संतति संशोधन (कॉन्टिनुइटी करेक्शन): Difference between revisions

From Vigyanwiki
Line 9: Line 9:


:<math>P(X\leq x) = P(X<x+1)</math>
:<math>P(X\leq x) = P(X<x+1)</math>
किसी भी x ∈ {0, 1, 2, ... n} के लिए यदि एनपी और एनपी(1 − पी) बड़े हैं (कभी-कभी दोनों को ≥ 5 के रूप में लिया जाता है), तो उपरोक्त संभावना अत्यधिक सीमा तक अनुमानित किया जा सकता है।  
किसी भी x ∈ {0, 1, 2, ... n} के लिए यदि ''np'' और ''np''(1 − ''p'') बड़े हैं (कभी-कभी दोनों को ≥ 5 के रूप में लिया जाता है), तो उपरोक्त संभावना अत्यधिक सीमा तक अनुमानित किया जा सकता है।  


:<math>P(Y\leq x+1/2)</math>
:<math>P(Y\leq x+1/2)</math>
जहां Y एक [[सामान्य वितरण]] यादृच्छिक चर है जिसका अपेक्षित मान समान है और X के समान विचरण है, अर्थात, E(Y) = np और var(Y) = np(1 - p)। x में 1/2 का यह जोड़ एक सतत सुधार है।
जहां Y एक [[सामान्य वितरण]] यादृच्छिक चर है जिसका अपेक्षित मान समान है और X के समान विचरण है, अर्थात, E(''Y'') = ''np'' और var(''Y'') = ''np''(1 − ''p'') का यह योग एक सतत सुधार है।


===पॉइसन===
===पॉइसन===

Revision as of 23:33, 19 July 2023

प्रायिकता सिद्धांत में, सतत सुधार एक ऐसा समायोजन है जो तब किया जाता है जब एक असतत प्रायिकता वितरण को निरंतर वितरण द्वारा अनुमानित किया जाता है।

उदाहरण

द्विपद

यदि एक यादृच्छिक चर, X में पैरामीटर n और p के साथ एक द्विपद वितरण है, अर्थात,

किसी भी x ∈ {0, 1, 2, ... n} के लिए यदि np और np(1 − p) बड़े हैं (कभी-कभी दोनों को ≥ 5 के रूप में लिया जाता है), तो उपरोक्त संभावना अत्यधिक सीमा तक अनुमानित किया जा सकता है।

जहां Y एक सामान्य वितरण यादृच्छिक चर है जिसका अपेक्षित मान समान है और X के समान विचरण है, अर्थात, E(Y) = np और var(Y) = np(1 − p) का यह योग एक सतत सुधार है।

पॉइसन

निरंतरता सुधार तब भी प्रारंभ किया जा सकता है जब पूर्णांकों पर समर्थित अन्य असतत वितरण सामान्य वितरण द्वारा अनुमानित होते हैं। उदाहरण के लिए, यदि X में अपेक्षित मान λ के साथ पॉइसन वितरण है तो X का प्रसरण भी λ है, और

यदि Y को सामान्यतः अपेक्षा और भिन्नता दोनों के साथ वितरित किया जाता है।

अनुप्रयोग

प्रायिकता वितरण कार्यक्षमता वाले सांख्यिकीय सॉफ़्टवेयर की तत्परता से पहले, जब परीक्षा सांकेतिक वितरण वाला होता था तो सांख्यिकीय परीक्षण के व्यावहारिक अनुप्रयोग में संयोजन सुधार महत्वपूर्ण भूमिका निभाते थे: इसे मैन्युअल गणनाओं के लिए विशेष महत्व दिया जाता था। इसका एक विशेष उदाहरण द्विपद परीक्षण है, जिसमें द्विपद वितरण सम्मिलित होता है,जैसे सिक्के के बारे में जांच करना कि क्या यह समानांतर है। जहां अत्यधिक सटीकता आवश्यक नहीं है, कुछ श्रेणियों के मापदंडों के लिए संगणक गणना की सरलता बनाए रखते हुए सटीकता में सुधार के लिए निरंतरता सुधार का उपयोग किया जा सकता है।

यह भी देखें

  • निरंतरता के लिए येट्स का सुधार
  • निरंतरता सुधार के साथ विल्सन स्कोर अंतराल

संदर्भ

  • Devore, Jay L., Probability and Statistics for Engineering and the Sciences, Fourth Edition, Duxbury Press, 1995.
  • Feller, W., On the normal approximation to the binomial distribution, The Annals of Mathematical Statistics, Vol. 16 No. 4, Page 319–329, 1945.