बोरेल माप: Difference between revisions
Line 32: | Line 32: | ||
यह सीमा इस बात पर जोर देती है कि 0 पर स्थित कोई भी बिंदु द्रव्यमान पूरी तरह से लाप्लास ट्रांसफॉर्म द्वारा कब्जा किया जाता है जबकि लेबेस्ग समाकलन के साथ ऐसी सीमा आवश्यक नहीं है कि यह लाप्लास-स्टिल्टजेस परिवर्तन के संबंध में अधिक स्वाभाविक रूप से प्रकट होता है। | यह सीमा इस बात पर जोर देती है कि 0 पर स्थित कोई भी बिंदु द्रव्यमान पूरी तरह से लाप्लास ट्रांसफॉर्म द्वारा कब्जा किया जाता है जबकि लेबेस्ग समाकलन के साथ ऐसी सीमा आवश्यक नहीं है कि यह लाप्लास-स्टिल्टजेस परिवर्तन के संबंध में अधिक स्वाभाविक रूप से प्रकट होता है। | ||
=== | ===संहतीकरण आयाम और फ्रॉस्टमैन की लेम्मा=== | ||
{{Main|Hausdorff dimension|Frostman lemma}} | {{Main|Hausdorff dimension|Frostman lemma}} | ||
एक बोरेल माप μ को एक | एक बोरेल माप μ को एक मापीय स्थान X पर इस प्रकार दिया गया है कि μ(X) > 0 और μ(B(x, r)) ≤ r<sup>s</sup> कुछ स्थिरांक s > 0 के लिए और X में प्रत्येक गेंद B(x, r) के लिए रखता है तो संहतीकरण आयाम मंद होता है<sub>Haus</sub>(एक्स) ≥ एस. [[फ्रॉस्टमैन लेम्मा]] द्वारा आंशिक बातचीत प्रदान की गई है:<ref>{{cite book | ||
| author = Rogers, C. A. | | author = Rogers, C. A. | ||
| title = Hausdorff measures | | title = Hausdorff measures | ||
Line 45: | Line 45: | ||
| pages = xxx+195 | | pages = xxx+195 | ||
| isbn = 0-521-62491-6 | | isbn = 0-521-62491-6 | ||
}}</ref> | }}</ref>लेम्मा: मान लीजिए ''ए'' आर का एक [[बोरेल मापने योग्य]] उपसमुच्चय है<sup>n</sup> और चलो s > 0. फिर निम्नलिखित समतुल्य हैं- | ||
लेम्मा: मान लीजिए ''ए'' आर का एक [[बोरेल मापने योग्य]] उपसमुच्चय है<sup>n</sup> | *एच<sup>s</sup>(A) > 0, जहां H<sup>s</sup>s-आयामी [[हॉसडॉर्फ माप|संहतीकरण माप]] को दर्शाता है | ||
*एच<sup>s</sup>(A) > 0, जहां H<sup>s</sup>s-आयामी [[हॉसडॉर्फ माप]] को दर्शाता | *एक अहस्ताक्षरित बोरेल माप μ है जो μ(A) > 0 को संतुष्ट करता है जो इस प्रकार है- | ||
*एक | |||
::<math>\mu(B(x,r))\le r^s</math> :सभी x ∈ 'R' के लिए मान्य<sup>n</sup> और r > 0. | ::<math>\mu(B(x,r))\le r^s</math> :सभी x ∈ 'R' के लिए मान्य<sup>n</sup> और r > 0. | ||
===क्रैमर-वॉल्ड प्रमेय=== | ===क्रैमर-वॉल्ड प्रमेय=== | ||
{{Main|Cramér–Wold theorem}} | {{Main|Cramér–Wold theorem}} | ||
[[माप सिद्धांत]] में क्रैमर-वॉल्ड प्रमेय बताता है कि एक बोरेल संभाव्यता माप पर है <math>\mathbb R^k</math> अपने एक-आयामी प्रक्षेपणों की समग्रता से विशिष्ट रूप से निर्धारित होता | [[माप सिद्धांत]] में क्रैमर-वॉल्ड प्रमेय बताता है कि एक बोरेल संभाव्यता माप पर है <math>\mathbb R^k</math> अपने एक-आयामी प्रक्षेपणों की समग्रता से विशिष्ट रूप से निर्धारित होता है <ref>K. Stromberg, 1994. ''Probability Theory for Analysts''. Chapman and Hall.</ref> इसका उपयोग संयुक्त अभिसरण परिणामों को सिद्ध करने की एक विधि के रूप में किया जाता है प्रमेय का नाम हेराल्ड क्रैमर और [[हरमन ओले एंड्रियास वोल्ड]] के नाम पर रखा गया है। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 21:49, 9 July 2023
गणित में विशेष रूप से माप गणित टोपोलॉजिकल रिक्त पर एक बोरेल माप है जिसे सभी खुले समूहों और बोरेल समूहों पर परिभाषित किया गया है [1] कुछ लेखकों को माप के अतिरिक्त प्रतिबंधों की आवश्यकता होती है जैसा कि नीचे वर्णित है।
औपचारिक परिभाषा
एक स्थानीय रूप से तुलनीय संस्थिति स्थान बनें और सिग्मा-बीजगणित उत्पन्न .CF.83-बीजगणित का सबसे छोटा σ-बीजगणित हो जिसमें खुले समूह हों ; इसे बोरेल समूह के σ-बीजगणित के रूप में जाना जाता है बोरेल माप कोई भी माप है बोरेल समूह के σ-बीजगणित पर परिभाषित है तथा [2] कुछ लेखकों को इसके अतिरिक्त की आवश्यकता होती है स्थानीय रूप से परिमित माप है जिसका अर्थ है प्रत्येक संस्थित समूह के लिए . यदि एक बोरेल माप आंतरिक नियमित माप और परिभाषा दोनों है इसे बोरेल नियमित माप कहा जाता है अगर आंतरिक नियमित और बाहरी नियमित व स्थानीय रूप से परिमित माप दोनों है तो इसे रेडॉन माप कहा जाता है।
वास्तविक रेखा पर
असली पंक्ति अपनी वास्तविक रेखा के साथ एक संस्थितिक रिक्त के रूप में एक स्थानीय रूप से संस्थितिक रिक्त है इसलिए हम इस पर बोरेल माप को परिभाषित कर सकते हैं इस स्थान में सबसे छोटा σ-बीजगणित है जिसमें खुले अंतराल होते हैं . जबकि कई बोरेल माप μ हैं, बोरेल माप का विकल्प जो हस्ताक्षर करता है प्रत्येक आधे खुले अंतराल के लिए इसे कभी-कभी बोरेल माप भी कहा जाता है . यह माप लेब्सेग माप के बोरेल σ-बीजगणित के लिए प्रतिबंध प्रमाणित होता है , जो एक पूर्ण माप है और लेब्सग्यू σ-बीजगणित पर परिभाषित किया गया है लेब्सग्यू σ-बीजगणित वास्तव में बोरेल σ-बीजगणित का समापन है जिसका अर्थ है कि यह सबसे छोटा σ-बीजगणित है जिसमें सभी बोरेल समूह सम्मिलित हैं और इसे पूर्ण माप से सुसज्जित किया जा सकता है इसके अलावा बोरेल माप और लेबेस्ग माप बोरेल समूह पर मेल खाते हैं यानी प्रत्येक बोरेल मापने योग्य समूह के लिए जहां ऊपर वर्णित बोरेल माप है।
उत्पाद स्थान
यदि X और Y द्वितीय-गणनीय हैं, हॉसडॉर्फ़ टोपोलॉजिकल स्पेस, तो बोरेल उपसमुच्चय का समुच्चय उनके उत्पाद का सेट के उत्पाद से मेल खाता है X और Y के बोरेल उपसमुच्चय।[3] यानी बोरेल ऑपरेटर
- द्वितीय-गणनीय हॉसडॉर्फ रिक्त स्थान की श्रेणी (गणित) से मापने योग्य स्थान की श्रेणी तक परिमित उत्पाद (श्रेणी सिद्धांत) को संरक्षित करता है।
अनुप्रयोग
लेब्सग्यू-स्टिल्टजेस समाकलन
लेब्सग्यू-स्टिल्टजेस समाकलन, लेब्सग्यू-स्टिल्टजेस माप के रूप में जानने वाले माप के संबंध में सामान्य लेब्सग समाकलन है जो वास्तविक रेखा पर सीमित भिन्नता के किसी भी कार्य से जुड़ा हो सकता है लेब्सग्यू-स्टिल्टजेस माप एक नियमित बोरेल माप है जो इसके विपरीत वास्तविक रेखा पर प्रत्येक नियमित बोरेल माप इस प्रकार का होता है।[4]
लाप्लास परिवर्तन
कोई लेब्सग एकीकरण द्वारा वास्तविक रेखा पर एक परिमित बोरेल माप μ के लाप्लास परिवर्तन को परिभाषित कर सकता है[5]
एक महत्वपूर्ण विशेष स्थान वह है जहां μ एक संभाव्यता माप है या और भी अधिक विशेष रूप से डिराक डेल्टा समारोह है इसे परिचालन कलन में किसी माप के लाप्लास परिवर्तन को ऐसे माना जाता है कि माप संचयी वितरण समारोह f से आया हो तथा उस स्थिति में संभावित भ्रम से बचने के लिए व्यक्ति अधिकतर यह लिखता है कि-
जहां निचली सीमा 0 है−के लिए आशुलिपि संकेतन है
यह सीमा इस बात पर जोर देती है कि 0 पर स्थित कोई भी बिंदु द्रव्यमान पूरी तरह से लाप्लास ट्रांसफॉर्म द्वारा कब्जा किया जाता है जबकि लेबेस्ग समाकलन के साथ ऐसी सीमा आवश्यक नहीं है कि यह लाप्लास-स्टिल्टजेस परिवर्तन के संबंध में अधिक स्वाभाविक रूप से प्रकट होता है।
संहतीकरण आयाम और फ्रॉस्टमैन की लेम्मा
एक बोरेल माप μ को एक मापीय स्थान X पर इस प्रकार दिया गया है कि μ(X) > 0 और μ(B(x, r)) ≤ rs कुछ स्थिरांक s > 0 के लिए और X में प्रत्येक गेंद B(x, r) के लिए रखता है तो संहतीकरण आयाम मंद होता हैHaus(एक्स) ≥ एस. फ्रॉस्टमैन लेम्मा द्वारा आंशिक बातचीत प्रदान की गई है:[6]लेम्मा: मान लीजिए ए आर का एक बोरेल मापने योग्य उपसमुच्चय हैn और चलो s > 0. फिर निम्नलिखित समतुल्य हैं-
- एचs(A) > 0, जहां Hss-आयामी संहतीकरण माप को दर्शाता है
- एक अहस्ताक्षरित बोरेल माप μ है जो μ(A) > 0 को संतुष्ट करता है जो इस प्रकार है-
- :सभी x ∈ 'R' के लिए मान्यn और r > 0.
क्रैमर-वॉल्ड प्रमेय
माप सिद्धांत में क्रैमर-वॉल्ड प्रमेय बताता है कि एक बोरेल संभाव्यता माप पर है अपने एक-आयामी प्रक्षेपणों की समग्रता से विशिष्ट रूप से निर्धारित होता है [7] इसका उपयोग संयुक्त अभिसरण परिणामों को सिद्ध करने की एक विधि के रूप में किया जाता है प्रमेय का नाम हेराल्ड क्रैमर और हरमन ओले एंड्रियास वोल्ड के नाम पर रखा गया है।
संदर्भ
- ↑ D. H. Fremlin, 2000. Measure Theory Archived 2010-11-01 at the Wayback Machine. Torres Fremlin.
- ↑ Alan J. Weir (1974). सामान्य एकीकरण और माप. Cambridge University Press. pp. 158–184. ISBN 0-521-29715-X.
- ↑ Vladimir I. Bogachev. Measure Theory, Volume 1. Springer Science & Business Media, Jan 15, 2007
- ↑ Halmos, Paul R. (1974), Measure Theory, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90088-9
- ↑ Feller 1971, §XIII.1
- ↑ Rogers, C. A. (1998). Hausdorff measures. Cambridge Mathematical Library (Third ed.). Cambridge: Cambridge University Press. pp. xxx+195. ISBN 0-521-62491-6.
- ↑ K. Stromberg, 1994. Probability Theory for Analysts. Chapman and Hall.
अग्रिम पठन
- Gaussian measure, a finite-dimensional Borel measure
- Feller, William (1971), An introduction to probability theory and its applications. Vol. II., Second edition, New York: John Wiley & Sons, MR 0270403.
- J. D. Pryce (1973). Basic methods of functional analysis. Hutchinson University Library. Hutchinson. p. 217. ISBN 0-09-113411-0.
- Ransford, Thomas (1995). Potential theory in the complex plane. London Mathematical Society Student Texts. Vol. 28. Cambridge: Cambridge University Press. pp. 209–218. ISBN 0-521-46654-7. Zbl 0828.31001.
- Teschl, Gerald, Topics in Real and Functional Analysis, (lecture notes)
- Wiener's lemma related