ज्यामितीय अपरिवर्तनीय सिद्धांत: Difference between revisions

From Vigyanwiki
No edit summary
Line 11: Line 11:


: <math> g\cdot f(v)=f(g^{-1}v), \quad g\in G, v\in V.</math>
: <math> g\cdot f(v)=f(g^{-1}v), \quad g\in G, v\in V.</math>
V पर G-क्रिया के बहुपद [[अपरिवर्तनीय (गणित)]], V पर वे बहुपद फलन f हैं जो समूह की कार्रवाई के कारण 'चरों के परिवर्तन' के तहत तय किए जाते हैं, ताकि जी में सभी G के लिए ''g'' · ''f'' = ''f'' हो। वे एक क्रमविनिमेय बीजगणित ''A'' = ''R''(''V'')<sup>''G''</sup> बनाते हैं, और इस बीजगणित की व्याख्या 'अपरिवर्तनीय सिद्धांत '[[जीआईटी भागफल]]' ''V'' // ''G''  पर कार्यों के बीजगणित के रूप में की जाती है क्योंकि इनमें से कोई भी कार्य समतुल्य सभी बिंदुओं के लिए समान मान देता है (अर्थात्, ''f'' (''v'') = ''f'' (''gv'') सभी के लिए g)। आधुनिक बीजगणितीय ज्यामिति की भाषा में,
V पर G-क्रिया के बहुपद [[अपरिवर्तनीय (गणित)]], V पर वे बहुपद फलन f हैं जो समूह की कार्रवाई के कारण 'चरों के परिवर्तन' के तहत तय किए जाते हैं, जिससे कि जी में सभी G के लिए ''g'' · ''f'' = ''f'' हो। वे एक क्रमविनिमेय बीजगणित ''A'' = ''R''(''V'')<sup>''G''</sup> बनाते हैं, और इस बीजगणित की व्याख्या 'अपरिवर्तनीय सिद्धांत '[[जीआईटी भागफल]]' ''V'' // ''G''  पर कार्यों के बीजगणित के रूप में की जाती है क्योंकि इनमें से कोई भी कार्य समतुल्य सभी बिंदुओं के लिए समान मान देता है (अर्थात्, ''f'' (''v'') = ''f'' (''gv'') सभी के लिए g)। आधुनिक बीजगणितीय ज्यामिति की भाषा में,


: <math> V/\!\!/G=\operatorname{Spec} A=\operatorname{Spec} R(V)^G.</math>
: <math> V/\!\!/G=\operatorname{Spec} A=\operatorname{Spec} R(V)^G.</math>
इस विवरण से कई कठिनाइयाँ सामने आती हैं। [[सामान्य रैखिक समूह]] के मामले में हिल्बर्ट द्वारा सफलतापूर्वक निपटाया गया पहला प्रयास यह साबित करना है कि बीजगणित A अंतिम रूप से उत्पन्न होता है। यदि कोई चाहता है कि भागफल एक एफ़िन बीजगणितीय प्रकार हो तो यह आवश्यक है। क्या एक समान तथ्य मनमाने समूह जी के लिए लागू होता है, यह G हिल्बर्ट की चौदहवीं समस्या का विषय था, और [[जस्टिस नागाटा]] ने प्रदर्शित किया कि उत्तर सामान्य रूप से नकारात्मक था। दूसरी ओर, बीसवीं शताब्दी के पूर्वार्ध में [[प्रतिनिधित्व सिद्धांत]] के विकास के दौरान, समूहों के एक बड़े वर्ग की पहचान की गई जिसका उत्तर सकारात्मक है; इन्हें [[रिडक्टिव समूह]] कहा जाता है और इसमें सभी परिमित समूह और सभी [[शास्त्रीय समूह]] शामिल होते हैं।
इस विवरण से कई कठिनाइयाँ सामने आती हैं। [[सामान्य रैखिक समूह]] के मामले में हिल्बर्ट द्वारा सफलतापूर्वक निपटाया गया पहला प्रयास यह सिद्ध करना करना है कि बीजगणित A अंतिम रूप से उत्पन्न होता है। यदि कोई चाहता है कि भागफल एक एफ़िन बीजगणितीय प्रकार हो तो यह आवश्यक है। क्या एक समान तथ्य मनमाने समूह जी के लिए क्रियान्वित होता है, यह G हिल्बर्ट की चौदहवीं समस्या का विषय था, और [[जस्टिस नागाटा]] ने प्रदर्शित किया कि उत्तर सामान्य रूप से नकारात्मक था। दूसरी ओर, बीसवीं शताब्दी के पूर्वार्ध में [[प्रतिनिधित्व सिद्धांत]] के विकास के समय, समूहों के एक बड़े वर्ग की पहचान की गई जिसका उत्तर सकारात्मक है; इन्हें [[रिडक्टिव समूह]] कहा जाता है और इसमें सभी परिमित समूह और सभी [[शास्त्रीय समूह]] सम्मलित होते हैं।


बीजगणित {{mvar|A}} की सीमित पीढ़ी {{mvar|A}} के पूर्ण विवरण की दिशा में पहला कदम है, और इस अधिक नाजुक प्रश्न को हल करने में प्रगति मामूली थी। शास्त्रीय रूप से अपरिवर्तनीयों का वर्णन केवल स्थितियों की एक सीमित श्रेणी में किया गया था, और पहले कुछ मामलों से परे इस विवरण की जटिलता ने सामान्य रूप से अपरिवर्तनीयों के बीजगणित की पूरी समझ की बहुत कम उम्मीद की थी। इसके अलावा, ऐसा हो सकता है कि कोई भी बहुपद अपरिवर्तनीय {{mvar|f}}, {{mvar|V}} में दिए गए बिंदु {{mvar|u}} और {{mvar|v}} के युग्म पर समान मान लेता है, फिर भी ये बिंदु G-क्रिया की विभिन्न [[कक्षा (समूह सिद्धांत)|कक्षाओं (समूह सिद्धांत)]] में हैं। एक सरल उदाहरण गैर-शून्य जटिल संख्याओं के गुणक समूह {{math|'''C'''{{sup|*}}}} द्वारा प्रदान किया जाता है जो अदिश गुणन द्वारा n-आयामी जटिल वेक्टर स्थान {{math|'''C'''{{sup|''n''}}}} पर कार्य करता है। इस मामले में, प्रत्येक बहुपद अपरिवर्तनीय एक स्थिरांक है, लेकिन क्रिया की कई अलग-अलग कक्षाएँ हैं। शून्य वेक्टर स्वयं एक कक्षा बनाता है, और किसी भी गैर-शून्य वेक्टर के गैर-शून्य गुणक एक कक्षा बनाते हैं, ताकि गैर-शून्य कक्षाएँ जटिल [[प्रक्षेप्य स्थान]] {{math|'''CP'''{{sup|''n''–1}}}} के बिंदुओं द्वारा पैरामीट्रिज्ड हों। यदि ऐसा होता है (विभिन्न कक्षाओं में समान फ़ंक्शन मान होते हैं), तो कोई कहता है कि "अपरिवर्तनीय कक्षाओं को अलग नहीं करते हैं", और बीजगणित {{mvar|A}} टोपोलॉजिकल भागफल स्थान {{math|''X'' / ''G''}} को अपूर्ण रूप से प्रतिबिंबित करता है। दरअसल, बाद वाला स्थान, [[भागफल टोपोलॉजी]] के साथ, अक्सर गैर-पृथक ([[हॉसडॉर्फ़ स्थान]]) होता है। (यह हमारे उदाहरण में मामला है - शून्य कक्षा खुली नहीं है क्योंकि शून्य वेक्टर के किसी भी पड़ोस में अन्य सभी कक्षाओं में बिंदु होते हैं, इसलिए भागफल टोपोलॉजी में शून्य कक्षा के किसी भी पड़ोस में अन्य सभी कक्षाएँ होती हैं।) 1893 में हिल्बर्ट ने उन कक्षाओं को निर्धारित करने के लिए एक मानदंड तैयार किया और साबित किया जो अपरिवर्तनीय बहुपदों द्वारा शून्य कक्षा से अलग नहीं होते हैं। बल्कि उल्लेखनीय रूप से, अपरिवर्तनीय सिद्धांत में उनके पहले के काम के विपरीत, जिसके कारण [[अमूर्त बीजगणित]] का तेजी से विकास हुआ, हिल्बर्ट का यह परिणाम अगले 70 वर्षों तक बहुत कम ज्ञात रहा और बहुत कम उपयोग किया गया। बीसवीं शताब्दी के पूर्वार्ध में अपरिवर्तनीय सिद्धांत का अधिकांश विकास अपरिवर्तनीयों के साथ स्पष्ट गणनाओं से संबंधित था, और किसी भी दर पर, ज्यामिति के बजाय बीजगणित के तर्क का पालन किया गया था।
बीजगणित {{mvar|A}} की सीमित पीढ़ी {{mvar|A}} के पूर्ण विवरण की दिशा में पहला कदम है, और इस अधिक नाजुक प्रश्न को हल करने में प्रगति मामूली थी। शास्त्रीय रूप से अपरिवर्तनीयों का वर्णन केवल स्थितियों की एक सीमित श्रेणी में किया गया था, और पहले कुछ स्थितियों से परे इस विवरण की जटिलता ने सामान्य रूप से अपरिवर्तनीयों के बीजगणित की पूरी समझ की बहुत कम उम्मीद की थी। इसके अतिरिक्त, ऐसा हो सकता है कि कोई भी बहुपद अपरिवर्तनीय {{mvar|f}}, {{mvar|V}} में दिए गए बिंदु {{mvar|u}} और {{mvar|v}} के युग्म पर समान मान लेता है, फिर भी ये बिंदु G-क्रिया की विभिन्न [[कक्षा (समूह सिद्धांत)|कक्षाओं (समूह सिद्धांत)]] में हैं। एक सरल उदाहरण गैर-शून्य जटिल संख्याओं के गुणक समूह {{math|'''C'''{{sup|*}}}} द्वारा प्रदान किया जाता है जो अदिश गुणन द्वारा n-आयामी जटिल वेक्टर स्थान {{math|'''C'''{{sup|''n''}}}} पर कार्य करता है। इस मामले में, प्रत्येक बहुपद अपरिवर्तनीय एक स्थिरांक है, लेकिन क्रिया की कई अलग-अलग कक्षाएँ हैं। शून्य वेक्टर स्वयं एक कक्षा बनाता है, और किसी भी गैर-शून्य वेक्टर के गैर-शून्य गुणक एक कक्षा बनाते हैं, जिससे कि गैर-शून्य कक्षाएँ जटिल [[प्रक्षेप्य स्थान]] {{math|'''CP'''{{sup|''n''–1}}}} के बिंदुओं द्वारा पैरामीट्रिज्ड हों। यदि ऐसा होता है (विभिन्न कक्षाओं में समान फ़ंक्शन मान होते हैं), तो कोई कहता है कि "अपरिवर्तनीय कक्षाओं को अलग नहीं करते हैं", और बीजगणित {{mvar|A}} टोपोलॉजिकल भागफल स्थान {{math|''X'' / ''G''}} को अपूर्ण रूप से प्रतिबिंबित करता है। दरअसल, पश्चात वाला स्थान, [[भागफल टोपोलॉजी]] के साथ, अधिकांशतः गैर-पृथक ([[हॉसडॉर्फ़ स्थान]]) होता है। (यह हमारे उदाहरण में मामला है - शून्य कक्षा खुली नहीं है क्योंकि शून्य वेक्टर के किसी भी पड़ोस में अन्य सभी कक्षाओं में बिंदु होते हैं, इसलिए भागफल टोपोलॉजी में शून्य कक्षा के किसी भी पड़ोस में अन्य सभी कक्षाएँ होती हैं।) 1893 में हिल्बर्ट ने उन कक्षाओं को निर्धारित करने के लिए एक मानदंड तैयार किया और सिद्ध करना किया जो अपरिवर्तनीय बहुपदों द्वारा शून्य कक्षा से अलग नहीं होते हैं। बल्कि उल्लेखनीय रूप से, अपरिवर्तनीय सिद्धांत में उनके पहले के काम के विपरीत, जिसके कारण [[अमूर्त बीजगणित]] का तेजी से विकास हुआ, हिल्बर्ट का यह परिणाम अगले 70 वर्षों तक बहुत कम ज्ञात रहा और बहुत कम उपयोग किया गया। बीसवीं शताब्दी के पूर्वार्ध में अपरिवर्तनीय सिद्धांत का अधिकांश विकास अपरिवर्तनीयों के साथ स्पष्ट गणनाओं से संबंधित था, और किसी भी दर पर, ज्यामिति के अतिरिक्त बीजगणित के तर्क का पालन किया गया था।


== ममफोर्ड की किताब ==
== ममफोर्ड की किताब ==


ज्यामितीय अपरिवर्तनीय सिद्धांत की स्थापना और विकास ममफोर्ड द्वारा एक मोनोग्राफ में किया गया था, जो पहली बार 1965 में प्रकाशित हुआ था, जिसमें [[डेविड हिल्बर्ट]] के कुछ परिणामों सहित उन्नीसवीं शताब्दी के अपरिवर्तनीय सिद्धांत के विचारों को आधुनिक बीजगणितीय ज्यामिति प्रश्नों पर लागू किया गया था। (पुस्तक को बाद के दो संस्करणों में काफी विस्तारित किया गया, जिसमें फोगार्टी और ममफोर्ड द्वारा अतिरिक्त परिशिष्ट और किरवान द्वारा सिम्प्लेक्टिक कोशिएंट्स पर एक अध्याय शामिल था।) पुस्तक उदाहरणों में उपलब्ध [[योजना सिद्धांत]] और कम्प्यूटेशनल तकनीकों दोनों का उपयोग करती है। उपयोग की गई अमूर्त सेटिंग योजना {{mvar|X}} पर एक समूह कार्रवाई (गणित) की है।
ज्यामितीय अपरिवर्तनीय सिद्धांत की स्थापना और विकास ममफोर्ड द्वारा एक मोनोग्राफ में किया गया था, जो पहली बार 1965 में प्रकाशित हुआ था, जिसमें [[डेविड हिल्बर्ट]] के कुछ परिणामों सहित उन्नीसवीं शताब्दी के अपरिवर्तनीय सिद्धांत के विचारों को आधुनिक बीजगणितीय ज्यामिति प्रश्नों पर क्रियान्वित किया गया था। (पुस्तक को पश्चात के दो संस्करणों में काफी विस्तारित किया गया, जिसमें फोगार्टी और ममफोर्ड द्वारा अतिरिक्त परिशिष्ट और किरवान द्वारा सिम्प्लेक्टिक कोशिएंट्स पर एक अध्याय सम्मलित था।) पुस्तक उदाहरणों में उपलब्ध [[योजना सिद्धांत]] और कम्प्यूटेशनल तकनीकों दोनों का उपयोग करती है। उपयोग की गई अमूर्त सेटिंग योजना {{mvar|X}} पर एक समूह कार्रवाई (गणित) की है।


एक कक्षा अंतरिक्ष का दिमागी विचार
एक कक्षा अंतरिक्ष का दिमागी विचार


:<math>G \setminus X</math>
:<math>G \setminus X</math>
यानी समूह क्रिया द्वारा {{mvar|X}} का भागफल स्थान, बीजगणितीय ज्यामिति में कठिनाइयों में चलता है, उन कारणों से जो अमूर्त शब्दों में व्याख्या योग्य हैं। वास्तव में ऐसा कोई सामान्य कारण नहीं है कि तुल्यता संबंधों को (बल्कि कठोर) [[नियमित कार्य|नियमित कार्यों]] (बहुपद कार्यों) के साथ अच्छी तरह से बातचीत करनी चाहिए, जो बीजगणितीय ज्यामिति के केंद्र में हैं। कक्षा स्थान {{math|''G'' \ ''X''}} पर जिन कार्यों पर विचार किया जाना चाहिए वे {{mvar|X}} पर वे कार्य हैं जो {{mvar|G}} की क्रिया के तहत अपरिवर्तनीय हैं। विभिन्न प्रकार के कार्य क्षेत्र (अर्थात [[तर्कसंगत कार्य]]) के माध्यम से प्रत्यक्ष दृष्टिकोण बनाया जा सकता है: [[भागफल विविधता]] के कार्य क्षेत्र के रूप में, उस पर जी-अपरिवर्तनीय तर्कसंगत कार्यों को लें। दुर्भाग्य से यह - [[द्विवार्षिक ज्यामिति]] का दृष्टिकोण - केवल उत्तर का पहला अनुमान ही दे सकता है। जैसा कि मम्फोर्ड ने पुस्तक की प्रस्तावना में कहा है:  
अर्थात समूह क्रिया द्वारा {{mvar|X}} का भागफल स्थान, बीजगणितीय ज्यामिति में कठिनाइयों में चलता है, उन कारणों से जो अमूर्त शब्दों में व्याख्या योग्य हैं। वास्तव में ऐसा कोई सामान्य कारण नहीं है कि तुल्यता संबंधों को (बल्कि कठोर) [[नियमित कार्य|नियमित कार्यों]] (बहुपद कार्यों) के साथ अच्छी तरह से बातचीत करनी चाहिए, जो बीजगणितीय ज्यामिति के केंद्र में हैं। कक्षा स्थान {{math|''G'' \ ''X''}} पर जिन कार्यों पर विचार किया जाना चाहिए वे {{mvar|X}} पर वे कार्य हैं जो {{mvar|G}} की क्रिया के तहत अपरिवर्तनीय हैं। विभिन्न प्रकार के कार्य क्षेत्र (अर्थात [[तर्कसंगत कार्य]]) के माध्यम से प्रत्यक्ष दृष्टिकोण बनाया जा सकता है: [[भागफल विविधता]] के कार्य क्षेत्र के रूप में, उस पर जी-अपरिवर्तनीय तर्कसंगत कार्यों को लें। दुर्भाग्य से यह - [[द्विवार्षिक ज्यामिति]] का दृष्टिकोण - केवल उत्तर का पहला अनुमान ही दे सकता है। जैसा कि मम्फोर्ड ने पुस्तक की प्रस्तावना में कहा है:  


समस्या यह है कि, परिणामी द्विवार्षिक वर्ग के सभी मॉडलों के सेट के भीतर, एक मॉडल होता है जिसके [[ज्यामितीय बिंदु]] कुछ क्रियाओं में कक्षाओं के सेट को वर्गीकृत करते हैं, या कुछ मॉड्यूली समस्या में बीजगणितीय वस्तुओं के सेट को वर्गीकृत करते हैं।
समस्या यह है कि, परिणामी द्विवार्षिक वर्ग के सभी मॉडलों के सेट के भीतर, एक मॉडल होता है जिसके [[ज्यामितीय बिंदु]] कुछ क्रियाओं में कक्षाओं के सेट को वर्गीकृत करते हैं, या कुछ मॉड्यूली समस्या में बीजगणितीय वस्तुओं के सेट को वर्गीकृत करते हैं।
Line 34: Line 34:
जीनस के अनुसार (वक्र) {{math|1=''g'' = 0, 1, 2, 3, 4, …}}, और मॉड्यूल प्रत्येक घटक पर कार्य हैं। [[मोटे मॉड्यूली समस्या]] में ममफोर्ड बाधाओं पर विचार करता है:
जीनस के अनुसार (वक्र) {{math|1=''g'' = 0, 1, 2, 3, 4, …}}, और मॉड्यूल प्रत्येक घटक पर कार्य हैं। [[मोटे मॉड्यूली समस्या]] में ममफोर्ड बाधाओं पर विचार करता है:


*मोडुलि स्पेस पर गैर-पृथक टोपोलॉजी (यानी अच्छी स्थिति में पर्याप्त पैरामीटर नहीं)
*मोडुलि स्पेस पर गैर-पृथक टोपोलॉजी (अर्थात अच्छी स्थिति में पर्याप्त पैरामीटर नहीं)
*असीमित रूप से अनेक अघुलनशील घटक (जो टालने योग्य नहीं है, लेकिन [[स्थानीय परिमितता]]{{disambiguation needed|date=March 2023}} कायम रह सकती है)
*असीमित रूप से अनेक अघुलनशील घटक (जो टालने योग्य नहीं है, लेकिन [[स्थानीय परिमितता]]{{disambiguation needed|date=March 2023}} कायम रह सकती है)
*योजनाओं के रूप में प्रस्तुत करने योग्य होने में घटकों की विफलता, हालांकि टोपोलॉजिकल रूप से प्रतिनिधित्व करने योग्य।
*योजनाओं के रूप में प्रस्तुत करने योग्य होने में घटकों की विफलता, चूंकि टोपोलॉजिकल रूप से प्रतिनिधित्व करने योग्य।


यह तीसरा बिंदु है जिसने पूरे सिद्धांत को प्रेरित किया। जैसा कि मम्फोर्ड कहते हैं, यदि पहली दो कठिनाइयों का समाधान हो जाता है
यह तीसरा बिंदु है जिसने पूरे सिद्धांत को प्रेरित किया। जैसा कि मम्फोर्ड कहते हैं, यदि पहली दो कठिनाइयों का समाधान हो जाता है


[तीसरा प्रश्न] अनिवार्य रूप से इस प्रश्न के समतुल्य हो जाता है कि क्या प्रक्षेप्य समूह द्वारा [[हिल्बर्ट योजना]] या [[चाउ योजना|चाउ योजनाओं]] के कुछ [[स्थानीय रूप से बंद]] उपसमुच्चय का कक्षा स्थान मौजूद है।
[तीसरा प्रश्न] अनिवार्य रूप से इस प्रश्न के समतुल्य हो जाता है कि क्या प्रक्षेप्य समूह द्वारा [[हिल्बर्ट योजना]] या [[चाउ योजना|चाउ योजनाओं]] के कुछ [[स्थानीय रूप से बंद|स्थानीय रूप से संवृत]] उपसमुच्चय का कक्षा स्थान उपस्थित है।


इससे निपटने के लिए उन्होंने स्थिरता की एक धारणा (वास्तव में तीन) पेश की। इसने उन्हें पहले के विश्वासघाती क्षेत्र को खोलने में सक्षम बनाया - विशेष रूप से [[फ्रांसिस सेवेरी]] द्वारा बहुत कुछ लिखा गया था, लेकिन साहित्य के तरीकों की सीमाएँ थीं। द्विवार्षिक दृष्टिकोण [[ संहिताकरण |संहिताकरण]] 1 के उपसमुच्चय के प्रति लापरवाह हो सकता है। एक योजना के रूप में एक मॉड्यूलि स्पेस रखना एक तरफ योजनाओं को प्रतिनिधित्व योग्य फ़ैक्टर के रूप में चिह्नित करने का प्रश्न है (जैसा कि ग्रोथेंडिक स्कूल इसे देखेगा); लेकिन ज्यामितीय रूप से यह एक [[संघनन (गणित)]] प्रश्न की तरह है, जैसा कि स्थिरता मानदंड से पता चला है। गैर-एकवचन किस्मों पर प्रतिबंध से किसी भी मायने में मॉड्यूलि स्पेस के रूप में [[सघन स्थान]] नहीं बनेगा: किस्में विलक्षणताओं में परिवर्तित हो सकती हैं। दूसरी ओर, जो बिंदु अत्यधिक एकवचन किस्मों के अनुरूप होंगे वे उत्तर में शामिल करने के लिए निश्चित रूप से बहुत 'खराब' हैं। स्वीकार किए जाने लायक स्थिर बिंदुओं का सही मध्य मार्ग, ममफोर्ड के काम से अलग कर दिया गया था। यह अवधारणा पूरी तरह से नई नहीं थी, क्योंकि इसके कुछ पहलू अन्य क्षेत्रों में जाने से पहले, अपरिवर्तनीय सिद्धांत पर डेविड हिल्बर्ट के अंतिम विचारों में पाए जाने थे।
इससे निपटने के लिए उन्होंने स्थिरता की एक धारणा (वास्तव में तीन) पेश की। इसने उन्हें पहले के विश्वासघाती क्षेत्र को खोलने में सक्षम बनाया - विशेष रूप से [[फ्रांसिस सेवेरी]] द्वारा बहुत कुछ लिखा गया था, लेकिन साहित्य के तरीकों की सीमाएँ थीं। द्विवार्षिक दृष्टिकोण [[ संहिताकरण |संहिताकरण]] 1 के उपसमुच्चय के प्रति लापरवाह हो सकता है। एक योजना के रूप में एक मॉड्यूलि स्पेस रखना एक तरफ योजनाओं को प्रतिनिधित्व योग्य फ़ैक्टर के रूप में चिह्नित करने का प्रश्न है (जैसा कि ग्रोथेंडिक स्कूल इसे देखेगा); लेकिन ज्यामितीय रूप से यह एक [[संघनन (गणित)]] प्रश्न की तरह है, जैसा कि स्थिरता मानदंड से पता चला है। गैर-एकवचन किस्मों पर प्रतिबंध से किसी भी मायने में मॉड्यूलि स्पेस के रूप में [[सघन स्थान]] नहीं बनेगा: किस्में विलक्षणताओं में परिवर्तित हो सकती हैं। दूसरी ओर, जो बिंदु अत्यधिक एकवचन किस्मों के अनुरूप होंगे वे उत्तर में सम्मलित करने के लिए निश्चित रूप से बहुत 'खराब' हैं। स्वीकार किए जाने लायक स्थिर बिंदुओं का सही मध्य मार्ग, ममफोर्ड के काम से अलग कर दिया गया था। यह अवधारणा पूरी तरह से नई नहीं थी, क्योंकि इसके कुछ पहलू अन्य क्षेत्रों में जाने से पहले, अपरिवर्तनीय सिद्धांत पर डेविड हिल्बर्ट के अंतिम विचारों में पाए जाने थे।


पुस्तक की प्रस्तावना में ममफोर्ड अनुमान को भी प्रतिपादित किया गया, जिसे बाद में [[विलियम हबौश]] ने सिद्ध किया।
पुस्तक की प्रस्तावना में ममफोर्ड अनुमान को भी प्रतिपादित किया गया, जिसे पश्चात में [[विलियम हबौश]] ने सिद्ध किया।
==स्थिरता== <!-- "Stable point" redirects here -->
==स्थिरता== <!-- "Stable point" redirects here -->
{{Redirect-distinguish|स्थिर बिंदु|स्थिर निश्चित बिंदु}}
{{Redirect-distinguish|स्थिर बिंदु|स्थिर निश्चित बिंदु}}
Line 50: Line 50:
*अस्थिर यदि 0 अपनी कक्षा के समापन में है,
*अस्थिर यदि 0 अपनी कक्षा के समापन में है,
*अर्ध-स्थिर यदि 0 अपनी कक्षा के समापन में नहीं है,
*अर्ध-स्थिर यदि 0 अपनी कक्षा के समापन में नहीं है,
*यदि इसकी कक्षा बंद है तो स्थिर है, और इसका स्टेबलाइजर परिमित है।
*यदि इसकी कक्षा संवृत है तो स्थिर है, और इसका स्टेबलाइजर परिमित है।


इन्हें बताने के समान तरीके हैं (इस मानदंड को हिल्बर्ट-ममफोर्ड मानदंड के रूप में जाना जाता है):
इन्हें बताने के समान तरीके हैं (इस मानदंड को हिल्बर्ट-ममफोर्ड मानदंड के रूप में जाना जाता है):
Line 62: Line 62:
{{mvar|V}} के संगत प्रक्षेप्य स्थान के एक बिंदु को अस्थिर, अर्ध-स्थिर या स्थिर कहा जाता है यदि यह समान गुण वाले {{mvar|V}} में एक बिंदु की छवि है।
{{mvar|V}} के संगत प्रक्षेप्य स्थान के एक बिंदु को अस्थिर, अर्ध-स्थिर या स्थिर कहा जाता है यदि यह समान गुण वाले {{mvar|V}} में एक बिंदु की छवि है।


"अस्थिर" "सेमीस्टेबल" ("स्थिर" नहीं) के विपरीत है। अस्थिर बिंदु प्रक्षेप्य स्थान का एक ज़ारिस्की बंद सेट बनाते हैं, जबकि सेमीस्टेबल और स्थिर बिंदु दोनों ज़ारिस्की खुले सेट (संभवतः खाली) बनाते हैं। ये परिभाषाएँ {{harv|ममफोर्ड |1977}} से हैं और ममफोर्ड की पुस्तक के पहले संस्करण के समकक्ष नहीं हैं।
"अस्थिर" "सेमीस्टेबल" ("स्थिर" नहीं) के विपरीत है। अस्थिर बिंदु प्रक्षेप्य स्थान का एक ज़ारिस्की संवृत सेट बनाते हैं, जबकि सेमीस्टेबल और स्थिर बिंदु दोनों ज़ारिस्की विवृत सेट (संभवतः खाली) बनाते हैं। ये परिभाषाएँ {{harv|ममफोर्ड |1977}} से हैं और ममफोर्ड की पुस्तक के पहले संस्करण के समकक्ष नहीं हैं।


कुछ समूह क्रिया द्वारा प्रक्षेप्य स्थान के कुछ उपसमूह के स्थिर बिंदुओं के स्थान के भागफल के रूप में कई मॉड्यूलि रिक्त स्थान का निर्माण किया जा सकता है। इन स्थानों को अक्सर अर्धस्थिर बिंदुओं के कुछ समतुल्य वर्गों को जोड़कर संकुचित किया जा सकता है। अलग-अलग स्थिर कक्षाएँ भागफल में अलग-अलग बिंदुओं के अनुरूप होती हैं, लेकिन दो अलग-अलग अर्धस्थिर कक्षाएँ भागफल में एक ही बिंदु के अनुरूप हो सकती हैं यदि उनके समापन एक दूसरे को काटते हैं।
कुछ समूह क्रिया द्वारा प्रक्षेप्य स्थान के कुछ उपसमूह के स्थिर बिंदुओं के स्थान के भागफल के रूप में कई मॉड्यूलि रिक्त स्थान का निर्माण किया जा सकता है। इन स्थानों को अधिकांशतः अर्धस्थिर बिंदुओं के कुछ समतुल्य वर्गों को जोड़कर संकुचित किया जा सकता है। अलग-अलग स्थिर कक्षाएँ भागफल में अलग-अलग बिंदुओं के अनुरूप होती हैं, लेकिन दो अलग-अलग अर्धस्थिर कक्षाएँ भागफल में एक ही बिंदु के अनुरूप हो सकती हैं यदि उनके समापन एक दूसरे को काटते हैं।
   
   
उदाहरण: {{harv|डेलिग्ने|ममफोर्ड|1969}} एक [[स्थिर वक्र]] जीनस ≥2 का एक कम जुड़ा हुआ वक्र है, जैसे कि इसकी एकमात्र विलक्षणताएं सामान्य दोहरे बिंदु हैं और प्रत्येक गैर-एकवचन तर्कसंगत घटक कम से कम 3 बिंदुओं में अन्य घटकों से मिलता है। जीनस {{mvar|G}} के स्थिर वक्रों का मॉड्यूलि स्थान {{math|'''P'''{{sup|5''g''–6}}}} समूह द्वारा हिल्बर्ट बहुपद {{math|(6''n'' – 1)(''g'' – 1)}} के साथ {{math|PGL{{sub|5''g''–5}}}} में वक्रों की हिल्बर्ट योजना के एक उपसमुच्चय का भागफल है।
उदाहरण: {{harv|डेलिग्ने|ममफोर्ड|1969}} एक [[स्थिर वक्र]] जीनस ≥2 का एक कम जुड़ा हुआ वक्र है, जैसे कि इसकी एकमात्र विलक्षणताएं सामान्य दोहरे बिंदु हैं और प्रत्येक गैर-एकवचन तर्कसंगत घटक कम से कम 3 बिंदुओं में अन्य घटकों से मिलता है। जीनस {{mvar|G}} के स्थिर वक्रों का मॉड्यूलि स्थान {{math|'''P'''{{sup|5''g''–6}}}} समूह द्वारा हिल्बर्ट बहुपद {{math|(6''n'' – 1)(''g'' – 1)}} के साथ {{math|PGL{{sub|5''g''–5}}}} में वक्रों की हिल्बर्ट योजना के एक उपसमुच्चय का भागफल है।

Revision as of 12:39, 21 July 2023

गणित में, ज्यामितीय अपरिवर्तनीय सिद्धांत (या जीआईटी) बीजगणितीय ज्यामिति में समूह क्रियाओं (गणित) द्वारा भागफल के निर्माण की एक विधि है, जिसका उपयोग मॉड्यूलि रिक्त स्थान के निर्माण के लिए किया जाता है। इसे 1965 में डेविड मम्फोर्ड द्वारा उत्कृष्ट अपरिवर्तनीय सिद्धांत में पेपर (हिल्बर्ट 1893) के विचारों का उपयोग करके विकसित किया गया था।

ज्यामितीय अपरिवर्तनीय सिद्धांत एक बीजगणितीय विविधता (या योजना (गणित)) X पर समूह G की कार्रवाई का अध्ययन करता है और उचित गुणों वाली एक योजना के रूप में G द्वारा X के 'भागफल' को बनाने के लिए तकनीक प्रदान करता है। एक प्रेरणा बीजगणितीय ज्यामिति में चिह्नित वस्तुओं को पैरामीट्रिज़ करने वाली योजनाओं के भागफल के रूप में मॉड्यूलि रिक्त स्थान का निर्माण करना था। 1970 और 1980 के दशक में सिद्धांत ने सिंपलेक्टिक ज्यामिति और समतुल्य टोपोलॉजी के साथ इंटरैक्शन विकसित किया, और इसका उपयोग एक पल (इंस्टेंटन) और मोनोपोल (गणित) जैसे अंतर ज्यामिति में वस्तुओं के मॉड्यूलि स्पेस के निर्माण के लिए किया गया था।

पृष्ठभूमि

अपरिवर्तनीय सिद्धांत एक बीजगणितीय विविधता (या एक योजना) X पर समूह जी की समूह कार्रवाई से संबंधित है। शास्त्रीय अपरिवर्तनीय सिद्धांत उस स्थिति को संबोधित करता है जब X = V एक सदिश स्थान है और G या तो एक परिमित समूह है, या शास्त्रीय झूठ समूहों में से एक है जो V पर रैखिक रूप से कार्य करता है। यह क्रिया सूत्र द्वारा V पर बहुपद फलनों R(V) के स्थान पर G की एक रैखिक क्रिया को प्रेरित करती है

V पर G-क्रिया के बहुपद अपरिवर्तनीय (गणित), V पर वे बहुपद फलन f हैं जो समूह की कार्रवाई के कारण 'चरों के परिवर्तन' के तहत तय किए जाते हैं, जिससे कि जी में सभी G के लिए g · f = f हो। वे एक क्रमविनिमेय बीजगणित A = R(V)G बनाते हैं, और इस बीजगणित की व्याख्या 'अपरिवर्तनीय सिद्धांत 'जीआईटी भागफल' V // G पर कार्यों के बीजगणित के रूप में की जाती है क्योंकि इनमें से कोई भी कार्य समतुल्य सभी बिंदुओं के लिए समान मान देता है (अर्थात्, f (v) = f (gv) सभी के लिए g)। आधुनिक बीजगणितीय ज्यामिति की भाषा में,

इस विवरण से कई कठिनाइयाँ सामने आती हैं। सामान्य रैखिक समूह के मामले में हिल्बर्ट द्वारा सफलतापूर्वक निपटाया गया पहला प्रयास यह सिद्ध करना करना है कि बीजगणित A अंतिम रूप से उत्पन्न होता है। यदि कोई चाहता है कि भागफल एक एफ़िन बीजगणितीय प्रकार हो तो यह आवश्यक है। क्या एक समान तथ्य मनमाने समूह जी के लिए क्रियान्वित होता है, यह G हिल्बर्ट की चौदहवीं समस्या का विषय था, और जस्टिस नागाटा ने प्रदर्शित किया कि उत्तर सामान्य रूप से नकारात्मक था। दूसरी ओर, बीसवीं शताब्दी के पूर्वार्ध में प्रतिनिधित्व सिद्धांत के विकास के समय, समूहों के एक बड़े वर्ग की पहचान की गई जिसका उत्तर सकारात्मक है; इन्हें रिडक्टिव समूह कहा जाता है और इसमें सभी परिमित समूह और सभी शास्त्रीय समूह सम्मलित होते हैं।

बीजगणित A की सीमित पीढ़ी A के पूर्ण विवरण की दिशा में पहला कदम है, और इस अधिक नाजुक प्रश्न को हल करने में प्रगति मामूली थी। शास्त्रीय रूप से अपरिवर्तनीयों का वर्णन केवल स्थितियों की एक सीमित श्रेणी में किया गया था, और पहले कुछ स्थितियों से परे इस विवरण की जटिलता ने सामान्य रूप से अपरिवर्तनीयों के बीजगणित की पूरी समझ की बहुत कम उम्मीद की थी। इसके अतिरिक्त, ऐसा हो सकता है कि कोई भी बहुपद अपरिवर्तनीय f, V में दिए गए बिंदु u और v के युग्म पर समान मान लेता है, फिर भी ये बिंदु G-क्रिया की विभिन्न कक्षाओं (समूह सिद्धांत) में हैं। एक सरल उदाहरण गैर-शून्य जटिल संख्याओं के गुणक समूह C* द्वारा प्रदान किया जाता है जो अदिश गुणन द्वारा n-आयामी जटिल वेक्टर स्थान Cn पर कार्य करता है। इस मामले में, प्रत्येक बहुपद अपरिवर्तनीय एक स्थिरांक है, लेकिन क्रिया की कई अलग-अलग कक्षाएँ हैं। शून्य वेक्टर स्वयं एक कक्षा बनाता है, और किसी भी गैर-शून्य वेक्टर के गैर-शून्य गुणक एक कक्षा बनाते हैं, जिससे कि गैर-शून्य कक्षाएँ जटिल प्रक्षेप्य स्थान CPn–1 के बिंदुओं द्वारा पैरामीट्रिज्ड हों। यदि ऐसा होता है (विभिन्न कक्षाओं में समान फ़ंक्शन मान होते हैं), तो कोई कहता है कि "अपरिवर्तनीय कक्षाओं को अलग नहीं करते हैं", और बीजगणित A टोपोलॉजिकल भागफल स्थान X / G को अपूर्ण रूप से प्रतिबिंबित करता है। दरअसल, पश्चात वाला स्थान, भागफल टोपोलॉजी के साथ, अधिकांशतः गैर-पृथक (हॉसडॉर्फ़ स्थान) होता है। (यह हमारे उदाहरण में मामला है - शून्य कक्षा खुली नहीं है क्योंकि शून्य वेक्टर के किसी भी पड़ोस में अन्य सभी कक्षाओं में बिंदु होते हैं, इसलिए भागफल टोपोलॉजी में शून्य कक्षा के किसी भी पड़ोस में अन्य सभी कक्षाएँ होती हैं।) 1893 में हिल्बर्ट ने उन कक्षाओं को निर्धारित करने के लिए एक मानदंड तैयार किया और सिद्ध करना किया जो अपरिवर्तनीय बहुपदों द्वारा शून्य कक्षा से अलग नहीं होते हैं। बल्कि उल्लेखनीय रूप से, अपरिवर्तनीय सिद्धांत में उनके पहले के काम के विपरीत, जिसके कारण अमूर्त बीजगणित का तेजी से विकास हुआ, हिल्बर्ट का यह परिणाम अगले 70 वर्षों तक बहुत कम ज्ञात रहा और बहुत कम उपयोग किया गया। बीसवीं शताब्दी के पूर्वार्ध में अपरिवर्तनीय सिद्धांत का अधिकांश विकास अपरिवर्तनीयों के साथ स्पष्ट गणनाओं से संबंधित था, और किसी भी दर पर, ज्यामिति के अतिरिक्त बीजगणित के तर्क का पालन किया गया था।

ममफोर्ड की किताब

ज्यामितीय अपरिवर्तनीय सिद्धांत की स्थापना और विकास ममफोर्ड द्वारा एक मोनोग्राफ में किया गया था, जो पहली बार 1965 में प्रकाशित हुआ था, जिसमें डेविड हिल्बर्ट के कुछ परिणामों सहित उन्नीसवीं शताब्दी के अपरिवर्तनीय सिद्धांत के विचारों को आधुनिक बीजगणितीय ज्यामिति प्रश्नों पर क्रियान्वित किया गया था। (पुस्तक को पश्चात के दो संस्करणों में काफी विस्तारित किया गया, जिसमें फोगार्टी और ममफोर्ड द्वारा अतिरिक्त परिशिष्ट और किरवान द्वारा सिम्प्लेक्टिक कोशिएंट्स पर एक अध्याय सम्मलित था।) पुस्तक उदाहरणों में उपलब्ध योजना सिद्धांत और कम्प्यूटेशनल तकनीकों दोनों का उपयोग करती है। उपयोग की गई अमूर्त सेटिंग योजना X पर एक समूह कार्रवाई (गणित) की है।

एक कक्षा अंतरिक्ष का दिमागी विचार

अर्थात समूह क्रिया द्वारा X का भागफल स्थान, बीजगणितीय ज्यामिति में कठिनाइयों में चलता है, उन कारणों से जो अमूर्त शब्दों में व्याख्या योग्य हैं। वास्तव में ऐसा कोई सामान्य कारण नहीं है कि तुल्यता संबंधों को (बल्कि कठोर) नियमित कार्यों (बहुपद कार्यों) के साथ अच्छी तरह से बातचीत करनी चाहिए, जो बीजगणितीय ज्यामिति के केंद्र में हैं। कक्षा स्थान G \ X पर जिन कार्यों पर विचार किया जाना चाहिए वे X पर वे कार्य हैं जो G की क्रिया के तहत अपरिवर्तनीय हैं। विभिन्न प्रकार के कार्य क्षेत्र (अर्थात तर्कसंगत कार्य) के माध्यम से प्रत्यक्ष दृष्टिकोण बनाया जा सकता है: भागफल विविधता के कार्य क्षेत्र के रूप में, उस पर जी-अपरिवर्तनीय तर्कसंगत कार्यों को लें। दुर्भाग्य से यह - द्विवार्षिक ज्यामिति का दृष्टिकोण - केवल उत्तर का पहला अनुमान ही दे सकता है। जैसा कि मम्फोर्ड ने पुस्तक की प्रस्तावना में कहा है:

समस्या यह है कि, परिणामी द्विवार्षिक वर्ग के सभी मॉडलों के सेट के भीतर, एक मॉडल होता है जिसके ज्यामितीय बिंदु कुछ क्रियाओं में कक्षाओं के सेट को वर्गीकृत करते हैं, या कुछ मॉड्यूली समस्या में बीजगणितीय वस्तुओं के सेट को वर्गीकृत करते हैं।

अध्याय 5 में वह विशिष्ट तकनीकी समस्या को अलग करता है, काफी शास्त्रीय प्रकार की मॉड्यूली समस्या में - सभी बीजगणितीय किस्मों के बड़े 'सेट' को केवल बीजगणितीय वक्र (और ध्रुवीकरण पर एक अपेक्षित शर्त) के अधीन वर्गीकृत करें। मॉड्यूलि को पैरामीटर स्पेस का वर्णन करना चाहिए। उदाहरण के लिए, बीजगणितीय वक्रों के लिए रीमैन के समय से यह ज्ञात है कि आयामों के घटक जुड़े होने चाहिए

जीनस के अनुसार (वक्र) g = 0, 1, 2, 3, 4, …, और मॉड्यूल प्रत्येक घटक पर कार्य हैं। मोटे मॉड्यूली समस्या में ममफोर्ड बाधाओं पर विचार करता है:

  • मोडुलि स्पेस पर गैर-पृथक टोपोलॉजी (अर्थात अच्छी स्थिति में पर्याप्त पैरामीटर नहीं)
  • असीमित रूप से अनेक अघुलनशील घटक (जो टालने योग्य नहीं है, लेकिन स्थानीय परिमितता[disambiguation needed] कायम रह सकती है)
  • योजनाओं के रूप में प्रस्तुत करने योग्य होने में घटकों की विफलता, चूंकि टोपोलॉजिकल रूप से प्रतिनिधित्व करने योग्य।

यह तीसरा बिंदु है जिसने पूरे सिद्धांत को प्रेरित किया। जैसा कि मम्फोर्ड कहते हैं, यदि पहली दो कठिनाइयों का समाधान हो जाता है

[तीसरा प्रश्न] अनिवार्य रूप से इस प्रश्न के समतुल्य हो जाता है कि क्या प्रक्षेप्य समूह द्वारा हिल्बर्ट योजना या चाउ योजनाओं के कुछ स्थानीय रूप से संवृत उपसमुच्चय का कक्षा स्थान उपस्थित है।

इससे निपटने के लिए उन्होंने स्थिरता की एक धारणा (वास्तव में तीन) पेश की। इसने उन्हें पहले के विश्वासघाती क्षेत्र को खोलने में सक्षम बनाया - विशेष रूप से फ्रांसिस सेवेरी द्वारा बहुत कुछ लिखा गया था, लेकिन साहित्य के तरीकों की सीमाएँ थीं। द्विवार्षिक दृष्टिकोण संहिताकरण 1 के उपसमुच्चय के प्रति लापरवाह हो सकता है। एक योजना के रूप में एक मॉड्यूलि स्पेस रखना एक तरफ योजनाओं को प्रतिनिधित्व योग्य फ़ैक्टर के रूप में चिह्नित करने का प्रश्न है (जैसा कि ग्रोथेंडिक स्कूल इसे देखेगा); लेकिन ज्यामितीय रूप से यह एक संघनन (गणित) प्रश्न की तरह है, जैसा कि स्थिरता मानदंड से पता चला है। गैर-एकवचन किस्मों पर प्रतिबंध से किसी भी मायने में मॉड्यूलि स्पेस के रूप में सघन स्थान नहीं बनेगा: किस्में विलक्षणताओं में परिवर्तित हो सकती हैं। दूसरी ओर, जो बिंदु अत्यधिक एकवचन किस्मों के अनुरूप होंगे वे उत्तर में सम्मलित करने के लिए निश्चित रूप से बहुत 'खराब' हैं। स्वीकार किए जाने लायक स्थिर बिंदुओं का सही मध्य मार्ग, ममफोर्ड के काम से अलग कर दिया गया था। यह अवधारणा पूरी तरह से नई नहीं थी, क्योंकि इसके कुछ पहलू अन्य क्षेत्रों में जाने से पहले, अपरिवर्तनीय सिद्धांत पर डेविड हिल्बर्ट के अंतिम विचारों में पाए जाने थे।

पुस्तक की प्रस्तावना में ममफोर्ड अनुमान को भी प्रतिपादित किया गया, जिसे पश्चात में विलियम हबौश ने सिद्ध किया।

स्थिरता

यदि एक रिडक्टिव ग्रुप G एक वेक्टर स्पेस V पर रैखिक रूप से कार्य करता है, तो V का एक गैर-शून्य बिंदु कहा जाता है

  • अस्थिर यदि 0 अपनी कक्षा के समापन में है,
  • अर्ध-स्थिर यदि 0 अपनी कक्षा के समापन में नहीं है,
  • यदि इसकी कक्षा संवृत है तो स्थिर है, और इसका स्टेबलाइजर परिमित है।

इन्हें बताने के समान तरीके हैं (इस मानदंड को हिल्बर्ट-ममफोर्ड मानदंड के रूप में जाना जाता है):

  • एक गैर-शून्य बिंदु x अस्थिर है यदि और केवल यदि G का 1-पैरामीटर उपसमूह है, जिसके x के संबंध में सभी भार सकारात्मक हैं।
  • एक गैर-शून्य बिंदु x अस्थिर है यदि और केवल तभी जब प्रत्येक अपरिवर्तनीय बहुपद का मान 0 और x पर समान हो।
  • एक गैर-शून्य बिंदु x अर्धस्थिर है यदि और केवल यदि G का कोई 1-पैरामीटर उपसमूह नहीं है, जिसका x के संबंध में सभी भार सकारात्मक है।
  • एक गैर-शून्य बिंदु x अर्धस्थिर है यदि और केवल तभी जब कुछ अपरिवर्तनीय बहुपद में 0 और x पर अलग-अलग मान हों।
  • एक गैर-शून्य बिंदु x स्थिर है यदि और केवल तभी जब G के प्रत्येक 1-पैरामीटर उपसमूह में x के संबंध में सकारात्मक (और नकारात्मक) भार हो।
  • एक गैर-शून्य बिंदु x तब स्थिर होता है जब और केवल तभी जब x की कक्षा में नहीं होने वाले प्रत्येक y के लिए कुछ अपरिवर्तनीय बहुपद होते हैं जिनके y और x पर अलग-अलग मान होते हैं, और अपरिवर्तनीय बहुपदों की वलय में पारगमन की डिग्री dim(V) – dim(G) होती है।

V के संगत प्रक्षेप्य स्थान के एक बिंदु को अस्थिर, अर्ध-स्थिर या स्थिर कहा जाता है यदि यह समान गुण वाले V में एक बिंदु की छवि है।

"अस्थिर" "सेमीस्टेबल" ("स्थिर" नहीं) के विपरीत है। अस्थिर बिंदु प्रक्षेप्य स्थान का एक ज़ारिस्की संवृत सेट बनाते हैं, जबकि सेमीस्टेबल और स्थिर बिंदु दोनों ज़ारिस्की विवृत सेट (संभवतः खाली) बनाते हैं। ये परिभाषाएँ (ममफोर्ड 1977) से हैं और ममफोर्ड की पुस्तक के पहले संस्करण के समकक्ष नहीं हैं।

कुछ समूह क्रिया द्वारा प्रक्षेप्य स्थान के कुछ उपसमूह के स्थिर बिंदुओं के स्थान के भागफल के रूप में कई मॉड्यूलि रिक्त स्थान का निर्माण किया जा सकता है। इन स्थानों को अधिकांशतः अर्धस्थिर बिंदुओं के कुछ समतुल्य वर्गों को जोड़कर संकुचित किया जा सकता है। अलग-अलग स्थिर कक्षाएँ भागफल में अलग-अलग बिंदुओं के अनुरूप होती हैं, लेकिन दो अलग-अलग अर्धस्थिर कक्षाएँ भागफल में एक ही बिंदु के अनुरूप हो सकती हैं यदि उनके समापन एक दूसरे को काटते हैं।

उदाहरण: (डेलिग्ने & ममफोर्ड 1969) एक स्थिर वक्र जीनस ≥2 का एक कम जुड़ा हुआ वक्र है, जैसे कि इसकी एकमात्र विलक्षणताएं सामान्य दोहरे बिंदु हैं और प्रत्येक गैर-एकवचन तर्कसंगत घटक कम से कम 3 बिंदुओं में अन्य घटकों से मिलता है। जीनस G के स्थिर वक्रों का मॉड्यूलि स्थान P5g–6 समूह द्वारा हिल्बर्ट बहुपद (6n – 1)(g – 1) के साथ PGL5g–5 में वक्रों की हिल्बर्ट योजना के एक उपसमुच्चय का भागफल है।

उदाहरण: एक बीजगणितीय वक्र (या रीमैन सतह पर) पर एक वेक्टर बंडल W एक स्थिर वेक्टर बंडल है यदि और केवल यदि

W के सभी उचित गैर-शून्य सबबंडलों V के लिए और यदि यह स्थिति < के साथ ≤ द्वारा प्रतिस्थापित की जाती है तो अर्धस्थिर है।

यह भी देखें

संदर्भ

  • डिलीजन, पियरे; मम्फोर्ड, डेविड (1969), "दिए गए जीनस के वक्रों के स्थान की अपरिवर्तनीयता", आईएचइएस गणित प्रकाशन, 36 (1): 75–109, doi:10.1007/BF02684599, MR 0262240, S2CID 16482150
  • हिल्बर्ट, D. (1893), "इनवेरिएन्टेन्स सिस्टम में एक नया बदलाव आया है", गणित। अन्नालें, 42 (3): 313, doi:10.1007/BF01444162
  • किरवान, फ़्रांसिस, सिम्प्लेक्टिक और बीजगणितीय ज्यामिति में भागफल की सहसंरचना। गणितीय नोट्स, 31. प्रिंसटन यूनिवर्सिटी प्रेस, प्रिंसटन, एनजे, 1984. i+211 pp. MR0766741 ISBN 0-691-08370-3
  • क्राफ्ट, हैन्सपीटर, जियोमेट्रिशे मेथडेन इन डेर इनवेरियंटेंथियोरी। (जर्मन) (अपरिवर्तनीय सिद्धांत में ज्यामितीय विधियाँ) गणित के पहलू, डी1। फ्राइडर. व्यूएग और सोहन, ब्राउनश्वेग, 1984. x+308 pp. MR0768181 ISBN 3-528-08525-8
  • मम्फोर्ड, डेविड (1977), "प्रक्षेपी किस्मों की स्थिरता", एल'एन्साइनमेंट मैथेमैटिक, 2e Série, 23 (1): 39–110, ISSN 0013-8584, MR 0450272, archived from the original on 2011-07-07 {{citation}}: Invalid |url-status=मृत (help)
  • मम्फोर्ड, डेविड; फोगार्टी, जे.; किरवान, एफ. (1994), ज्यामितीय अपरिवर्तनीय सिद्धांत, एर्गेब्निस्से डेर मैथमैटिक अंड इहरर ग्रेन्ज़गेबीटे (2) [गणित और संबंधित क्षेत्रों में परिणाम (2)], vol. 34 (3rd ed.), बर्लिन, न्यूयॉर्क: स्प्रिंगर-वेरलाग, ISBN 978-3-540-56963-3, MR 1304906; MR0214602 (1st ed 1965); MR0719371 (2nd ed)
  • वी. एल. पोपोव, ई. बी. विनबर्ग, बीजगणितीय ज्यामिति में अपरिवर्तनीय सिद्धांत। IV.गणितीय विज्ञान का विश्वकोश, 55 (1989 रूसी संस्करण से अनुवादित) स्प्रिंगर-वेरलाग, बर्लिन, 1994. vi+284 pp. ISBN 3-540-54682-0