लूप बीजगणित: Difference between revisions

From Vigyanwiki
Line 44: Line 44:


=== कोसाइकिल ===
=== कोसाइकिल ===
{{See also|Lie algebra extension#Central}}
{{See also|लाई बीजगणित एक्सटेंशन#केन्द्रीय}}
[[झूठ बीजगणित सहसंरचना]] की भाषा का उपयोग करते हुए, केंद्रीय विस्तार को लूप बीजगणित पर 2-कोसायकल का उपयोग करके वर्णित किया जा सकता है। यह नक्शा है
[[झूठ बीजगणित सहसंरचना|लाई बीजगणित सहसमरूपता]] की भाषा का उपयोग करते हुए, केंद्रीय विस्तार को लूप बीजगणित पर 2- सहचक्र का उपयोग करके वर्णित किया जा सकता है। यह मैप है<math display=block>\varphi: L\mathfrak g \times L\mathfrak g \rightarrow \mathbb{C}</math>जो संतुष्ट करता है<math display=block>\varphi(X\otimes t^m, Y\otimes t^n) = mB(X,Y)\delta_{m+n,0}.</math>तो कोष्ठक में याेजित अतिरिक्त शब्द है
<math display=block>\varphi: L\mathfrak g \times L\mathfrak g \rightarrow \mathbb{C}</math>
संतुष्टि देने वाला<math display=block>\varphi(X\otimes t^m, Y\otimes t^n) = mB(X,Y)\delta_{m+n,0}.</math>




फिर कोष्ठक में जोड़ा गया अतिरिक्त शब्द है <math>\varphi(X\otimes t^m, Y\otimes t^n)\hat k.</math>
<math>\varphi(X\otimes t^m, Y\otimes t^n)\hat k.</math>
===एफ़िन लाई बीजगणित===
===एफ़िन लाई बीजगणित===
भौतिकी में, केंद्रीय विस्तार <math>L\mathfrak g \oplus \mathbb C \hat k</math> इसे कभी-कभी एफ़िन लाई बीजगणित के रूप में जाना जाता है। गणित में, यह अपर्याप्त है, और पूर्ण एफ़िन ले बीजगणित वेक्टर स्थान है<ref name="BYB">P. Di Francesco, P. Mathieu, and D. Sénéchal, ''Conformal Field Theory'', 1997, {{ISBN|0-387-94785-X}}</ref>
भौतिकी में, केंद्रीय विस्तार <math>L\mathfrak g \oplus \mathbb C \hat k</math> कभी-कभी एफ़िन लाई बीजगणित के रूप में जाना जाता है। गणित में यह अपर्याप्त है तथा पूर्ण एफ़िन लाई बीजगणित सदिश समष्टि है<ref name="BYB">P. Di Francesco, P. Mathieu, and D. Sénéchal, ''Conformal Field Theory'', 1997, {{ISBN|0-387-94785-X}}</ref><math display=block>\hat \mathfrak{g} = L\mathfrak{g} \oplus \mathbb C \hat k \oplus \mathbb C d</math>
<math display=block>\hat \mathfrak{g} = L\mathfrak{g} \oplus \mathbb C \hat k \oplus \mathbb C d</math>
कहाँ <math>d</math> ऊपर परिभाषित व्युत्पत्ति है।


इस स्थान पर, किलिंग फॉर्म को गैर-पतित फॉर्म तक बढ़ाया जा सकता है, और इस प्रकार एफ़िन लाई बीजगणित के रूट सिस्टम विश्लेषण की अनुमति मिलती है।
 
जहाँ <math>d</math> ऊपर परिभाषित व्युत्पत्ति है।
 
इस समष्टि पर, किलिंग फॉर्म को प्रव्यपजनन फॉर्म तक विस्तारित किया जा सकता है, और इस प्रकार एफ़िन ली बीजगणित के मूल तंत्र विश्लेषण की अनुमति प्राप्त होती है।


==संदर्भ==
==संदर्भ==

Revision as of 22:11, 6 July 2023

गणित में, लूप बीजगणित कुछ प्रकार के लाई बीजगणित हैं, जो सैद्धांतिक भौतिकी में विशेष रुचि रखते हैं।

परिभाषा

एक क्षेत्र पर लाई बीजगणित के लिए यदि लॉरेंट बहुपद का समष्टि है, तो

निहित कोष्ठक के साथ

ज्यामितीय परिभाषा

यदि एक लाई बीजगणित है, जिसमें के साथ C(S1) का प्रदिश गुणनफल है, तो वृत्त मैनिफोल्ड S1 पर (सम्मिश्र) सुचारु फलनों का बीजगणित (तुल्यतः, किसी दिए गए अवधि के सुचारु सम्मिश्र-मान आवधिक फलन),

लाई कोष्ठक द्वारा दिया गया एक अनंत-आयामी लाई बीजगणित है


यहाँ g1 और g2, के तत्व हैं तथा f1 और f2, C(S1) के तत्व हैं .

यह यथावत् वैसा नहीं है जो सुचारुता प्रतिबंध के कारण S1 में प्रत्येक बिंदु के लिए एक , के अनंत प्रतियों के प्रत्यक्ष उत्पाद के अनुरूप होगा। इसके अलावा, इसे S1 से तक के सुचारू मैप अर्थात् , पैरामिट्रीकृत लूप के संदर्भ में विचारा जा सकता है। इसीलिए इसे लूप बीजगणित कहा जाता है।

वर्गीकरण

को रैखिक उपसमष्टि के रूप में परिभाषित करते हुए कोष्ठक किसी उत्पाद


तक प्रतिबंधित है, अतः लूप बीजगणित को -वर्गीकृत लाई बीजगणित संरचना दिया गया है।


विशेषतः, कोष्ठक 'शून्य-मोड' उपबीजगणित तक प्रतिबंधित है।

व्युत्पत्ति

लूप बीजगणित पर एक प्राकृतिक व्युत्पत्ति है, जिसे पारंपरिक रूप से निरूपित किया गया है जो निम्न प्रकार कार्य करता है

और इसलिए औपचारिक रूप से . के रूप में व्यक्त किया जा सकता है।

एफ़िन लाई बीजगणित को परिभाषित करना आवश्यक है, जिसका उपयोग भौतिकी, विशेष रूप से अनुरूप क्षेत्र सिद्धांत में किया जाता है।

लूप समूह

इसी प्रकार S1 से लेकर लाई समूह G तक के सभी सुचारू मैप के समुच्चय एक अनंत-विमितीय लाई समूह बनाता है (इस अर्थ में, ली समूह को फलनात्मक व्युत्पन्न से परिभाषित कर सकते हैं) जिसे लूप समूह कहा जाता है। लूप समूह का लाई बीजगणित समरूपी लूप बीजगणित है।

लूप बीजगणित के केंद्रीय विस्तार के रूप में एफ़िन ली बीजगणित

अगर एक अर्धसरल झूठ बीजगणित है, फिर एक गैर-तुच्छ समूह विस्तार#इसके लूप बीजगणित का केंद्रीय विस्तार एक एफ़िन लाई बीजगणित को जन्म देता है। इसके अलावा यह केंद्रीय विस्तार अद्वितीय है।[1] केंद्रीय विस्तार एक केंद्रीय तत्व को जोड़कर दिया जाता है , अर्थात सभी के लिए ,

और लूप बीजगणित पर ब्रैकेट को संशोधित करना
कहाँ संहार रूप है.

केंद्रीय विस्तार, एक सदिश समष्टि के रूप में है, (इसकी सामान्य परिभाषा में, जैसा कि आम तौर पर होता है, एक मनमाना क्षेत्र के रूप में लिया जा सकता है)।

कोसाइकिल

लाई बीजगणित सहसमरूपता की भाषा का उपयोग करते हुए, केंद्रीय विस्तार को लूप बीजगणित पर 2- सहचक्र का उपयोग करके वर्णित किया जा सकता है। यह मैप है

जो संतुष्ट करता है
तो कोष्ठक में याेजित अतिरिक्त शब्द है


एफ़िन लाई बीजगणित

भौतिकी में, केंद्रीय विस्तार कभी-कभी एफ़िन लाई बीजगणित के रूप में जाना जाता है। गणित में यह अपर्याप्त है तथा पूर्ण एफ़िन लाई बीजगणित सदिश समष्टि है[2]


जहाँ ऊपर परिभाषित व्युत्पत्ति है।

इस समष्टि पर, किलिंग फॉर्म को प्रव्यपजनन फॉर्म तक विस्तारित किया जा सकता है, और इस प्रकार एफ़िन ली बीजगणित के मूल तंत्र विश्लेषण की अनुमति प्राप्त होती है।

संदर्भ

  1. Kac 1990 Exercise 7.8.
  2. P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory, 1997, ISBN 0-387-94785-X
  • Fuchs, Jurgen (1992), Affine Lie Algebras and Quantum Groups, Cambridge University Press, ISBN 0-521-48412-X