श्रृंखला परिसरों की होमोटोपी श्रेणी: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
गणित में समरूप बीजगणित में, [[योगात्मक श्रेणी]] A में श्रृंखला परिसरों की समरूप श्रेणी K''(A)'' श्रृंखला समरूपता और समरूपता समकक्षों के साथ काम करने के लिए रूपरेखा है। यह [[श्रृंखला संकुल|श्रृंखला समरूपताएं]] की श्रेणी A के ''कोम(A)'' और A की [[व्युत्पन्न श्रेणी]] D''(A)'' के बीच मध्यवर्ती स्थिति में है, जब A [[एबेलियन श्रेणी]] है; पहले के विपरीत यह [[त्रिकोणीय श्रेणी]] है, और बाद के विपरीत इसके गठन के लिए यह आवश्यक नहीं है कि A एबेलियन हो। दार्शनिक रूप से, जबकि D''(A)'' कोम(A)'' में [[अर्ध-समरूपता]] वाले समिश्र के किसी भी मानचित्र को समरूपता में बदल देता है, K''(A)'' केवल उन लोगों के लिए ऐसा करता है जो अर्ध-समरूपता हैं | | गणित में समरूप बीजगणित में, [[योगात्मक श्रेणी]] A में श्रृंखला परिसरों की समरूप श्रेणी K''(A)'' श्रृंखला समरूपता और समरूपता समकक्षों के साथ काम करने के लिए रूपरेखा है। यह [[श्रृंखला संकुल|श्रृंखला समरूपताएं]] की श्रेणी A के ''कोम(A)'' और A की [[व्युत्पन्न श्रेणी]] D''(A)'' के बीच मध्यवर्ती स्थिति में है, जब A [[एबेलियन श्रेणी]] है; पहले के विपरीत यह [[त्रिकोणीय श्रेणी]] है, और बाद के विपरीत इसके गठन के लिए यह आवश्यक नहीं है कि A एबेलियन हो। दार्शनिक रूप से, जबकि D''(A)'' कोम(A)'' में [[अर्ध-समरूपता|अर्ध -समरूपता]] वाले समिश्र के किसी भी मानचित्र को समरूपता में बदल देता है, K''(A)'' केवल उन लोगों के लिए ऐसा करता है जो अर्ध-समरूपता हैं | अच्छे कारण के लिए समरूपता, अर्थात् वास्तव में समरूप समतुल्यता का व्युत्क्रम होता है। इस प्रकार, ''K(A)'' ''D(A)'' से अधिक समझने योग्य है। | ||
== परिभाषाएँ == | == परिभाषाएँ == | ||
Line 20: | Line 20: | ||
== टिप्पणियाँ == | == टिप्पणियाँ == | ||
दो श्रृंखला समस्थानिक मानचित्र f और g समरूपता पर समान मानचित्र प्रेरित करते हैं क्योंकि (f - g) | दो श्रृंखला समस्थानिक मानचित्र f और g समरूपता पर समान मानचित्र प्रेरित करते हैं क्योंकि (f - g) चक्रों को सीमाओं तक भेजता है, जो समरूपता में शून्य हैं। विशेष रूप से समरूप समतुल्यता अर्ध-समरूपता है। (विपरीत सामान्यतः गलत है।) इससे पता चलता है कि विहित प्रकार्यक <math>K(A) \rightarrow D(A)</math> है | व्युत्पन्न श्रेणी में (यदि A एबेलियन श्रेणी है)। | ||
== त्रिकोणीय संरचना == | == त्रिकोणीय संरचना == | ||
समिश्र A का स्थानांतरित A[1] निम्नलिखित समिश्र है | |||
:<math>A[1]: ... \to A^{n+1} \xrightarrow{d_{A[1]}^n} A^{n+2} \to ...</math> (ध्यान दें कि <math>(A[1])^n = A^{n + 1}</math>), | :<math>A[1]: ... \to A^{n+1} \xrightarrow{d_{A[1]}^n} A^{n+2} \to ...</math> (ध्यान दें कि <math>(A[1])^n = A^{n + 1}</math>), | ||
अंतर | अंतर जहाँ <math>d_{A[1]}^n := - d_A^{n+1}</math> है। | ||
रूपवाद के शंकु के लिए हम [[मानचित्रण शंकु (होमोलॉजिकल बीजगणित)]] लेते हैं। प्राकृतिक मानचित्र हैं | रूपवाद के शंकु के लिए हम [[मानचित्रण शंकु (होमोलॉजिकल बीजगणित)|मानचित्रण शंकु]] लेते हैं। प्राकृतिक मानचित्र हैं | ||
:<math>A \xrightarrow{f} B \to C(f) \to A[1]</math> | :<math>A \xrightarrow{f} B \to C(f) \to A[1]</math> | ||
इस आरेख को त्रिभुज कहा जाता है। | इस आरेख को त्रिभुज कहा जाता है। समरूपता श्रेणी K(A) त्रिकोणीय श्रेणी है, यदि कोई अपने ढंग से A, B और f के लिए, ऊपर दिए गए त्रिकोणों के लिए अलग-अलग त्रिकोणों को समरूपता (K(A) में, अर्थात समरूपता समकक्ष) के रूप में परिभाषित करता है। परिबद्ध प्रकार K+(A),K<sup>−</sup>(A) और K<sup>b</sup>(A) के लिए भी यही सच है | चूँकि, कोम (A) में भी त्रिकोण का अर्थ होता है, परन्तु इन विशिष्ट त्रिकोणों के संबंध में उस श्रेणी को त्रिकोणित नहीं किया गया है; उदाहरण के लिए, | ||
:<math>X \xrightarrow{id} X \to 0 \to</math> | :<math>X \xrightarrow{id} X \to 0 \to</math> | ||
अलग नहीं किया गया है क्योंकि पहचान मानचित्र का शंकु | अलग नहीं किया गया है क्योंकि पहचान मानचित्र का शंकु समिश्र 0 के लिए समरूपी नहीं है (चूँकि, शून्य मानचित्र <math>C(id) \to 0</math> समरूप तुल्यता है, जिससे कि यह त्रिभुज K(A)) में प्रतिष्ठित हो। इसके अतिरिक्त, प्रतिष्ठित त्रिभुज का घूर्णन स्पष्ट रूप से कोम (A) में प्रतिष्ठित नहीं है, परन्तु (कम स्पष्ट रूप से) K(A) में प्रतिष्ठित है। विवरण के लिए संदर्भ देखना है। | ||
==सामान्यीकरण== | ==सामान्यीकरण== | ||
अधिक | अधिक सामान्यतौर पर, [[विभेदक श्रेणीबद्ध श्रेणी]] C की होमोटॉपी श्रेणी HO(C) को C के समान वस्तुओं के रूप में परिभाषित किया जाता है, परन्तु आकारिकी को <math>\operatorname{Hom}_{Ho(C)}(X, Y) = H^0 \operatorname{Hom}_C (X, Y)</math> इसके द्वारा परिभाषित किया जाता है | (यह श्रृंखला परिसरों की समरूपता पर निर्भर करता है यदि C उन परिसरों की श्रेणी है जिनके आकारिकी को विभेदकों का सम्मान करने की आवश्यकता नहीं है)। यदि C में उपयुक्त अर्थ में शंकु और बदलाव हैं, तो Ho(C) भी त्रिकोणीय श्रेणी है। | ||
<math>\operatorname{Hom}_{Ho(C)}(X, Y) = H^0 \operatorname{Hom}_C (X, Y)</math> | |||
==संदर्भ== | ==संदर्भ== |
Revision as of 13:56, 13 July 2023
गणित में समरूप बीजगणित में, योगात्मक श्रेणी A में श्रृंखला परिसरों की समरूप श्रेणी K(A) श्रृंखला समरूपता और समरूपता समकक्षों के साथ काम करने के लिए रूपरेखा है। यह श्रृंखला समरूपताएं की श्रेणी A के कोम(A) और A की व्युत्पन्न श्रेणी D(A) के बीच मध्यवर्ती स्थिति में है, जब A एबेलियन श्रेणी है; पहले के विपरीत यह त्रिकोणीय श्रेणी है, और बाद के विपरीत इसके गठन के लिए यह आवश्यक नहीं है कि A एबेलियन हो। दार्शनिक रूप से, जबकि D(A) कोम(A) में अर्ध -समरूपता वाले समिश्र के किसी भी मानचित्र को समरूपता में बदल देता है, K(A) केवल उन लोगों के लिए ऐसा करता है जो अर्ध-समरूपता हैं | अच्छे कारण के लिए समरूपता, अर्थात् वास्तव में समरूप समतुल्यता का व्युत्क्रम होता है। इस प्रकार, K(A) D(A) से अधिक समझने योग्य है।
परिभाषाएँ
माना A योगात्मक श्रेणी है। समरूपता श्रेणी K(A) निम्नलिखित परिभाषा पर आधारित है: यदि हमारे पास समिश्र A, B और मानचित्र f, g A से B तक हैं, तो f से g तक 'श्रृंखला समरूपता' मानचित्रों का संग्रह है (समिश्र का मानचित्र नहीं) ऐसा
- या केवल
इसे इस प्रकार दर्शाया जा सकता है:
- हम यह भी कहते हैं कि f और g 'श्रंखला समरूपता' हैं, या वह 0 के लिए शून्य-समरूप या समस्थानिक है। परिभाषा से यह स्पष्ट है कि परिसरों के मानचित्र जो शून्य-समरूप हैं, जोड़ के अंतर्गत समूह बनाते हैं।
श्रृंखला परिसरों K(A) की समरूप श्रेणी को इस प्रकार परिभाषित किया गया है: इसकी वस्तुएं कोम(A) की वस्तुओं के समान अर्थात् श्रृंखला परिसर। इसके आकारिकी मॉड्यूलो समरूपता श्रृंखला जटिल मानचित्र हैं: अर्थात, हम तुल्यता संबंध को परिभाषित करते हैं
- यदि f, g का समस्थानिक है
और परिभाषित करते हैं।
इस संबंध द्वारा भागफल होता है। यह स्पष्ट है कि इसका परिणाम योगात्मक श्रेणी में होता है यदि कोई नोट करता है कि यह शून्य समरूपता मानचित्रों के उपसमूह द्वारा भागफल लेने के समान है।
परिभाषा के निम्नलिखित प्रकार भी व्यापक रूप से उपयोग किए जाते हैं: यदि परिबद्ध-निचे (An=0 n<<0) के लिए होता है, परिबद्ध-ऊपर (An=0 के लिए n>>0), या परिबद्ध (An=0 |n|>>0) के लिए अपरिबद्ध समिश्र के बदले, परिबद्ध-नीचे समरूपता श्रेणी आदि की बात करता है। उन्हें K+(A),K−(A) और Kb(A), क्रमशः द्वारा निरूपित किया जाता है।
रूपवाद जो K(A) में समरूपता है उसे 'समरूप तुल्यता' कहा जाता है। विस्तार से, इसका अर्थ है कि एक और मानचित्र है, जैसे कि दो रचनाएँ और पहचान के लिए समरूप हैं:
समरूपता नाम इस तथ्य से आया है कि संस्थितिक स्पेस केसमस्थानिक मानचित्र एकवचन श्रृंखलाओं के समरूपता (उपरोक्त अर्थ में) मानचित्रों को प्रेरित करते हैं।
टिप्पणियाँ
दो श्रृंखला समस्थानिक मानचित्र f और g समरूपता पर समान मानचित्र प्रेरित करते हैं क्योंकि (f - g) चक्रों को सीमाओं तक भेजता है, जो समरूपता में शून्य हैं। विशेष रूप से समरूप समतुल्यता अर्ध-समरूपता है। (विपरीत सामान्यतः गलत है।) इससे पता चलता है कि विहित प्रकार्यक है | व्युत्पन्न श्रेणी में (यदि A एबेलियन श्रेणी है)।
त्रिकोणीय संरचना
समिश्र A का स्थानांतरित A[1] निम्नलिखित समिश्र है
- (ध्यान दें कि ),
अंतर जहाँ है।
रूपवाद के शंकु के लिए हम मानचित्रण शंकु लेते हैं। प्राकृतिक मानचित्र हैं
इस आरेख को त्रिभुज कहा जाता है। समरूपता श्रेणी K(A) त्रिकोणीय श्रेणी है, यदि कोई अपने ढंग से A, B और f के लिए, ऊपर दिए गए त्रिकोणों के लिए अलग-अलग त्रिकोणों को समरूपता (K(A) में, अर्थात समरूपता समकक्ष) के रूप में परिभाषित करता है। परिबद्ध प्रकार K+(A),K−(A) और Kb(A) के लिए भी यही सच है | चूँकि, कोम (A) में भी त्रिकोण का अर्थ होता है, परन्तु इन विशिष्ट त्रिकोणों के संबंध में उस श्रेणी को त्रिकोणित नहीं किया गया है; उदाहरण के लिए,
अलग नहीं किया गया है क्योंकि पहचान मानचित्र का शंकु समिश्र 0 के लिए समरूपी नहीं है (चूँकि, शून्य मानचित्र समरूप तुल्यता है, जिससे कि यह त्रिभुज K(A)) में प्रतिष्ठित हो। इसके अतिरिक्त, प्रतिष्ठित त्रिभुज का घूर्णन स्पष्ट रूप से कोम (A) में प्रतिष्ठित नहीं है, परन्तु (कम स्पष्ट रूप से) K(A) में प्रतिष्ठित है। विवरण के लिए संदर्भ देखना है।
सामान्यीकरण
अधिक सामान्यतौर पर, विभेदक श्रेणीबद्ध श्रेणी C की होमोटॉपी श्रेणी HO(C) को C के समान वस्तुओं के रूप में परिभाषित किया जाता है, परन्तु आकारिकी को इसके द्वारा परिभाषित किया जाता है | (यह श्रृंखला परिसरों की समरूपता पर निर्भर करता है यदि C उन परिसरों की श्रेणी है जिनके आकारिकी को विभेदकों का सम्मान करने की आवश्यकता नहीं है)। यदि C में उपयुक्त अर्थ में शंकु और बदलाव हैं, तो Ho(C) भी त्रिकोणीय श्रेणी है।
संदर्भ
- Manin, Yuri Ivanovich; Gelfand, Sergei I. (2003), Methods of Homological Algebra, Berlin, New York: Springer-Verlag, ISBN 978-3-540-43583-9
- Weibel, Charles A. (1994). An introduction to homological algebra. Cambridge Studies in Advanced Mathematics. Vol. 38. Cambridge University Press. ISBN 978-0-521-55987-4. MR 1269324. OCLC 36131259.