तुलनीयता (समूह सिद्धांत): Difference between revisions

From Vigyanwiki
No edit summary
Line 46: Line 46:
*{{Citation | author1-first=Colin | author1-last=Maclachlan | author2-first=Alan W. | author2-last=Reid | title=The Arithmetic of Hyperbolic 3-Manifolds | publisher=[[Springer Nature]] | year=2003 | isbn=0-387-98386-4 | mr=1937957}}
*{{Citation | author1-first=Colin | author1-last=Maclachlan | author2-first=Alan W. | author2-last=Reid | title=The Arithmetic of Hyperbolic 3-Manifolds | publisher=[[Springer Nature]] | year=2003 | isbn=0-387-98386-4 | mr=1937957}}
*{{Citation | author1-first=Grigory | author1-last=Margulis | author1-link=Grigory Margulis | title=Discrete Subgroups of Semisimple Lie Groups | publisher=[[Springer Nature]] | year=1991 | isbn=3-540-12179-X | mr=1090825}}
*{{Citation | author1-first=Grigory | author1-last=Margulis | author1-link=Grigory Margulis | title=Discrete Subgroups of Semisimple Lie Groups | publisher=[[Springer Nature]] | year=1991 | isbn=3-540-12179-X | mr=1090825}}
[[Category: अनंत समूह सिद्धांत]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 10/07/2023]]
[[Category:Created On 10/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:अनंत समूह सिद्धांत]]

Revision as of 15:34, 31 July 2023

गणित में, विशेष रूप से समूह सिद्धांत में, दो समूह तुलनीय होते हैं यदि वे एक सटीक अर्थ में केवल एक सीमित मात्रा में भिन्न होते हैं। एक उपसमूह का अनुरूपक एक अन्य उपसमूह है, जो सामान्यीकरणकर्ता से संबंधित है।

समूह सिद्धांत में अनुरूपता

दो समूहों G1 और G2 को (अमूर्त रूप से) अनुरूप कहा जाता है यदि परिमित सूचकांक के उपसमूह H1 ⊂ G1 और H2 ⊂ G2 हैं जैसे कि H1, H2 के समरूपी है। [1] उदाहरण के लिए:

  • एक समूह तभी सीमित होता है जब वह तुच्छ समूह के अनुरूप हो।
  • कम से कम 2 जनित्र पर कोई भी दो अंतिम रूप से उत्पन्न मुक्त समूह एक दूसरे के साथ तुलनीय हैं। [2] समूह मॉड्यूलर समूह SL(2,'Z') भी इन मुक्त समूहों के अनुरूप है।
  • जीनस (गणित) के कोई भी दो सतह समूह कम से कम 2 एक दूसरे के अनुरूप हैं।

किसी दिए गए समूह के उपसमूहों के लिए एक अलग लेकिन संबंधित धारणा का उपयोग किया जाता है। अर्थात्, समूह G के दो उपसमूह Γ1 और Γ2 को तुलनीय कहा जाता है यदि प्रतिच्छेदन Γ1 ∩ Γ2 Γ1 और Γ2 दोनों में परिमित सूचकांक है। स्पष्ट रूप से इसका तात्पर्य यह है कि Γ1 और Γ2 अमूर्त रूप से तुलनीय हैं।

उदाहरण: गैर-शून्य वास्तविक संख्याओं A और B के लिए, A द्वारा उत्पन्न आर का उपसमूह B द्वारा उत्पन्न उपसमूह के साथ तुलनीय है यदि और केवल यदि वास्तविक संख्याएं A और B तुलनीय हैं, जिसका अर्थ है कि A/B तर्कसंगत संख्या Q से संबंधित है।

ज्यामितीय समूह सिद्धांत में, एक अंतिम रूप से उत्पन्न समूह को मीट्रिक शब्द का उपयोग करके मीट्रिक स्थान के रूप में देखा जाता है। यदि दो समूह (अमूर्त रूप से) तुलनीय हैं, तो वे अर्ध-सममितीय हैं। [3] यह पूछना उपयोगी रहा है कि वार्तालाप कब होती है।

रैखिक बीजगणित में एक समान धारणा है: एक सदिश समष्टि V के दो रैखिक उपस्थान S और T 'अनुरूपणीय' हैं यदि प्रतिच्छेदन S ∩ T का S और T दोनों में परिमितसंहिताकरण है।

सांस्थिति में

दो पथ-संबंधित सांस्थितिक समष्टि स्थान को कभी-कभी तुलनीय कहा जाता है यदि उनके पास होमियोमोर्फिज्म परिमित-शीट वाले समुपयोग समष्टि हैं। विचाराधीन स्थान के प्रकार के आधार पर, कोई व्यक्ति परिभाषा में होमोमोर्फिज्म के स्थान पर समस्थेयता तुल्यता या भिन्नता का उपयोग करना चाह सकता है। कवरिंग रिक्त स्थान और मौलिक समूह के बीच संबंध के अनुसार, तुलनीय रिक्त स्थान में तुलनीय मौलिक समूह होते हैं।

उदाहरण: गिसेकिंग मैनिफ़ोल्ड आकृति-आठ गाँठ के पूरक के अनुरूप है; ये दोनों परिमित आयतन के सघन स्थान अतिशयोक्तिपूर्ण 3-मैनिफोल्ड हैं। दूसरी ओर, सघन अतिशयोक्तिपूर्ण 3-बहुविध के और गैर-सघन अतिशयोक्तिपूर्ण 3-बहुविध के परिमित आयतन के भी अनंत रूप से कई अलग-अलग अनुरूपता वर्ग हैं। [4]


अनुमानक

समूह G के उपसमूह Γ का अनुरूपक, जिसे CommG(Γ) कहा जाता है, G के तत्वों g का समुच्चय है, जिससे कि संयुग्म उपसमूह gΓg−1 Γ के अनुरूप हो। [5] दूसरे शब्दों में,

यह G का एक उपसमूह है जिसमें नॉर्मलाइज़र NG(Γ) सम्मिलित है (और इसलिए इसमें Γ सम्मिलित है)।

उदाहरण के लिए, SL(n,'R') में विशेष रैखिक समूह SL(n,'Z') के अनुरूपक में SL(n,'Q') होता है। विशेष रूप से, SL(n,'R') में SL(n,'Z') का अनुरूपक SL(n,'R') में सघन सम्मुच्चय है। अधिक सामान्यतः, ग्रिगोरी मार्गुलिस ने दिखाया कि एक अर्धसरल लाई समूह G में एक जाली (असतत उपसमूह) का अनुरूपक G में सघन है यदि और केवल यदि Γ G का एक अंकगणितीय उपसमूह है। [6]


अमूर्त अनुरूपक

समूह G का अमूर्त अनुरूपक, जिसे कहा जाता है, समरूपता के समतुल्य वर्गों का समूह है, जहां , संरचना के अंतर्गत के परिमित सूचकांक उपसमूह हैं। के अवयव को G के अनुरूपक कहा जाता है।

यदि G एक जुड़ा हुआ अर्धसरल झूठ समूह है जो के समरूपी नहीं है, तुच्छ केंद्र और कोई सघन कारकों के साथ, तो मोस्टो कठोरता प्रमेय द्वारा, किसी भी अलघुकरणीय जाली का अमूर्त तुलनित्र रैखिक होता है। इसके अतिरिक्त, यदि अंकगणितीय है, तो Comm वास्तव में G के घने उपसमूह के लिए समरूपी है, अन्यथा Comm वस्तुतः के लिए समरूपी है। [7]

टिप्पणियाँ

  1. Druțu & Kapovich (2018), Definition 5.13.
  2. Druțu & Kapovich (2018), Proposition 7.80.
  3. Druțu & Kapovich (2018), Corollary 8.47.
  4. Maclachlan & Reid (2003), Corollary 8.4.2.
  5. Druțu & Kapovich (2018), Definition 5.17.
  6. Margulis (1991), Chapter IX, Theorem B.
  7. Druțu & Kapovich (2018), Section 5.2.


संदर्भ

  • ड्रूसु, कॉर्नेलिया; Kapovich, माइकल (2018), Geometric Group Theory, अमेरिकन गणितीय सोसायटी, ISBN 9781470411046, MR 3753580
  • Maclachlan, Colin; Reid, Alan W. (2003), The Arithmetic of Hyperbolic 3-Manifolds, Springer Nature, ISBN 0-387-98386-4, MR 1937957
  • Margulis, Grigory (1991), Discrete Subgroups of Semisimple Lie Groups, Springer Nature, ISBN 3-540-12179-X, MR 1090825