उच्च सीमा प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 4: Line 4:


==चक्रीय पॉलीटोप्स==
==चक्रीय पॉलीटोप्स==
{{main|Cyclic polytope}}
{{main|मुख्य लेख: चक्रीय पॉलीटोप}}
चक्रीय पॉलीटोप <math>\Delta(n,d)</math> के उत्तल पतवार के रूप में परिभाषित किया जा सकता है <math>n</math> [[शीर्ष (ज्यामिति)]] [[क्षण वक्र]] पर, का सेट <math>d</math>-निर्देशांक के साथ आयामी बिंदु <math>(t,t^2,t^3,\dots)</math>. जिसका सटीक चयन <math>n</math> इस वक्र पर जिन बिंदुओं का चयन किया गया है, वह इस पॉलीटोप की संयुक्त संरचना के लिए अप्रासंगिक है।
चक्रीय पॉलीटोप <math>\Delta(n,d)</math> चक्रीय पॉलीटोप को क्षण वक्र पर <math>n</math> [[शीर्ष (ज्यामिति)]] के उत्तल पतवार के रूप में परिभाषित किया जा सकता है, जो <math>d</math>-निर्देशांक के साथ आयामी बिंदु <math>(t,t^2,t^3,\dots)</math>का सेट है। इस वक्र पर कौन से <math>n</math> इस वक्र पर जिन बिंदुओं का चयन किया गया है, इसका सटीक चयन इस पॉलीटोप की संयुक्त संरचना के लिए अप्रासंगिक है।
की संख्या <math>i</math>-के आयामी चेहरे <math>\Delta(n,d)</math> सूत्र द्वारा दिया गया है
 
<math display=block> f_i(\Delta(n,d)) = \binom{n}{i+1} \quad \textrm{for} \quad
<math>i</math>-के द्वितीय-आयामी चेहरों की संख्या <math>\Delta(n,d)</math> सूत्र द्वारा दिया गया है
<math display="block"> f_i(\Delta(n,d)) = \binom{n}{i+1} \quad \textrm{for} \quad
0 \leq i < \left\lfloor\frac{d}{2}\right\rfloor </math>
0 \leq i < \left\lfloor\frac{d}{2}\right\rfloor </math>
और <math>(f_0,\ldots,f_{\left\lfloor\frac{d}{2}\right\rfloor-1})</math> पूरी तरह से निर्धारित करें <math>(f_{\left\lfloor\frac{d}{2}\right\rfloor},\ldots,f_{d-1})</math> डेन-सोमरविले समीकरण के माध्यम से। चेहरों की संख्या के लिए वही सूत्र आमतौर पर किसी भी [[पड़ोसी पॉलीटोप]] के लिए लागू होता है।
और <math>(f_0,\ldots,f_{\left\lfloor\frac{d}{2}\right\rfloor-1})</math> पूरी तरह से निर्धारित करें <math>(f_{\left\lfloor\frac{d}{2}\right\rfloor},\ldots,f_{d-1})</math> डेन-सोमरविले समीकरण के माध्यम से। चेहरों की संख्या के लिए वही सूत्र आमतौर पर किसी भी [[पड़ोसी पॉलीटोप]] के लिए लागू होता है।

Revision as of 00:46, 23 July 2023

गणित में, ऊपरी सीमा प्रमेय में कहा गया है कि किसी दिए गए आयाम और शीर्षों की संख्या के साथ सभी उत्तल पॉलीटोप्स के बीच चक्रीय पॉलीटोप में faces की संभावित संख्या सबसे बड़ी होती है। यह पॉलीहेड्रल कॉम्बिनेटरिक्स के केंद्रीय परिणामों में से एक है।

मूल रूप से ऊपरी सीमा अनुमान के रूप में जाना जाता है, यह कथन थिओडोर मोत्ज़किन द्वारा तैयार किया गया था, जिसे 1970 में पीटर मैकमुलेन द्वारा सिद्ध किया गया था,[1] और 1975 में रिचर्ड पी. स्टेनली द्वारा पॉलीटोप्स से एक क्षेत्र के उपविभाजनों तक मजबूत किया गया।

चक्रीय पॉलीटोप्स

चक्रीय पॉलीटोप चक्रीय पॉलीटोप को क्षण वक्र पर शीर्ष (ज्यामिति) के उत्तल पतवार के रूप में परिभाषित किया जा सकता है, जो -निर्देशांक के साथ आयामी बिंदु का सेट है। इस वक्र पर कौन से इस वक्र पर जिन बिंदुओं का चयन किया गया है, इसका सटीक चयन इस पॉलीटोप की संयुक्त संरचना के लिए अप्रासंगिक है।

-के द्वितीय-आयामी चेहरों की संख्या सूत्र द्वारा दिया गया है

और पूरी तरह से निर्धारित करें डेन-सोमरविले समीकरण के माध्यम से। चेहरों की संख्या के लिए वही सूत्र आमतौर पर किसी भी पड़ोसी पॉलीटोप के लिए लागू होता है।

कथन

ऊपरी सीमा प्रमेय बताता है कि यदि आयाम का एक सरल क्षेत्र है साथ शीर्ष, तो

बीच में अंतर सरल क्षेत्र के आयाम के लिए, और चक्रीय पॉलीटोप के आयाम के लिए, इस तथ्य से पता चलता है कि ए की सतह -आयामी पॉलीटोप (जैसे कि चक्रीय पॉलीटोप) एक है -किसी गोले का आयामी उपविभाजन। इसलिए, ऊपरी सीमा प्रमेय का तात्पर्य है कि एक मनमाना पॉलीटोप के चेहरों की संख्या कभी भी समान आयाम और शीर्षों की संख्या वाले चक्रीय या पड़ोसी पॉलीटोप के चेहरों की संख्या से अधिक नहीं हो सकती है। असम्बद्ध रूप से, इसका तात्पर्य यह है कि अधिकतम हैं सभी आयामों के चेहरे. समान सीमाएं उत्तल पॉलीटोप के लिए भी लागू होती हैं जो सरल नहीं हैं, क्योंकि ऐसे पॉलीटोप के शीर्षों को परेशान करना (और परेशान शीर्षों के उत्तल पतवार को लेना) केवल चेहरों की संख्या में वृद्धि कर सकता है।

इतिहास

सरल पॉलीटोप्स के लिए ऊपरी सीमा अनुमान 1957 में मोत्ज़किन द्वारा प्रस्तावित किया गया था और 1970 में मैकमुलेन द्वारा सिद्ध किया गया था। उनके प्रमाण में एक प्रमुख घटक एच-वेक्टर|एच-वेक्टर के संदर्भ में निम्नलिखित सुधार था:

विक्टर क्ली ने सुझाव दिया कि सभी सरल क्षेत्रों के लिए एक ही कथन लागू होना चाहिए और यह वास्तव में 1975 में स्टेनली द्वारा स्थापित किया गया था [2] स्टेनली-रीस्नर रिंग की धारणा और होमोलॉजिकल तरीकों का उपयोग करना। इस प्रमेय के अच्छे ऐतिहासिक विवरण के लिए स्टैनली का लेख देखें कि ऊपरी सीमा का अनुमान कैसे सिद्ध हुआ।[3]


संदर्भ

  1. Ziegler, Günter M. (1995), Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer, p. 254, ISBN 9780387943657, Finally, in 1970 McMullen gave a complete proof of the upper-bound conjecture – since then it has been known as the upper bound theorem. McMullen's proof is amazingly simple and elegant, combining two key tools: shellability and h-vectors.
  2. Stanley, Richard (1996). कॉम्बिनेटरिक्स और कम्यूटेटिव बीजगणित. Birkhäuser Boston. p. 164. ISBN 0-8176-3836-9.
  3. Stanley, Richard (2014). "ऊपरी सीमा का अनुमान कैसे सिद्ध हुआ?". Annals of Combinatorics. 18 (3): 533–539. doi:10.1007/s00026-014-0238-5. S2CID 253585250.