जिसे भिन्नात्मक या वास्तविक संख्याओं के गुणन तक नहीं बढ़ाया जा सकता है।


विभिन्न मॉडल अंकगणित के विशिष्ट अनुप्रयोगों के लिए भी प्रासंगिक हो सकते हैं; उदाहरण के लिए, संभाव्यता और जीव विज्ञान में संयोजन मॉडल सामने आते हैं।
विभिन्न मॉडल अंकगणित के विशिष्ट अनुप्रयोगों के लिए भी प्रासंगिक हो सकते हैं; उदाहरण के लिए, संभाव्यता और जीव विज्ञान में संयोजन मॉडल सामने आते हैं।

Revision as of 22:14, 7 July 2023

गणित शिक्षा में इस विषय पर चर्चा चल रही थी कि क्या गुणन की संक्रिया को पुनरावर्ती जोड़ के रूप में पढ़ाया जाना चाहिए। चर्चा में भाग लेने वालों ने कई दृष्टिकोण सामने रखे, जिनमें अंकगणित, शिक्षाशास्त्र, अधिगम और निर्देशात्मक प्रारूप, गणित का इतिहास, गणित का दर्शन और कंप्यूटर-आधारित गणित के सिद्धांत सम्मिलित थे।

चर्चा की पृष्ठभूमि

1990 के दशक के प्रारंभ में लेस्ली स्टेफ़ ने गणना प्रारूप का प्रस्ताव रखा जिसका उपयोग बच्चे अपने गणितीय ज्ञान में गुणन को आत्मसात करने के लिए करते हैं। जेरे कन्फ्रे ने गणना प्रारूप की तुलना विभाजन अनुमान से की। कन्फ्रे ने सुझाव दिया कि गणना और विभाजन, दो भिन्न, स्वतंत्र संज्ञानात्मक आधार हैं। इसने सम्मेलन प्रस्तुतियों, लेखों और पुस्तक अध्यायों के रूप में अकादमिक चर्चाओं को जन्म दिया।[1]

यह चर्चा पाठ्यक्रम के व्यापक प्रसार के साथ प्रारंभ हुई, जिसमें प्रारंभिक वर्षों में गणितीय कार्यों के प्रवर्द्धन, आकारण, वलय तथा मापन पर जोर दिया गया था। ऐसे कार्यों के लिए गुणन प्रारूप तथा उनके समर्थन की आवश्यकता होती है जो गणना या पुनरावर्ती जोड़ पर आधारित नहीं होते हैं। इस प्रश्न के आस-पास चर्चा होती है कि क्या गुणन वास्तव में पुनरावर्ती जोड़ होता है? 1990 के दशक के मध्य में कई माता-पिता और शिक्षक चर्चा मंचों पर दिखाई दिए।

कीथ डेवलिन ने "मैथमेटिकल एसोसिएशन ऑफ अमेरिका" खंड लिखा, जिसका शीर्षक था, "इट इज़ नॉट नो रिपीटेड एडिशन" जो शिक्षकों के साथ उनके ईमेल विनिमय पर आधारित था, जिसका संक्षिप्त उल्लेख उन्होंने पहले के एक लेख में किया था।[2] इस खंड ने अकादमिक चर्चाओं को व्यावसायिक चर्चाओं से जोड़ा। इसने अनुसंधान और व्यवसायी ब्लॉगों और मंचों पर कई चर्चाओं को जन्म दिया। कीथ डेवलिन ने इस विषय पर लिखना जारी रखा है।[3][4][5]


शैक्षणिक दृष्टिकोण

गिनती से गुणा तक

विशिष्ट गणित पाठ्यक्रम और मानकों में, जैसे कि सामान्य कोर राज्य मानक पहल, वास्तविक संख्याओं के उत्पाद का अर्थ धारणाओं की एक श्रृंखला के माध्यम से होता है जो आम तौर पर पुनरावर्ती जोड़ से शुरू होता है और अंततः स्केलिंग में रहता है।

एक बार जब प्राकृतिक (या पूर्ण) संख्याओं को परिभाषित किया जाता है और गिनने के साधन के रूप में समझा जाता है, तो एक बच्चे को इस क्रम में अंकगणित के बुनियादी संचालन से परिचित कराया जाता है: जोड़, घटाव, गुणा और भाग। ये ऑपरेशन, हालांकि बच्चे की गणित शिक्षा के बहुत प्रारंभिक चरण में शुरू किए गए थे, उन्नत संख्यात्मक क्षमताओं के रूप में छात्रों में संख्या बोध के विकास पर स्थायी प्रभाव डालते हैं।

इन पाठ्यक्रमों में, पुनरावर्ती जोड़ से संबंधित प्रश्न पूछने के तुरंत बाद गुणन शुरू किया जाता है, जैसे: प्रत्येक 8 सेब के 3 बैग हैं। कुल कितने सेब हैं? एक छात्र यह कर सकता है:

या विकल्प चुनें

यह दृष्टिकोण कई वर्षों के शिक्षण और सीखने के लिए समर्थित है, और यह धारणा स्थापित करता है कि गुणा जोड़ने का एक अधिक कुशल तरीका है। एक बार 0 लाने पर, इसका कोई महत्वपूर्ण परिवर्तन प्रभावित नहीं होता क्योंकि

जो 0 है, और क्रमविनिमेय गुण हमें परिभाषित करने के लिए भी प्रेरित करेगा

इस प्रकार, दोहराया गया जोड़ पूर्ण संख्याओं (0, 1, 2, 3, 4, ...) तक विस्तारित होता है। इस धारणा के लिए पहली चुनौती कि गुणन बार-बार जोड़ा जाना है, तब प्रकट होती है जब छात्र भिन्नों के साथ काम करना शुरू करते हैं। गणितीय दृष्टिकोण से, गुणा को पुनरावर्ती जोड़ के रूप में भिन्नों में बढ़ाया जा सकता है। उदाहरण के लिए,

इसका शाब्दिक अर्थ है "पाँच-छठे का एक और तीन-चौथाई।" यह बाद में महत्वपूर्ण है क्योंकि छात्रों को सिखाया जाता है कि, शब्द समस्याओं में, "का" शब्द आमतौर पर गुणन को इंगित करता है। हालाँकि, यह विस्तार कई छात्रों के लिए समस्याग्रस्त है, जो भिन्न पेश किए जाने पर गणित से जूझना शुरू कर देते हैं।[citation needed] इसके अलावा, जब अपरिमेय संख्याओं को चलन में लाया जाता है तो बार-बार जोड़े जाने वाले मॉडल को काफी हद तक संशोधित किया जाना चाहिए।

इन मुद्दों के संबंध में, गणित के शिक्षकों ने इस बात पर चर्चा की है कि क्या भिन्नों और अपरिमेय संख्याओं के साथ छात्रों की कठिनाइयां इन संख्याओं को पेश करने से पहले लंबे समय तक गुणन को पुनरावर्ती जोड़ के रूप में देखने से बढ़ जाती हैं, और संबंधित रूप से क्या प्रारंभिक शिक्षा के लिए कठोर गणित को महत्वपूर्ण रूप से संशोधित करना स्वीकार्य है, जिससे अग्रणी बच्चे उन कथनों पर विश्वास करें जो बाद में गलत साबित होते हैं।

स्केलिंग से गुणा तक

गुणन को स्केलिंग के रूप में भी सोचा जा सकता है। उपरोक्त एनीमेशन में, हम देखते हैं कि 3 को 2 से गुणा किया जाता है, जिसके परिणामस्वरूप 6 प्राप्त होता है।

सीखने के गुणन का एक सिद्धांत वायगोत्स्की सर्कल में रूसी गणित शिक्षकों के काम से निकला है जो विश्व युद्धों के बीच सोवियत संघ में सक्रिय थे। उनके योगदान को विभाजन अनुमान के रूप में जाना जाता है।

गुणन सीखने का एक अन्य सिद्धांत सन्निहित अनुभूति का अध्ययन करने वालों से लिया गया है, जिन्होंने गुणन के लिए अंतर्निहित रूपकों की जांच की।

इन जांचों ने मिलकर छोटे बच्चों के लिए स्वाभाविक रूप से गुणात्मक कार्यों वाले पाठ्यक्रम को प्रेरित किया है।[citation needed] इन कार्यों के उदाहरणों में सम्मिलित हैं: इलास्टिक स्ट्रेचिंग, ज़ूम, फोल्डिंग, छाया प्रक्षेपित करना, या छाया गिराना। ये कार्य गिनती पर निर्भर नहीं हैं, और इन्हें पुनरावर्ती जोड़ के संदर्भ में आसानी से संकल्पित नहीं किया जा सकता है।

इन पाठ्यक्रमों से संबंधित चर्चा के मुद्दों में सम्मिलित हैं:

  • whether these tasks are accessible to all young children, or only to the best students;
  • whether children can achieve computational fluency if they see multiplication as scaling rather than repeated addition;
  • whether children may become confused by the two separate approaches to multiplication introduced closely together; and
  • whether scaling and repeated addition should be introduced separately, and if so, when and in what order?

क्या गुणा किया जा सकता है?

गुणन को अक्सर प्राकृतिक संख्याओं के लिए परिभाषित किया जाता है, फिर पूर्ण संख्याओं, भिन्नों और अपरिमेय संख्याओं तक बढ़ाया जाता है। हालाँकि, अमूर्त बीजगणित में कुछ वस्तुओं पर बाइनरी ऑपरेशन के रूप में गुणन की अधिक सामान्य परिभाषा है जो संख्याएँ हो भी सकती हैं और नहीं भी। विशेष रूप से, कोई जटिल संख्याओं, निर्देशांक सदिशों, मैट्रिक्स (गणित), और चतुर्भुजों को गुणा कर सकता है। कुछ शिक्षक[citation needed] का मानना ​​है कि प्राथमिक शिक्षा के दौरान गुणन को विशेष रूप से बार-बार जोड़े जाने के रूप में देखने से बाद में गुणन के इन पहलुओं को समझने में बाधा आ सकती है।

मॉडल और रूपक जो गुणन को आधार बनाते हैं

गणित शिक्षा के संदर्भ में, मॉडल अमूर्त गणितीय विचारों का ठोस प्रतिनिधित्व हैं जो विचार के कुछ, या सभी, आवश्यक गुणों को दर्शाते हैं। मॉडल अक्सर गणित और उनके साथ आने वाली पाठ्यचर्या सामग्री के लिए भौतिक या आभासी जोड़-तोड़ के रूप में विकसित किए जाते हैं।

गुणा और पुनरावर्ती जोड़ के बारे में चर्चा का एक हिस्सा विभिन्न मॉडलों और उनकी पाठ्यचर्या संबंधी सामग्रियों की तुलना है। विभिन्न मॉडल विभिन्न प्रकार की संख्याओं के गुणन का समर्थन कर भी सकते हैं और नहीं भी; उदाहरण के लिए सेट मॉडल[6] जिसमें संख्याओं को वस्तुओं के संग्रह के रूप में प्रस्तुत किया जाता है, और गुणन को प्रत्येक में समान संख्या में वस्तुओं के साथ कई सेटों के संघ के रूप में प्रस्तुत किया जाता है, जिसे भिन्नात्मक या वास्तविक संख्याओं के गुणन तक नहीं बढ़ाया जा सकता है।

विभिन्न मॉडल अंकगणित के विशिष्ट अनुप्रयोगों के लिए भी प्रासंगिक हो सकते हैं; उदाहरण के लिए, संभाव्यता और जीव विज्ञान में संयोजन मॉडल सामने आते हैं।

संदर्भ

  1. Confrey, Jere; Maloney, Alan (2015-10-01). "समविभाजन पर सीखने के प्रक्षेप पथ के लिए पाठ्यक्रम और नैदानिक ​​मूल्यांकन प्रणाली का एक डिजाइन अनुसंधान अध्ययन". ZDM (in English). 47 (6): 919–932. doi:10.1007/s11858-015-0699-y. ISSN 1863-9704. {{cite journal}}: zero width space character in |title= at position 62 (help)
  2. Devlin, Keith (June 2008). "यह कोई बार-बार जोड़ा जाने वाला जोड़ नहीं है". Mathematical Association of America. Retrieved 30 March 2012.
  3. Devlin, Keith (July–August 2008). "इसे अभी भी दोहराया नहीं गया है". Mathematical Association of America. Retrieved 2 April 2012.
  4. Devlin, Keith (September 2008). "गुणन और वो अजीब ब्रिटिश वर्तनी". Mathematical Association of America. Retrieved 2 April 2012.
  5. Devlin, Keith (January 2011). "What Exactly is Multiplication?". Mathematical Association of America. Retrieved 2 April 2012.
  6. Lakoff, George; Nunez, Rafael (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. Basic Books. ISBN 0-465-03771-2.