कॉची समाकलन प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:


{{Complex analysis sidebar}}
{{Complex analysis sidebar}}
गणित में, [[जटिल विश्लेषण|मिश्रित विश्लेषण]] में '''कॉची समाकलन प्रमेय''' (जिसे कॉची-गॉरसैट प्रमेय के रूप में भी जाना जाता है), जिसका नाम [[ऑगस्टिन-लुई कॉची]] (और एडौर्ड गौरसैट) के नाम पर रखा गया है, [[जटिल संख्या|मिश्रित संख्या]] में [[होलोमोर्फिक फ़ंक्शन|होलोमोर्फिक फलन]] के लिए [[लाइन इंटीग्रल|रेखीय समाकलन]] के बारे में एक महत्वपूर्ण कथन है। मूलतः यह कहता है कि यदि <math>f(z)</math> किसी सरल रूप से जुड़े डोमेन(क्षेत्र) Ω में होलोमोर्फिक है, फिर किसी भी सरल रूप से अवरूद्ध परिरेखा के लिए Ω में <math>C</math> , वह परिरेखा समाकलन शून्य है।
गणित में, [[जटिल विश्लेषण|मिश्रित विश्लेषण]] में '''कॉची समाकलन प्रमेय''' (जिसे कॉची-गॉरसैट प्रमेय के रूप में भी जाना जाता है), जिसका नाम [[ऑगस्टिन-लुई कॉची]] (और एडौर्ड गौरसैट) के नाम पर रखा गया है, [[जटिल संख्या|मिश्रित संख्या]] में [[होलोमोर्फिक फ़ंक्शन|होलोमोर्फिक फलन]] के लिए [[लाइन इंटीग्रल|रेखीय समाकलन]] के बारे में एक महत्वपूर्ण कथन है। मूलतः यह कहता है कि यदि <math>f(z)</math> किसी सरल रूप से जुड़े डोमेन(क्षेत्र) Ω में होलोमोर्फिक है, फिर किसी भी सरल रूप से बंद परिरेखा के लिए Ω में <math>C</math> , वह परिरेखा समाकलन शून्य है।


<math display="block">\int_C f(z)\,dz = 0. </math>
<math display="block">\int_C f(z)\,dz = 0. </math>
Line 9: Line 9:


=== मिश्रित रेखा समाकलनों के लिए मौलिक प्रमेय ===
=== मिश्रित रेखा समाकलनों के लिए मौलिक प्रमेय ===
यदि {{math|''f''(''z'')}} एक अनावृत डोमेन {{mvar|U}} पर होलोमोर्फिक फलन  है, और {{mvar|U}} में  <math>z_0</math> से<math>z_1</math> <math>\gamma</math> एक वक्र है तब,
अगर {{math|''f''(''z'')}} एक अनावृत डोमेन {{mvar|U}} पर होलोमोर्फिक फलन  है, और {{mvar|U}} में  <math>z_0</math> से<math>z_1</math> <math>\gamma</math> एक वक्र है तब,
<math display="block">\int_{\gamma}f'(z) \, dz = f(z_1)-f(z_0).</math>
<math display="block">\int_{\gamma}f'(z) \, dz = f(z_1)-f(z_0).</math>
इसके अतिरिक्त , जब {{math|''f''(''z'')}} एक अनावृत डोमेन {{mvar|U}}  में एकल-मूल्यवान प्रतिअवकलन है , फिर पथ समाकलन <math display="inline">\int_{\gamma}f'(z) \, dz</math> सभी पथों {{mvar|U}} के लिए पथ स्वतंत्र पथ है।
इसके अतिरिक्त , जब {{math|''f''(''z'')}} एक अनावृत डोमेन {{mvar|U}}  में एकल-मूल्यवान प्रतिअवकलन है , फिर पथ समाकलन <math display="inline">\int_{\gamma}f'(z) \, dz</math> सभी पथों {{mvar|U}} के लिए पथ स्वतंत्र पथ है।
Line 15: Line 15:
==== सरलता से जुड़े डोमेनों पर सूत्रीकरण ====
==== सरलता से जुड़े डोमेनों पर सूत्रीकरण ====


माना की <math>U \subseteq \Complex</math> एक सरल रूप से संयोजित अनावृत समुच्चय हो, और माना की <math>f: U \to \Complex</math> एक होलोमोर्फिक फलन हैं। माना की <math>\gamma: [a,b] \to U</math> एक स्निग्ध अवरूद्ध वक्र हैं। तब<math display="block">\int_\gamma f(z)\,dz = 0. </math><br />(अनुबंध यह है कि <math>U</math> संयोजित रहने का तात्पर्य है <math>U</math> में कोई ख़ाली स्थान नहीं है, या दूसरे शब्दों में, तो <math>U</math> का यह मूल समूह नगण्य है)
माना की <math>U \subseteq \Complex</math> एक सरल रूप से संयोजित अनावृत समुच्चय हो, और माना की <math>f: U \to \Complex</math> एक होलोमोर्फिक फलन हैं। माना की <math>\gamma: [a,b] \to U</math> एक चिकना बंद वक्र हैं। तब<math display="block">\int_\gamma f(z)\,dz = 0. </math><br />(अनुबंध यह है कि <math>U</math> संयोजित रहने का तात्पर्य है <math>U</math> में कोई ख़ाली स्थान नहीं है, या दूसरे शब्दों में, तो <math>U</math> का यह मूल समूह नगण्य है)
==== सामान्य सूत्रीकरण ====
==== सामान्य सूत्रीकरण ====


माना की <math>U \subseteq \Complex</math> एक अनावृत समुच्चय है, और माना की <math>f: U \to \Complex</math> एक होलोमोर्फिक फलन हैं। माना की <math>\gamma: [a,b] \to U</math> एक स्निग्ध अवरूद्ध वक्र हैं। यदि <math>\gamma</math> एक स्थिर वक्र की समरूपता है, तो,
माना की <math>U \subseteq \Complex</math> एक अनावृत समुच्चय है, और माना की <math>f: U \to \Complex</math> एक होलोमोर्फिक फलन हैं। माना की <math>\gamma: [a,b] \to U</math> एक चिकना बंद वक्र हैं। अगर <math>\gamma</math> एक स्थिर वक्र की समरूपता है, तो,
<math display="block">\int_\gamma f(z)\,dz = 0. </math>
<math display="block">\int_\gamma f(z)\,dz = 0. </math>
(याद रखें कि वक्र स्थिर वक्र का समरूप है यदि उसके अंदर एक चिकनी समरूपता ( अंदर U में) वक्र से स्थिर वक्र तक उपस्थित है। सहज रूप से, इसका तात्पर्य यह है कि कोई व्यक्ति अंतरिक्ष से बाहर निकले बिना वक्र को एक बिंदु में सिकोड़ सकता है।) पहला संस्करण इसका एक विशेष स्थिति है क्योंकि सरल रूप से जुड़े स्थान समुच्चय पर, प्रत्येक अवरूद्ध वक्र एक स्थिर वक्र का समरूप है।
(याद रखें कि वक्र स्थिर वक्र का समरूप है यदि उसके अंदर एक चिकनी समरूपता ( अंदर U में) वक्र से स्थिर वक्र तक उपस्थित है। सहज रूप से, इसका तात्पर्य यह है कि कोई व्यक्ति अंतरिक्ष से बाहर निकले बिना वक्र को एक बिंदु में सिकोड़ सकता है।) पहला संस्करण इसका एक विशेष स्थिति है क्योंकि सरल रूप से जुड़े स्थान समुच्चय पर, प्रत्येक बंद वक्र एक स्थिर वक्र का समरूप है।


==== मुख्य उदाहरण ====
==== मुख्य उदाहरण ====
Line 33: Line 33:
जैसा कि एडौर्ड गौरसैट ने दिखाया, कॉची के समाकलन प्रमेय को केवल यह मानते हुए सिद्ध किया जा सकता है कि मिश्रित व्युत्पन्न <math>f'(z)</math> में प्रत्येक जगह <math>U</math> उपस्थित है . यह महत्वपूर्ण है क्योंकि तब कोई इन कार्यों के लिए कॉची के समाकलन सूत्र को सिद्ध कर सकता है, और उससे यह निष्कर्ष निकाल सकता है कि ये कार्य [[असीम रूप से भिन्न|असीम रूप से अवकल]] हैं।
जैसा कि एडौर्ड गौरसैट ने दिखाया, कॉची के समाकलन प्रमेय को केवल यह मानते हुए सिद्ध किया जा सकता है कि मिश्रित व्युत्पन्न <math>f'(z)</math> में प्रत्येक जगह <math>U</math> उपस्थित है . यह महत्वपूर्ण है क्योंकि तब कोई इन कार्यों के लिए कॉची के समाकलन सूत्र को सिद्ध कर सकता है, और उससे यह निष्कर्ष निकाल सकता है कि ये कार्य [[असीम रूप से भिन्न|असीम रूप से अवकल]] हैं।


अनुबंध यह है कि <math>U</math> बस जुड़े रहने का तात्पर्य है की <math>U</math> में कोई ख़ाली स्थान नहीं है या, समरूप शब्दों में, इसका मूल समूह <math>U</math> नगण्य है; उदाहरण के लिए, प्रत्येक स्पष्ट डिस्क <math>U_{z_0} = \{ z : \left|z-z_{0}\right| < r\}</math>, के लिए <math>z_0 \in \Complex</math>, अर्हता प्राप्त करता है। स्थिति महत्वपूर्ण  विचार करना
अनुबंध यह है कि <math>U</math> बस जुड़े रहने का तात्पर्य है की <math>U</math> में कोई ख़ाली स्थान नहीं है या, समरूप शब्दों में, इसका मूल समूह <math>U</math> नगण्य है; उदाहरण के लिए, प्रत्येक खुली डिस्क <math>U_{z_0} = \{ z : \left|z-z_{0}\right| < r\}</math>, के लिए <math>z_0 \in \Complex</math>, अर्हता प्राप्त करता है। स्थिति महत्वपूर्ण  विचार करना
<math display="block">\gamma(t) = e^{it} \quad t \in \left[0, 2\pi\right]</math>
<math display="block">\gamma(t) = e^{it} \quad t \in \left[0, 2\pi\right]</math>
जो इकाई वृत्त और फिर पथ समाकलन का पता लगाता है
जो इकाई वृत्त और फिर पथ समाकलन का पता लगाता है
<math display="block">\oint_\gamma \frac{1}{z}\,dz = \int_0^{2\pi} \frac{1}{e^{it}}(ie^{it} \,dt) = \int_0^{2\pi}i\,dt = 2\pi i </math>
<math display="block">\oint_\gamma \frac{1}{z}\,dz = \int_0^{2\pi} \frac{1}{e^{it}}(ie^{it} \,dt) = \int_0^{2\pi}i\,dt = 2\pi i </math>
शून्येतर है; कॉची समाकलन प्रमेय यहां लागू नहीं होता है जब तक की <math>f(z) = 1/z</math>,<math>z = 0</math> पर परिभाषित नहीं है (और निश्चित रूप से होलोमोर्फिक नहीं है)। प्रमेय का एक महत्वपूर्ण परिणाम यह है कि बस संयोजित करना डोमेन पर होलोमोर्फिक कार्यों के पथ समाकल की गणना कैलकुलस के मौलिक प्रमेय से परिचित प्रयोग से की जा सकती है, माना कि <math>U</math> का एक सरल रूप से संयोजित अनावृत उपसमुच्चय <math>\Complex</math> है , माना की <math>f: U \to \Complex</math> एक होलोमोर्फिक फलन है, और माना कि <math>\gamma</math> प्रारंभ बिंदु <math>a</math> और अंत बिंदु <math>b</math>,<math>U</math> के साथ एक टुकड़े में लगातार अलग-अलग पथ है, . यदि <math>F</math> का एक [[जटिल प्रतिव्युत्पन्न|मिश्रित प्रतिव्युत्पन्न]] <math>f</math> है , तब<math display="block">\int_\gamma f(z)\,dz=F(b)-F(a).</math>
शून्येतर है; कॉची समाकलन प्रमेय यहां लागू नहीं होता है जब तक की <math>f(z) = 1/z</math>,<math>z = 0</math> पर परिभाषित नहीं है (और निश्चित रूप से होलोमोर्फिक नहीं है)। प्रमेय का एक महत्वपूर्ण परिणाम यह है कि बस संयोजित करना डोमेन पर होलोमोर्फिक कार्यों के पथ समाकल की गणना कैलकुलस के मौलिक प्रमेय से परिचित प्रयोग से की जा सकती है, माना कि <math>U</math> का एक सरल रूप से संयोजित अनावृत उपसमुच्चय <math>\Complex</math> है , माना की <math>f: U \to \Complex</math> एक होलोमोर्फिक फलन है, और माना कि <math>\gamma</math> प्रारंभ बिंदु <math>a</math> और अंत बिंदु <math>b</math>,<math>U</math> के साथ एक टुकड़े में लगातार अलग-अलग पथ है, . अगर <math>F</math> का एक [[जटिल प्रतिव्युत्पन्न|मिश्रित प्रतिव्युत्पन्न]] <math>f</math> है , तब<math display="block">\int_\gamma f(z)\,dz=F(b)-F(a).</math>
कॉची समाकलन प्रमेय ऊपर दी गई परिकल्पना से कमजोर परिकल्पना के साथ मान्य है, उदाहरण के लिए दिया गया <math>U</math>, एक सरल रूप से जुड़ा <math>\Complex</math> का अनावृत उपसमुच्चय , हम धारणाओं को <math>f</math> <math>U</math> पर होलोमोर्फिक होना और निरंतर <math display="inline">\overline{U}</math> पर अवरूद्ध कमजोर कर सकते हैं, और <math>\gamma</math>  <math display="inline">\overline{U}</math> में एक [[सुधार योग्य वक्र|सुधार योग्य]] सरल लूप है।<ref>{{Cite journal|last=Walsh|first=J. L.|date=1933-05-01|title=रेक्टिफ़िएबल जॉर्डन कर्व्स के लिए कॉची-गॉरसैट प्रमेय|journal=Proceedings of the National Academy of Sciences|volume=19|issue=5|pages=540–541| doi=10.1073/pnas.19.5.540|pmid=16587781|pmc=1086062|issn=0027-8424|doi-access=free}}</ref>
कॉची समाकलन प्रमेय ऊपर दी गई परिकल्पना से कमजोर परिकल्पना के साथ मान्य है, उदाहरण के लिए दिया गया <math>U</math>, एक सरल रूप से जुड़ा <math>\Complex</math> का अनावृत उपसमुच्चय , हम धारणाओं को <math>f</math> <math>U</math> पर होलोमोर्फिक होना और निरंतर <math display="inline">\overline{U}</math> पर बंद कमजोर कर सकते हैं, और <math>\gamma</math>  <math display="inline">\overline{U}</math> में एक [[सुधार योग्य वक्र|सुधार योग्य]] सरल लूप है।<ref>{{Cite journal|last=Walsh|first=J. L.|date=1933-05-01|title=रेक्टिफ़िएबल जॉर्डन कर्व्स के लिए कॉची-गॉरसैट प्रमेय|journal=Proceedings of the National Academy of Sciences|volume=19|issue=5|pages=540–541| doi=10.1073/pnas.19.5.540|pmid=16587781|pmc=1086062|issn=0027-8424|doi-access=free}}</ref>


कॉची समाकलन प्रमेय कॉची के समाकलन सूत्र और रेसिडुए(परिशिष्ट) प्रमेय की ओर ले जाता है।
कॉची समाकलन प्रमेय कॉची के समाकलन सूत्र और रेसिडुए(परिशिष्ट) प्रमेय की ओर ले जाता है।
Line 50: Line 50:
इस सन्दर्भ में हमारे पास है
इस सन्दर्भ में हमारे पास है
<math display="block">\oint_\gamma f(z)\,dz = \oint_\gamma (u+iv)(dx+i\,dy) = \oint_\gamma (u\,dx-v\,dy) +i\oint_\gamma (v\,dx+u\,dy)</math>
<math display="block">\oint_\gamma f(z)\,dz = \oint_\gamma (u+iv)(dx+i\,dy) = \oint_\gamma (u\,dx-v\,dy) +i\oint_\gamma (v\,dx+u\,dy)</math>
ग्रीन के प्रमेय के अनुसार, हम अवरूद्ध परिरेखा के चारों ओर समाकलनों को प्रतिस्थापित कर सकते हैं <math>\gamma</math> पूरे डोमेन में एक समाकलन डोमेन के साथ <math>D</math> जो कि <math>\gamma</math> संलग्न है निम्नलिखितनुसार:
ग्रीन के प्रमेय के अनुसार, हम बंद परिरेखा के चारों ओर समाकलनों को प्रतिस्थापित कर सकते हैं <math>\gamma</math> पूरे डोमेन में एक समाकलन डोमेन के साथ <math>D</math> जो कि <math>\gamma</math> संलग्न है निम्नलिखितनुसार:


<math display="block">\oint_\gamma (u\,dx-v\,dy) = \iint_D \left( -\frac{\partial v}{\partial x} -\frac{\partial u}{\partial y} \right) \,dx\,dy </math><math display="block">\oint_\gamma (v\,dx+u\,dy) = \iint_D \left(  \frac{\partial u}{\partial x} -\frac{\partial v}{\partial y} \right) \,dx\,dy </math>
<math display="block">\oint_\gamma (u\,dx-v\,dy) = \iint_D \left( -\frac{\partial v}{\partial x} -\frac{\partial u}{\partial y} \right) \,dx\,dy </math><math display="block">\oint_\gamma (v\,dx+u\,dy) = \iint_D \left(  \frac{\partial u}{\partial x} -\frac{\partial v}{\partial y} \right) \,dx\,dy </math>

Revision as of 11:33, 25 July 2023

गणित में, मिश्रित विश्लेषण में कॉची समाकलन प्रमेय (जिसे कॉची-गॉरसैट प्रमेय के रूप में भी जाना जाता है), जिसका नाम ऑगस्टिन-लुई कॉची (और एडौर्ड गौरसैट) के नाम पर रखा गया है, मिश्रित संख्या में होलोमोर्फिक फलन के लिए रेखीय समाकलन के बारे में एक महत्वपूर्ण कथन है। मूलतः यह कहता है कि यदि किसी सरल रूप से जुड़े डोमेन(क्षेत्र) Ω में होलोमोर्फिक है, फिर किसी भी सरल रूप से बंद परिरेखा के लिए Ω में , वह परिरेखा समाकलन शून्य है।

कथन

मिश्रित रेखा समाकलनों के लिए मौलिक प्रमेय

अगर f(z) एक अनावृत डोमेन U पर होलोमोर्फिक फलन है, और U में से एक वक्र है तब,

इसके अतिरिक्त , जब f(z) एक अनावृत डोमेन U में एकल-मूल्यवान प्रतिअवकलन है , फिर पथ समाकलन सभी पथों U के लिए पथ स्वतंत्र पथ है।

सरलता से जुड़े डोमेनों पर सूत्रीकरण

माना की एक सरल रूप से संयोजित अनावृत समुच्चय हो, और माना की एक होलोमोर्फिक फलन हैं। माना की एक चिकना बंद वक्र हैं। तब


(अनुबंध यह है कि संयोजित रहने का तात्पर्य है में कोई ख़ाली स्थान नहीं है, या दूसरे शब्दों में, तो का यह मूल समूह नगण्य है)

सामान्य सूत्रीकरण

माना की एक अनावृत समुच्चय है, और माना की एक होलोमोर्फिक फलन हैं। माना की एक चिकना बंद वक्र हैं। अगर एक स्थिर वक्र की समरूपता है, तो,

(याद रखें कि वक्र स्थिर वक्र का समरूप है यदि उसके अंदर एक चिकनी समरूपता ( अंदर U में) वक्र से स्थिर वक्र तक उपस्थित है। सहज रूप से, इसका तात्पर्य यह है कि कोई व्यक्ति अंतरिक्ष से बाहर निकले बिना वक्र को एक बिंदु में सिकोड़ सकता है।) पहला संस्करण इसका एक विशेष स्थिति है क्योंकि सरल रूप से जुड़े स्थान समुच्चय पर, प्रत्येक बंद वक्र एक स्थिर वक्र का समरूप है।

मुख्य उदाहरण

दोनों ही स्थितियों में, यह याद रखना महत्वपूर्ण है कि वक्र डोमेन में कोई ख़ाली स्थान नहीं घेरता है, अन्यथा प्रमेय लागू नहीं होता है। एक प्रसिद्ध उदाहरण निम्नलिखित वक्र है

जो इकाई वृत्त का पता लगाता है। यहाँ निम्नलिखित समाकलन है:
शून्येतर है. कॉची समाकलन प्रमेय यहां लागू नहीं होता है पर परिभाषित नहीं है . सहजता से, के डोमेन में ख़ाली स्थान को घेर लेता है , इसलिए स्थान से बाहर निकले बिना किसी बिंदु तक सिमट नहीं जा सकता। इस प्रकार, प्रमेय लागू नहीं होता है।

चर्चा

जैसा कि एडौर्ड गौरसैट ने दिखाया, कॉची के समाकलन प्रमेय को केवल यह मानते हुए सिद्ध किया जा सकता है कि मिश्रित व्युत्पन्न में प्रत्येक जगह उपस्थित है . यह महत्वपूर्ण है क्योंकि तब कोई इन कार्यों के लिए कॉची के समाकलन सूत्र को सिद्ध कर सकता है, और उससे यह निष्कर्ष निकाल सकता है कि ये कार्य असीम रूप से अवकल हैं।

अनुबंध यह है कि बस जुड़े रहने का तात्पर्य है की में कोई ख़ाली स्थान नहीं है या, समरूप शब्दों में, इसका मूल समूह नगण्य है; उदाहरण के लिए, प्रत्येक खुली डिस्क , के लिए , अर्हता प्राप्त करता है। स्थिति महत्वपूर्ण विचार करना

जो इकाई वृत्त और फिर पथ समाकलन का पता लगाता है
शून्येतर है; कॉची समाकलन प्रमेय यहां लागू नहीं होता है जब तक की , पर परिभाषित नहीं है (और निश्चित रूप से होलोमोर्फिक नहीं है)। प्रमेय का एक महत्वपूर्ण परिणाम यह है कि बस संयोजित करना डोमेन पर होलोमोर्फिक कार्यों के पथ समाकल की गणना कैलकुलस के मौलिक प्रमेय से परिचित प्रयोग से की जा सकती है, माना कि का एक सरल रूप से संयोजित अनावृत उपसमुच्चय है , माना की एक होलोमोर्फिक फलन है, और माना कि प्रारंभ बिंदु और अंत बिंदु , के साथ एक टुकड़े में लगातार अलग-अलग पथ है, . अगर का एक मिश्रित प्रतिव्युत्पन्न है , तब
कॉची समाकलन प्रमेय ऊपर दी गई परिकल्पना से कमजोर परिकल्पना के साथ मान्य है, उदाहरण के लिए दिया गया , एक सरल रूप से जुड़ा का अनावृत उपसमुच्चय , हम धारणाओं को पर होलोमोर्फिक होना और निरंतर पर बंद कमजोर कर सकते हैं, और में एक सुधार योग्य सरल लूप है।[1]

कॉची समाकलन प्रमेय कॉची के समाकलन सूत्र और रेसिडुए(परिशिष्ट) प्रमेय की ओर ले जाता है।

प्रमाण

यदि कोई मानता है कि होलोमोर्फिक फलन के आंशिक व्युत्पन्न निरंतर हैं, तो कॉची समाकलन प्रमेय को ग्रीन के प्रमेय के प्रत्यक्ष परिणाम के रूप में सिद्ध किया जा सकता है और यह तथ्य कि वास्तविक और काल्पनिक भाग से घिरे डोमेन में और इसके अलावा इस क्षेत्र के अनावृत आसपास U में कॉची-रीमैन समीकरणों को संतुष्ट करना होगा। कॉची ने यह प्रमाण प्रदान किया, लेकिन बाद में इसे वेक्टर कैलकुलस, या आंशिक व्युत्पन्न (शब्द) की निरंतरता की तकनीकों की आवश्यकता के बिना गौरसैट द्वारा सिद्ध किया गया।

हम एकीकृत को साथ ही अवकल को भी उनके वास्तविक और काल्पनिक घटकों में रोक सकते हैं

इस सन्दर्भ में हमारे पास है
ग्रीन के प्रमेय के अनुसार, हम बंद परिरेखा के चारों ओर समाकलनों को प्रतिस्थापित कर सकते हैं पूरे डोमेन में एक समाकलन डोमेन के साथ जो कि संलग्न है निम्नलिखितनुसार:

लेकिन डोमेन में फलन होलोमोर्फिक के वास्तविक और काल्पनिक भागों के रूप में , और कॉची-रीमैन समीकरणों को संतुष्ट करते है यहाँ
इसलिए हम पाते हैं कि दोनों समाकलन (और इसलिए उनके समाकलन) शून्य हैं

इससे अभीष्ट परिणाम मिलता है

यह भी देखें

संदर्भ

  1. Walsh, J. L. (1933-05-01). "रेक्टिफ़िएबल जॉर्डन कर्व्स के लिए कॉची-गॉरसैट प्रमेय". Proceedings of the National Academy of Sciences. 19 (5): 540–541. doi:10.1073/pnas.19.5.540. ISSN 0027-8424. PMC 1086062. PMID 16587781.


बाहरी संबंध