गाऊसी द्विपद गुणांक: Difference between revisions

From Vigyanwiki
No edit summary
Line 362: Line 362:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 09/07/2023]]
[[Category:Created On 09/07/2023]]
[[Category:Vigyan Ready]]

Revision as of 15:48, 28 July 2023

गणित में गॉसियन द्विपद गुणांक, जिसे गॉसियन गुणांक, गॉसियन बहुपद, या q-द्विपद गुणांक भी कहा जाता है, इसको q-एनालॉग या q-द्विपद गुणांक के एनालॉग के रूप में जाना जाता हैं। इस प्रकार गॉसियन द्विपद गुणांक या के रूप में लिखा गया है, इस प्रकार के पूर्णांक को उपयुक्त गुणांकों के साथ q बहुपद में सम्मिलित किया जाता है, जिसका मान q होने पर अभाज्य मान के रूप में उचित समुच्चय के रूप में उपयोग करते है, इस स्थिति में आयाम n के सदिश क्षेत्र में आयाम k के उप-स्थानों की संख्या की गणना द्वारा की जाती है, q तत्वों के साथ सीमित क्षेत्र के रूप में अर्ताथ यह परिमित ग्रासमैनियन में अंकों की संख्या को प्रदर्शित करता है।

परिभाषा

गाऊसी द्विपद गुणांक को इस प्रकार परिभाषित किया गया है:[1]

जहाँ m और r गैर-ऋणात्मक पूर्णांक हैं। इस प्रकार यदि r > m, इसका मूल्यांकन 0 है, जहाँ पर r = 0, मान 1 है, ऐसा इसलिए हैं क्योंकि अंश और हर दोनों रिक्त बहुपद हैं।

चूंकि प्रारंभिक समय में सूत्रानुसार तर्कसंगत फलन के रूप में प्रतीत होता है, यह वास्तव में बहुपद का मान है, क्योंकि विभाजन Z[q] में उपलब्ध रहता है।

अंश और हर के सभी गुणनखंड 1 − q से विभाज्य हैं, और भागफल Q-एनालॉग परिचयात्मक उदाहरण या q-संख्या द्वारा प्रदर्शित होता है:

इन कारकों को विभाजित करने पर समतुल्य सूत्र प्राप्त होता है-

q-एनालॉग परिचयात्मक उदाहरणों के संदर्भ में , सूत्र को इस प्रकार लिखा जा सकता है-

इस मान के अनुसार q = 1 होने पर के मान को साधारणतयः द्विपद गुणांक के रूप में प्रकट करते है।

गॉसियन द्विपद गुणांक का मान तक सीमित होते हैं:

उदाहरण

संयुक्त विवरण

विपरीत

गॉसियन द्विपद गुणांकों के संयुक्त विवरण में व्युत्क्रम (असतत गणित) सम्मिलित है।

साधारण द्विपद गुणांक गिनती करता है, इस प्रकार r-a से चुने गए संयोजन m-तत्व समुच्चय का मान यदि कोई उन्हें उपयोग करता है, इस स्थिति में m तत्वों की लंबाई के शब्द में विभिन्न वर्ण स्थिति m रहती हैं, इसके पश्चात प्रत्येक r-संयोजन लंबाई के शब्द से मेल खाता है, जहाँ पर m को दो अक्षरों की वर्णमाला का उपयोग करते हुए उपयोग करते हैं, इस प्रकार मान लीजिए {0,1}, के साथ r का मान 1 होने पर चयनित संयोजन में पदों का संकेत और mr का मान शेष पदों के लिए 0 होता हैं।

इस प्रकार, उदाहरण के लिए, होने पर 0 और 1 का प्रयोग करने वाला मान हैं।

गाऊसी द्विपद गुणांक प्राप्त करने के लिए , प्रत्येक शब्द कारक qd, से जुड़ा है, जहाँ d शब्द के व्युत्क्रमों की संख्या है, जहां इस स्थिति में व्युत्क्रम स्थितियों की जोड़ी है, जहां इस संयोजन के बाईं ओर अक्षर 1 होता है और दाईं ओर अक्षर 0 होता है।

उपरोक्त उदाहरण के साथ 0 व्युत्क्रम वाला शब्द है, इस प्रकार 1 व्युत्क्रम के साथ शब्द, , को मुख्य रूप से दो व्युत्क्रम वाले दो शब्द, , के द्वारा प्रकट करते हैं। इसी प्रकार 3 व्युत्क्रमों वाले शब्द, , और 4 व्युत्क्रमों वाला शब्द, द्वारा प्रकट करते हैं। इसके कारण इस प्रारंभिक स्थिति से 1s की बाईं-शिफ्ट की संख्या भी है।

ये गुणांकों के अनुरूप हैं।

इसे देखने का दूसरा तरीका यह है कि प्रत्येक शब्द को ऊंचाई के साथ आयताकार ग्रिड के पार पथ के साथ जोड़े गए r और चौड़ाई mr को प्रकट करते हैं, इस प्रकार निचले बाएँ कोने से ऊपरी दाएँ कोने तक जा रहा हूँ। इस पथ पर प्रत्येक 0 के लिए कदम दाएं और प्रत्येक 1 के लिए कदम ऊपर लेता है। व्युत्क्रमण चरण की दिशाओं को बदल देता है (दाएं+ऊपर ऊपर+दाएं हो जाता है और इसके विपरीत), इसलिए व्युत्क्रमों की संख्या पथ के नीचे के क्षेत्र के बराबर होती है।

डिब्बे में गेंदो का उदाहरण

इस उदाहरण में में उपयुक्त विधि से गेंद को फेंकने के विभिन्न तरीको की संख्या अविभाज्य गेंदों में अविभाज्य डिब्बे में रहती हैं, जहां प्रत्येक डिब्बे में गेंदो तक हो सकता है,

गॉसियन द्विपद गुणांक का उपयोग लक्षण वर्णन के लिए में इसका उपयोग किया जा सकता है,

वास्तव में,

जहाँ के गुणांक को बहुपद में में दर्शाता है, इसे नीचे एप्लिकेशन अनुभाग भी देख सकते हैं।

गुण

प्रतिबिंब

सामान्य द्विपद गुणांकों के समान गाऊसी द्विपद गुणांक केंद्र-सममित होते हैं, अर्थात, प्रतिबिंब के अनुसार अपरिवर्तनीयता होती हैं :

विशेष रूप से,


q पर limit = 1 होने पर

गाऊसी द्विपद गुणांक का मूल्यांकन q = 1 है

अर्ताथ गुणांकों का योग संगत द्विपद मान देता है।

बहुपद की डिग्री

बहुपद की डिग्री होती है।

क्यू आइडेंटिटी

पास्कल आइडेंटिटी के अनुरूप

गाऊसी द्विपद गुणांक के लिए पास्कल आइडेंटिटी के अनुरूप हैं:[2]

और

कब , ये दोनों सामान्य द्विपद आइडेंटिटी देते हैं। इसके आधार पर हम इसे रूप में देख सकते हैं, जहाँ पर दोनों समीकरण वैध रहते हैं।

पहला पास्कल एनालॉग प्रारंभिक मानों का उपयोग करके गॉसियन द्विपद गुणांक की पुनरावर्ती करके m के संबंध में गणना की अनुमति देता है।

और यह भी दर्शाता है कि गॉसियन द्विपद गुणांक वास्तव में बहुपद (q में) हैं।

दूसरा पास्कल एनालॉग प्रतिस्थापन का उपयोग करते हुए पहले से अनुसरण में किया जाता है, और इसके आधार पर इस प्रतिबिंब के अनुसार गाऊसी द्विपद गुणांक का अपरिवर्तनीयता रहती हैं।

इन सर्वसमिकाओं की रैखिक बीजगणित के संदर्भ में स्वाभाविक व्याख्याएँ हैं। यहाँ पर याद रखे कि आर-आयामी उप-स्थानों की गणना करता है, और इसके आधार पर एक-आयामी नलस्पेस के साथ प्रक्षेपण बनाता हैं, इसके लिए पहले इस आइडेंटिटी को उसके साक्षेप उपयोग किया जाता है, जो मान उपयोग करता है, इसके मान के लिए को उपयोग किया जाता हैं, इसके आधार पर , समतल मुख्य रूप से r-आयामी रहता है, और हमें रैखिक फ़ंक्शन का भी ध्यान रखना चाहिए, जिसका ग्राफ है, अपितु इस स्थिति में , समतल (r−1)-आयामी है, और हम का पुनर्निर्माण कर सकते हैं, इसके अतिरिक्त किसी अतिरिक्त जानकारी के बिना दूसरी आइडेंटिटी की भी ऐसी ही व्याख्या है, इसके आधार पर को (m−1)-आयामी स्थान के लिए , फिर से दो स्थितियों में विभाजित किया जाता हैं।

एनालॉग के प्रमाण

दोनों एनालॉग्स को पहले उस परिभाषा से नोट करके सिद्ध किया जा सकता है, इस प्रकार हमें यह समीकरण प्राप्त होता हैं:

 

 

 

 

(1)

 

 

 

 

(2)

 

 

 

 

(3)

जैसा

समीकरण (1) बन जाता है:

और समीकरण प्रतिस्थापित करना (3) पहला एनालॉग देता है।

एक समान प्रक्रिया का उपयोग करते हैं-

इसके अतिरिक्त इसका दूसरा एनालॉग देता है।

q-द्विपद प्रमेय

q-द्विपद गुणांक के लिए द्विपद प्रमेय का एनालॉग है, जिसे कॉची द्विपद प्रमेय के रूप में जाना जाता है:

सामान्य द्विपद प्रमेय के समान इस सूत्र में कई सामान्यीकरण और विस्तार हैं, इसका मान इस प्रकार हैं कि यह ऋणात्मक घातों के लिए न्यूटन के सामान्यीकृत द्विपद प्रमेय के अनुरूप उपयोग किया जाता है-

limit में , ये सूत्र उपज देते हैं

और

.

समुच्चयिंग क्रमशः विशिष्ट और किसी भी भाग के लिए जनरेटिंग फ़ंक्शन देता है। (मौलिक हाइपरज्यामितीय श्रृंखला भी देखें।)

केंद्रीय q-द्विपद आइडेंटिटी

सामान्य द्विपद गुणांकों के साथ, हमे उक्त समीकरण प्राप्त होता हैं:

क्यू-द्विपद गुणांक के साथ हमें एनालॉग मान इस समीकरण द्वारा प्राप्त होता है:


अनुप्रयोग

गाऊसी द्विपद गुणांक सममित बहुपदों की गिनती और विभाजन के सिद्धांत या संख्या सिद्धांत में उपयोग होते हैं। जिसे qr गुणांक में इस प्रकार प्राप्त करते हैं।

m या उससे कम भागों वाले r के विभाजनों की संख्या है, जिनमें से प्रत्येक n से कम या उसके बराबर है। इस प्रकार समान रूप से, यह n या उससे कम भागों वाले r के विभाजनों की संख्या भी है, जिनमें से प्रत्येक भाग m से कम या उसके बराबर होता है।

गाऊसी द्विपद गुणांक भी परिमित क्षेत्र पर परिभाषित प्रक्षेप्य स्थानों के गणनात्मक सिद्धांत में महत्वपूर्ण भूमिका निभाते हैं। विशेष रूप से, प्रत्येक परिमित क्षेत्र Fq के लिए q तत्वों के साथ, गाऊसी द्विपद गुणांक-

Fq पर n-आयामी सदिश स्थल के k-आयामी वेक्टर उप-स्थानों की संख्या की गणना करता है। जब q में बहुपद के रूप में विस्तारित किया जाता है, तो यह शूबर्ट कोशिकाओं में ग्रासमैनियन के प्रसिद्ध अपघटन को जन्म देता है। उदाहरण के लिए, गाऊसी द्विपद गुणांक

(Fq)n में एक-आयामी उप-स्थानों की संख्या है, जिसके समकक्ष संबंधित प्रक्षेप्य स्थान में बिंदुओं की संख्या द्वारा प्रकट करते हैं। इसके अतिरिक्त जब q 1 (क्रमशः −1) होता है, तो गॉसियन द्विपद गुणांक संबंधित कॉम्प्लेक्स (क्रमशः वास्तविक) ग्रासमैनियन की यूलर विशेषता उत्पन्न करता है।

Fqn के k-आयामी एफ़िन उप-स्थानों की संख्या के बराबर है

.

यह आइडेंटिटी की और व्याख्या की अनुमति देता है

हाइपरप्लेन को ठीक करके (r - 1)-आयामी प्रक्षेप्य स्थान के (r - 1)-आयामी उप-स्थानों की गिनती करता हैं, इसके आधार पर यह हाइपरप्लेन में निहित ऐसे उप-स्थानों की गिनती करता हैं, और फिर हाइपरप्लेन में सम्मिलित नहीं होने वाले उप-स्थानों की गिनती करता हैं, इसके पश्चात यह उप-स्थान वाले इस निश्चित हाइपरप्लेन को अनंत पर हाइपरप्लेन के रूप में मानकर प्राप्त किए गए स्थान के (r - 1)-आयामी एफ़िन उप-स्थान के साथ विशेषण के लिए उपयोग होता हैं।

क्वांटम समूहों के अनुप्रयोगों में सरल संयोजनों में यह थोड़ी अलग परिभाषा का उपयोग करता है, जहाँ क्वांटम द्विपद गुणांक इस प्रकार है-

.

क्वांटम द्विपद गुणांक का यह संस्करण विनिमय के अनुसार और रूप से सममित है।

संदर्भ

  1. Mukhin, Eugene, chapter 3
  2. Mukhin, Eugene, chapter 3