प्राथमिक बैटरी: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Non-rechargable battery}} {{for|the biological concept|Primary cell culture}} File:Batteries comparison 4,5 D C AA AAA AAAA A23 9V CR2032 LR44 matchstick...")
 
No edit summary
Line 1: Line 1:
{{Short description|Non-rechargable battery}}
{{Short description|Non-rechargable battery}}
{{for|the biological concept|Primary cell culture}}
{{for|जैविक अवधारणा|प्राथमिक कोशिका संवर्धन}}
[[File:Batteries comparison 4,5 D C AA AAA AAAA A23 9V CR2032 LR44 matchstick-1.jpeg|thumb|upright=2|प्राथमिक कोशिकाओं के विभिन्न मानक आकार। बाएं से: 4.5V मल्टीसेल बैटरी, D, C, AA, AAA, AAAA, A23, 9V मल्टीसेल बैटरी, (ऊपर) LR44, (नीचे) CR2032]]एक प्राथमिक बैटरी या प्राथमिक सेल एक बैटरी (बिजली) (एक गैल्वेनिक सेल) है जिसे एक बार उपयोग करने और त्यागने के लिए डिज़ाइन किया गया है, और बिजली से रिचार्ज नहीं किया जाता है और एक माध्यमिक सेल (रिचार्जेबल बैटरी) की तरह पुन: उपयोग किया जाता है। सामान्य तौर पर, सेल में होने वाली इलेक्ट्रोकैमिस्ट्री रासायनिक प्रतिक्रिया उत्क्रमणीय नहीं होती है, जिससे सेल अपरिवर्तनीय हो जाती है। एक प्राथमिक सेल के रूप में उपयोग किया जाता है, बैटरी में रासायनिक प्रतिक्रियाएं शक्ति उत्पन्न करने वाले रसायनों का उपयोग करती हैं; जब वे चले जाते हैं, तो बैटरी बिजली पैदा करना बंद कर देती है। इसके विपरीत, एक द्वितीयक सेल में, रासायनिक अभिकारकों को पुन: उत्पन्न करके, इसे रिचार्ज करने के लिए बैटरी चार्जर के साथ सेल में करंट चलाकर प्रतिक्रिया को उलटा किया जा सकता है। छोटे घरेलू उपकरणों जैसे फ्लैशलाइट और पोर्टेबल रेडियो को बिजली देने के लिए प्राथमिक कोशिकाओं को कई मानक आकारों में बनाया जाता है।
[[File:Batteries comparison 4,5 D C AA AAA AAAA A23 9V CR2032 LR44 matchstick-1.jpeg|thumb|upright=2|प्राथमिक कोशिकाओं के विभिन्न मानक आकार। बाएं से: 4.5V मल्टीसेल बैटरी, D, C, AA, AAA, AAAA, A23, 9V मल्टीसेल बैटरी, (ऊपर) LR44, (नीचे) CR2032]]एक प्राथमिक बैटरी या प्राथमिक सेल एक बैटरी (बिजली) (एक गैल्वेनिक सेल) है जिसे एक बार उपयोग करने और त्यागने के लिए डिज़ाइन किया गया है, और बिजली से रिचार्ज नहीं किया जाता है और एक माध्यमिक सेल (रिचार्जेबल बैटरी) की तरह पुन: उपयोग किया जाता है। सामान्य तौर पर, सेल में होने वाली इलेक्ट्रोकैमिस्ट्री रासायनिक प्रतिक्रिया उत्क्रमणीय नहीं होती है, जिससे सेल अपरिवर्तनीय हो जाती है। एक प्राथमिक सेल के रूप में उपयोग किया जाता है, बैटरी में रासायनिक प्रतिक्रियाएं शक्ति उत्पन्न करने वाले रसायनों का उपयोग करती हैं; जब वे चले जाते हैं, तो बैटरी बिजली पैदा करना बंद कर देती है। इसके विपरीत, एक द्वितीयक सेल में, रासायनिक अभिकारकों को पुन: उत्पन्न करके, इसे रिचार्ज करने के लिए बैटरी चार्जर के साथ सेल में करंट चलाकर प्रतिक्रिया को उलटा किया जा सकता है। छोटे घरेलू उपकरणों जैसे फ्लैशलाइट और पोर्टेबल रेडियो को बिजली देने के लिए प्राथमिक कोशिकाओं को कई मानक आकारों में बनाया जाता है।


Line 48: Line 48:
== उपयोग की प्रवृत्ति ==
== उपयोग की प्रवृत्ति ==
इक्कीसवीं सदी की शुरुआत में, प्राथमिक कोशिकाओं ने द्वितीयक कोशिकाओं के लिए बाजार हिस्सेदारी खोना शुरू कर दिया, क्योंकि उत्तरार्द्ध के लिए सापेक्ष लागत में गिरावट आई। गरमागरम बल्बों से प्रकाश उत्सर्जक डायोड पर स्विच करके टॉर्च की बिजली की मांग कम हो गई थी।<ref name=e1401>{{cite news|url=https://www.economist.com/news/business/21594330-disposable-batteries-are-costly-way-buy-power-their-days-are-numbered-out-juice |title=Batteries: Out of juice |newspaper=The Economist |date=2014-01-18 |access-date=2014-02-10}}</ref>
इक्कीसवीं सदी की शुरुआत में, प्राथमिक कोशिकाओं ने द्वितीयक कोशिकाओं के लिए बाजार हिस्सेदारी खोना शुरू कर दिया, क्योंकि उत्तरार्द्ध के लिए सापेक्ष लागत में गिरावट आई। गरमागरम बल्बों से प्रकाश उत्सर्जक डायोड पर स्विच करके टॉर्च की बिजली की मांग कम हो गई थी।<ref name=e1401>{{cite news|url=https://www.economist.com/news/business/21594330-disposable-batteries-are-costly-way-buy-power-their-days-are-numbered-out-juice |title=Batteries: Out of juice |newspaper=The Economist |date=2014-01-18 |access-date=2014-02-10}}</ref>
शेष बाजार ने निजी- या लेबल-रहित संस्करणों से बढ़ी हुई प्रतिस्पर्धा का अनुभव किया। दो प्रमुख अमेरिकी निर्माताओं, एनर्जाइज़र और ड्यूरासेल की बाजार हिस्सेदारी 2012 में घटकर 37% रह गई। रेओवैक के साथ, ये तीनों उपभोक्ताओं को जिंक-कार्बन बैटरी | जिंक-कार्बन से अधिक महंगी, लंबे समय तक चलने वाली क्षारीय बैटरी की ओर ले जाने की कोशिश कर रहे हैं। .<ref name=e1401/>
 
शेष बाजार ने निजी- या लेबल-रहित संस्करणों से बढ़ी हुई प्रतिस्पर्धा का अनुभव किया। दो प्रमुख अमेरिकी निर्माताओं, एनर्जाइज़र और ड्यूरासेल की बाजार हिस्सेदारी 2012 में घटकर 37% रह गई। रेओवैक के साथ, ये तीनों उपभोक्ताओं को जिंक-कार्बन बैटरी | जिंक-कार्बन से अधिक महंगी, लंबे समय तक चलने वाली क्षारीय बैटरी की ओर ले जाने की कोशिश कर रहे हैं। .<ref name="e1401" />


पश्चिमी बैटरी निर्माताओं ने उत्पादन को अपतटीय स्थानांतरित कर दिया और अब संयुक्त राज्य अमेरिका में जस्ता-कार्बन बैटरी नहीं बनाते हैं।<ref name=e1401/>
पश्चिमी बैटरी निर्माताओं ने उत्पादन को अपतटीय स्थानांतरित कर दिया और अब संयुक्त राज्य अमेरिका में जस्ता-कार्बन बैटरी नहीं बनाते हैं।<ref name=e1401/>


चीन सबसे बड़ा बैटरी बाजार बन गया, जिसकी मांग कहीं और की तुलना में तेजी से बढ़ने का अनुमान है, और क्षारीय कोशिकाओं में भी स्थानांतरित हो गया है। अन्य विकासशील देशों में डिस्पोजेबल बैटरियों को सस्ते विंड-अप, विंड-पावर्ड और रिचार्जेबल डिवाइसों के साथ प्रतिस्पर्धा करनी चाहिए, जो कि बहुत अधिक बढ़ गए हैं।<ref name=e1401/>
चीन सबसे बड़ा बैटरी बाजार बन गया, जिसकी मांग कहीं और की तुलना में तेजी से बढ़ने का अनुमान है, और क्षारीय कोशिकाओं में भी स्थानांतरित हो गया है। अन्य विकासशील देशों में डिस्पोजेबल बैटरियों को सस्ते विंड-अप, विंड-पावर्ड और रिचार्जेबल डिवाइसों के साथ प्रतिस्पर्धा करनी चाहिए, जो कि बहुत अधिक बढ़ गए हैं।<ref name=e1401/>
== प्राथमिक और द्वितीयक कोशिकाओं के बीच तुलना ==
== प्राथमिक और द्वितीयक कोशिकाओं के बीच तुलना ==
माध्यमिक कोशिकाओं (रिचार्जेबल बैटरी) प्राथमिक कोशिकाओं की तुलना में सामान्य रूप से उपयोग करने के लिए अधिक किफायती हैं। उनकी प्रारंभिक उच्च लागत और चार्जिंग सिस्टम की खरीद लागत कई उपयोग चक्रों (100 और 1000 चक्रों के बीच) में फैली हो सकती है; उदाहरण के लिए, हाथ से चलने वाले बिजली उपकरणों में, उच्च क्षमता वाले प्राथमिक बैटरी पैक को हर कुछ घंटों के उपयोग के बाद बदलना बहुत महंगा होगा।
माध्यमिक कोशिकाओं (रिचार्जेबल बैटरी) प्राथमिक कोशिकाओं की तुलना में सामान्य रूप से उपयोग करने के लिए अधिक किफायती हैं। उनकी प्रारंभिक उच्च लागत और चार्जिंग सिस्टम की खरीद लागत कई उपयोग चक्रों (100 और 1000 चक्रों के बीच) में फैली हो सकती है; उदाहरण के लिए, हाथ से चलने वाले बिजली उपकरणों में, उच्च क्षमता वाले प्राथमिक बैटरी पैक को हर कुछ घंटों के उपयोग के बाद बदलना बहुत महंगा होगा।


प्राथमिक कोशिकाओं को निर्माण और उपयोग के बीच रिचार्ज करने के लिए डिज़ाइन नहीं किया गया है, इस प्रकार बैटरी रसायन है जिसमें पुराने प्रकार के माध्यमिक कोशिकाओं की तुलना में बहुत कम स्व-निर्वहन दर होती है; लेकिन उन्होंने रिचार्जेबल माध्यमिक कोशिकाओं के विकास के साथ उस लाभ को खो दिया है जिसमें कम स्व-निर्वहन एनआईएमएच सेल जैसे बहुत कम स्व-निर्वहन दर हैं जो पूर्व-चार्ज के रूप में बेचे जाने के लिए पर्याप्त समय तक पर्याप्त चार्ज रखते हैं।<ref>{{Cite web | url=http://www.panasonicbatteryproducts.com/eneloop_rechargeable_batteries/eneloop_rechargeable_batteries-aa_4-pack/ |title = Eneloop AA 4-Pack}}</ref><ref>{{Cite web | url=http://www.candlepowerforums.com/vb/showthread.php?149804-Eneloop-Self-Discharge-study |title = Eneloop Self Discharge study}}</ref>
प्राथमिक कोशिकाओं को निर्माण और उपयोग के बीच रिचार्ज करने के लिए डिज़ाइन नहीं किया गया है, इस प्रकार बैटरी रसायन है जिसमें पुराने प्रकार के माध्यमिक कोशिकाओं की तुलना में बहुत कम स्व-निर्वहन दर होती है; लेकिन उन्होंने रिचार्जेबल माध्यमिक कोशिकाओं के विकास के साथ उस लाभ को खो दिया है जिसमें कम स्व-निर्वहन एनआईएमएच सेल जैसे बहुत कम स्व-निर्वहन दर हैं जो पूर्व-चार्ज के रूप में बेचे जाने के लिए पर्याप्त समय तक पर्याप्त चार्ज रखते हैं।<ref>{{Cite web | url=http://www.panasonicbatteryproducts.com/eneloop_rechargeable_batteries/eneloop_rechargeable_batteries-aa_4-pack/ |title = Eneloop AA 4-Pack}}</ref><ref>{{Cite web | url=http://www.candlepowerforums.com/vb/showthread.php?149804-Eneloop-Self-Discharge-study |title = Eneloop Self Discharge study}}</ref>
सामान्य प्रकार की द्वितीयक कोशिकाएं (अर्थात् NiMH और ली-आयन) उनके बहुत कम आंतरिक प्रतिरोध के कारण क्षमता की बड़ी हानि नहीं झेलती हैं जो कि क्षारीय, जस्ता-कार्बन और जस्ता क्लोराइड (भारी कर्तव्य या अति भारी कर्तव्य) उच्च धारा प्रवाह के साथ करते हैं। .<ref>{{Cite web | url=https://www.powerstream.com/AA-tests.htm |title = Discharge tests of Alkaline AA batteries}}</ref>
सामान्य प्रकार की द्वितीयक कोशिकाएं (अर्थात् NiMH और ली-आयन) उनके बहुत कम आंतरिक प्रतिरोध के कारण क्षमता की बड़ी हानि नहीं झेलती हैं जो कि क्षारीय, जस्ता-कार्बन और जस्ता क्लोराइड (भारी कर्तव्य या अति भारी कर्तव्य) उच्च धारा प्रवाह के साथ करते हैं। .<ref>{{Cite web | url=https://www.powerstream.com/AA-tests.htm |title = Discharge tests of Alkaline AA batteries}}</ref>
बैटरी के घटकों को भौतिक रूप से अलग करके और केवल उपयोग के समय उन्हें इकट्ठा करके, क्षमता की हानि के बिना रिजर्व बैटरी बहुत लंबे भंडारण समय (10 वर्ष या उससे अधिक के आदेश पर) प्राप्त करती है। इस तरह के निर्माण महंगे हैं लेकिन युद्ध सामग्री जैसे अनुप्रयोगों में पाए जाते हैं, जिन्हें उपयोग करने से पहले वर्षों तक संग्रहीत किया जा सकता है।
बैटरी के घटकों को भौतिक रूप से अलग करके और केवल उपयोग के समय उन्हें इकट्ठा करके, क्षमता की हानि के बिना रिजर्व बैटरी बहुत लंबे भंडारण समय (10 वर्ष या उससे अधिक के आदेश पर) प्राप्त करती है। इस तरह के निर्माण महंगे हैं लेकिन युद्ध सामग्री जैसे अनुप्रयोगों में पाए जाते हैं, जिन्हें उपयोग करने से पहले वर्षों तक संग्रहीत किया जा सकता है।


Line 83: Line 84:


सेल के बाहर, विभिन्न शब्दावली का प्रयोग किया जाता है। जैसा कि एनोड इलेक्ट्रोलाइट को सकारात्मक चार्ज देता है (इस प्रकार इलेक्ट्रॉनों की अधिकता के साथ शेष है कि यह सर्किट को दान करेगा), यह नकारात्मक विद्युत चार्ज बन जाता है और इसलिए टर्मिनल से जुड़ा होता है - सेल के बाहर। कैथोड, इस बीच, इलेक्ट्रोलाइट को नकारात्मक चार्ज देता है, इसलिए यह सकारात्मक रूप से चार्ज हो जाता है (जो इसे सर्किट से इलेक्ट्रॉनों को स्वीकार करने की अनुमति देता है) और इसलिए सेल के बाहर + चिह्नित टर्मिनल से जुड़ा होता है।<ref>John S. Newman, Karen E. Thomas-Alyea, ''Electrochemical systems'', Wiley-IEEE, 3rd ed. 2004, {{ISBN|0-471-47756-7}}</ref>
सेल के बाहर, विभिन्न शब्दावली का प्रयोग किया जाता है। जैसा कि एनोड इलेक्ट्रोलाइट को सकारात्मक चार्ज देता है (इस प्रकार इलेक्ट्रॉनों की अधिकता के साथ शेष है कि यह सर्किट को दान करेगा), यह नकारात्मक विद्युत चार्ज बन जाता है और इसलिए टर्मिनल से जुड़ा होता है - सेल के बाहर। कैथोड, इस बीच, इलेक्ट्रोलाइट को नकारात्मक चार्ज देता है, इसलिए यह सकारात्मक रूप से चार्ज हो जाता है (जो इसे सर्किट से इलेक्ट्रॉनों को स्वीकार करने की अनुमति देता है) और इसलिए सेल के बाहर + चिह्नित टर्मिनल से जुड़ा होता है।<ref>John S. Newman, Karen E. Thomas-Alyea, ''Electrochemical systems'', Wiley-IEEE, 3rd ed. 2004, {{ISBN|0-471-47756-7}}</ref>
पुरानी पाठ्यपुस्तकों में कभी-कभी अलग शब्दावली होती है जो आधुनिक पाठकों के लिए भ्रम पैदा कर सकती है। उदाहरण के लिए, एर्टन एंड माथेर द्वारा 1911 की पाठ्यपुस्तक<ref>W. E. Ayrton and T. Mather, ''Practical Electricity'', Cassell and Company, London, 1911, page 170</ref> इलेक्ट्रोड को सकारात्मक प्लेट और नकारात्मक प्लेट के रूप में वर्णित करता है।
पुरानी पाठ्यपुस्तकों में कभी-कभी अलग शब्दावली होती है जो आधुनिक पाठकों के लिए भ्रम पैदा कर सकती है। उदाहरण के लिए, एर्टन एंड माथेर द्वारा 1911 की पाठ्यपुस्तक<ref>W. E. Ayrton and T. Mather, ''Practical Electricity'', Cassell and Company, London, 1911, page 170</ref> इलेक्ट्रोड को सकारात्मक प्लेट और नकारात्मक प्लेट के रूप में वर्णित करता है।


Line 96: Line 98:
==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}
==बाहरी कड़ियाँ==
==बाहरी कड़ियाँ==
{{Commons category|Disposable electric batteries}}
{{Commons category|Disposable electric batteries}}
* [https://web.archive.org/web/20131022104620/http://electrochem.cwru.edu/encycl/art-b02-batt-nonr.htm Nonrechargeable batteries]
* [https://web.archive.org/web/20131022104620/http://electrochem.cwru.edu/encycl/art-b02-batt-nonr.htm गैर-रिचार्जेबल बैटरियां]
 
{{Galvanic cells}}
[[Category: बैटरी प्रकार]] [[Category: बैटरी (बिजली)]]  
[[Category: बैटरी प्रकार]] [[Category: बैटरी (बिजली)]]  
[[it:Pila (chimica)]]
[[it:Pila (chimica)]]

Revision as of 18:49, 26 July 2023

प्राथमिक कोशिकाओं के विभिन्न मानक आकार। बाएं से: 4.5V मल्टीसेल बैटरी, D, C, AA, AAA, AAAA, A23, 9V मल्टीसेल बैटरी, (ऊपर) LR44, (नीचे) CR2032

एक प्राथमिक बैटरी या प्राथमिक सेल एक बैटरी (बिजली) (एक गैल्वेनिक सेल) है जिसे एक बार उपयोग करने और त्यागने के लिए डिज़ाइन किया गया है, और बिजली से रिचार्ज नहीं किया जाता है और एक माध्यमिक सेल (रिचार्जेबल बैटरी) की तरह पुन: उपयोग किया जाता है। सामान्य तौर पर, सेल में होने वाली इलेक्ट्रोकैमिस्ट्री रासायनिक प्रतिक्रिया उत्क्रमणीय नहीं होती है, जिससे सेल अपरिवर्तनीय हो जाती है। एक प्राथमिक सेल के रूप में उपयोग किया जाता है, बैटरी में रासायनिक प्रतिक्रियाएं शक्ति उत्पन्न करने वाले रसायनों का उपयोग करती हैं; जब वे चले जाते हैं, तो बैटरी बिजली पैदा करना बंद कर देती है। इसके विपरीत, एक द्वितीयक सेल में, रासायनिक अभिकारकों को पुन: उत्पन्न करके, इसे रिचार्ज करने के लिए बैटरी चार्जर के साथ सेल में करंट चलाकर प्रतिक्रिया को उलटा किया जा सकता है। छोटे घरेलू उपकरणों जैसे फ्लैशलाइट और पोर्टेबल रेडियो को बिजली देने के लिए प्राथमिक कोशिकाओं को कई मानक आकारों में बनाया जाता है।

प्राथमिक बैटरियां $50 बिलियन के बैटरी बाजार का लगभग 90% हिस्सा बनाती हैं, लेकिन द्वितीयक बैटरियां बाजार में हिस्सेदारी हासिल कर रही हैं। दुनिया भर में हर साल लगभग 15 अरब प्राथमिक बैटरियां फेंक दी जाती हैं, वस्तुतः सभी लैंडफिल में समाप्त हो जाती हैं। जहरीले भारी धातु (रसायन) और मजबूत एसिड और क्षार के कारण बैटरी खतरनाक अपशिष्ट हैं। अधिकांश नगरपालिकाएं उन्हें इस प्रकार वर्गीकृत करती हैं और अलग निपटान की आवश्यकता होती है। बैटरी बनाने के लिए आवश्यक ऊर्जा उसमें निहित ऊर्जा से लगभग 50 गुना अधिक होती है।[1][2][3][4] उनकी छोटी ऊर्जा सामग्री की तुलना में उनकी उच्च प्रदूषक सामग्री के कारण, प्राथमिक बैटरी को बेकार, पर्यावरण की दृष्टि से अमित्र तकनीक माना जाता है। मुख्य रूप से वायरलेस उपकरणों और कॉर्डलेस की बढ़ती बिक्री के कारण जो प्राथमिक बैटरी द्वारा आर्थिक रूप से संचालित नहीं हो सकते हैं और अभिन्न रिचार्जेबल बैटरी के साथ आते हैं, माध्यमिक बैटरी उद्योग में उच्च वृद्धि हुई है और धीरे-धीरे प्राथमिक बैटरी को उच्च अंत उत्पादों में बदल रहा है।

उपयोग की प्रवृत्ति

इक्कीसवीं सदी की शुरुआत में, प्राथमिक कोशिकाओं ने द्वितीयक कोशिकाओं के लिए बाजार हिस्सेदारी खोना शुरू कर दिया, क्योंकि उत्तरार्द्ध के लिए सापेक्ष लागत में गिरावट आई। गरमागरम बल्बों से प्रकाश उत्सर्जक डायोड पर स्विच करके टॉर्च की बिजली की मांग कम हो गई थी।[5]

शेष बाजार ने निजी- या लेबल-रहित संस्करणों से बढ़ी हुई प्रतिस्पर्धा का अनुभव किया। दो प्रमुख अमेरिकी निर्माताओं, एनर्जाइज़र और ड्यूरासेल की बाजार हिस्सेदारी 2012 में घटकर 37% रह गई। रेओवैक के साथ, ये तीनों उपभोक्ताओं को जिंक-कार्बन बैटरी | जिंक-कार्बन से अधिक महंगी, लंबे समय तक चलने वाली क्षारीय बैटरी की ओर ले जाने की कोशिश कर रहे हैं। .[5]

पश्चिमी बैटरी निर्माताओं ने उत्पादन को अपतटीय स्थानांतरित कर दिया और अब संयुक्त राज्य अमेरिका में जस्ता-कार्बन बैटरी नहीं बनाते हैं।[5]

चीन सबसे बड़ा बैटरी बाजार बन गया, जिसकी मांग कहीं और की तुलना में तेजी से बढ़ने का अनुमान है, और क्षारीय कोशिकाओं में भी स्थानांतरित हो गया है। अन्य विकासशील देशों में डिस्पोजेबल बैटरियों को सस्ते विंड-अप, विंड-पावर्ड और रिचार्जेबल डिवाइसों के साथ प्रतिस्पर्धा करनी चाहिए, जो कि बहुत अधिक बढ़ गए हैं।[5]

प्राथमिक और द्वितीयक कोशिकाओं के बीच तुलना

माध्यमिक कोशिकाओं (रिचार्जेबल बैटरी) प्राथमिक कोशिकाओं की तुलना में सामान्य रूप से उपयोग करने के लिए अधिक किफायती हैं। उनकी प्रारंभिक उच्च लागत और चार्जिंग सिस्टम की खरीद लागत कई उपयोग चक्रों (100 और 1000 चक्रों के बीच) में फैली हो सकती है; उदाहरण के लिए, हाथ से चलने वाले बिजली उपकरणों में, उच्च क्षमता वाले प्राथमिक बैटरी पैक को हर कुछ घंटों के उपयोग के बाद बदलना बहुत महंगा होगा।

प्राथमिक कोशिकाओं को निर्माण और उपयोग के बीच रिचार्ज करने के लिए डिज़ाइन नहीं किया गया है, इस प्रकार बैटरी रसायन है जिसमें पुराने प्रकार के माध्यमिक कोशिकाओं की तुलना में बहुत कम स्व-निर्वहन दर होती है; लेकिन उन्होंने रिचार्जेबल माध्यमिक कोशिकाओं के विकास के साथ उस लाभ को खो दिया है जिसमें कम स्व-निर्वहन एनआईएमएच सेल जैसे बहुत कम स्व-निर्वहन दर हैं जो पूर्व-चार्ज के रूप में बेचे जाने के लिए पर्याप्त समय तक पर्याप्त चार्ज रखते हैं।[6][7]

सामान्य प्रकार की द्वितीयक कोशिकाएं (अर्थात् NiMH और ली-आयन) उनके बहुत कम आंतरिक प्रतिरोध के कारण क्षमता की बड़ी हानि नहीं झेलती हैं जो कि क्षारीय, जस्ता-कार्बन और जस्ता क्लोराइड (भारी कर्तव्य या अति भारी कर्तव्य) उच्च धारा प्रवाह के साथ करते हैं। .[8]

बैटरी के घटकों को भौतिक रूप से अलग करके और केवल उपयोग के समय उन्हें इकट्ठा करके, क्षमता की हानि के बिना रिजर्व बैटरी बहुत लंबे भंडारण समय (10 वर्ष या उससे अधिक के आदेश पर) प्राप्त करती है। इस तरह के निर्माण महंगे हैं लेकिन युद्ध सामग्री जैसे अनुप्रयोगों में पाए जाते हैं, जिन्हें उपयोग करने से पहले वर्षों तक संग्रहीत किया जा सकता है।

ध्रुवीकरण

प्राथमिक कोशिकाओं के जीवनकाल को कम करने वाला एक प्रमुख कारक यह है कि वे उपयोग के दौरान ध्रुवीकृत हो जाते हैं। इसका मतलब है कि हाइड्रोजन कैथोड पर जमा हो जाती है और सेल की प्रभावशीलता को कम कर देती है। वाणिज्यिक कोशिकाओं में ध्रुवीकरण के प्रभाव को कम करने और उनके जीवन का विस्तार करने के लिए, रासायनिक विध्रुवण का उपयोग किया जाता है; यानी, हाइड्रोजन को पानी में ऑक्सीकृत करने के लिए, सेल में एक ऑक्सीडाइजिंग एजेंट जोड़ा जाता है। लेकलेंच सेल और जिंक-कार्बन सेल में मैंगनीज डाइऑक्साइड का उपयोग किया जाता है, और बन्सेन सेल और ग्रोव सेल में नाइट्रिक एसिड का उपयोग किया जाता है।

तांबे की प्लेट की सतह को खुरदरा बनाकर सरल कोशिकाओं को स्व-विध्रुवण बनाने का प्रयास किया गया है ताकि हाइड्रोजन के बुलबुलों को अलग करने में थोड़ी सफलता मिल सके। विद्युत-रासायनिक विध्रुवण, हाइड्रोजन को एक धातु से बदल देता है, जैसे तांबा (जैसे डेनियल सेल), या चांदी (जैसे चांदी-ऑक्साइड सेल), जिसे तथाकथित कहा जाता है।

शब्दावली

एनोड और कैथोड

बैटरी टर्मिनल (इलेक्ट्रोड) जो एक सकारात्मक वोल्टेज ध्रुवीयता (शुष्क सेल में कार्बन इलेक्ट्रोड) विकसित करता है, कैथोड कहलाता है और एक नकारात्मक ध्रुवीयता (शुष्क सेल में जस्ता) वाले इलेक्ट्रोड को एनोड कहा जाता है।[9] यह इलेक्ट्रोलाइटिक सेल या थर्मिओनिक वैक्यूम ट्यूब में प्रयुक्त शब्दावली का उल्टा है। इसका कारण यह है कि शब्द एनोड और कैथोड विद्युत प्रवाह की दिशा से परिभाषित होते हैं, उनके वोल्टेज से नहीं। एनोड वह टर्मिनल है जिसके माध्यम से पारंपरिक करंट (पॉजिटिव चार्ज) बाहरी सर्किट से सेल में प्रवेश करता है, जबकि कैथोड टर्मिनल है जिसके माध्यम से पारंपरिक करंट सेल को छोड़ देता है और बाहरी सर्किट में प्रवाहित होता है। चूँकि बैटरी एक शक्ति स्रोत है जो वोल्टेज प्रदान करता है जो बाहरी सर्किट के माध्यम से करंट को बल देता है, कैथोड पर वोल्टेज एनोड पर वोल्टेज से अधिक होना चाहिए, कैथोड से एनोड तक निर्देशित एक विद्युत क्षेत्र बनाना, सकारात्मक चार्ज को बाध्य करना बाहरी सर्किट के प्रतिरोध के माध्यम से कैथोड से बाहर।

सेल के अंदर एनोड इलेक्ट्रोड होता है जहां रासायनिक रेडॉक्स होता है, क्योंकि यह उन इलेक्ट्रॉनों को दान करता है जो इससे बाहरी सर्किट में प्रवाहित होते हैं। कैथोड इलेक्ट्रोड है जहां रासायनिक रेडॉक्स होता है, क्योंकि यह सर्किट से इलेक्ट्रॉनों को स्वीकार करता है।

सेल के बाहर, विभिन्न शब्दावली का प्रयोग किया जाता है। जैसा कि एनोड इलेक्ट्रोलाइट को सकारात्मक चार्ज देता है (इस प्रकार इलेक्ट्रॉनों की अधिकता के साथ शेष है कि यह सर्किट को दान करेगा), यह नकारात्मक विद्युत चार्ज बन जाता है और इसलिए टर्मिनल से जुड़ा होता है - सेल के बाहर। कैथोड, इस बीच, इलेक्ट्रोलाइट को नकारात्मक चार्ज देता है, इसलिए यह सकारात्मक रूप से चार्ज हो जाता है (जो इसे सर्किट से इलेक्ट्रॉनों को स्वीकार करने की अनुमति देता है) और इसलिए सेल के बाहर + चिह्नित टर्मिनल से जुड़ा होता है।[10]

पुरानी पाठ्यपुस्तकों में कभी-कभी अलग शब्दावली होती है जो आधुनिक पाठकों के लिए भ्रम पैदा कर सकती है। उदाहरण के लिए, एर्टन एंड माथेर द्वारा 1911 की पाठ्यपुस्तक[11] इलेक्ट्रोड को सकारात्मक प्लेट और नकारात्मक प्लेट के रूप में वर्णित करता है।

यह भी देखें

  • बैटरी का इतिहास
  • ईंधन सेल
  • बैटरी रीसाइक्लिंग
  • बैटरी आकार की सूची
  • बैटरी प्रकारों की सूची
  • बैटरी प्रकार की तुलना
  • बैटरी नामकरण

संदर्भ

  1. Hill, Marquita K. (2004). Understanding Environmental Pollution: A Primer. Cambridge University Press. pp. 274. ISBN 0521527260. battery energy 50 times environment pollution.
  2. Watts, John (2006). Gcse Edexcel Science. Letts and Lonsdale. p. 63. ISBN 1905129637.
  3. Wastebusters (2013). The Green Office Manual: A Guide to Responsible Practice. Routledge. p. 96. ISBN 978-1134197989.
  4. Danaher, Kevin; Biggs, Shannon; Mark, Jason (2016). Building the Green Economy: Success Stories from the Grassroots. Routledge. p. 199. ISBN 978-1317262923.
  5. 5.0 5.1 5.2 5.3 "Batteries: Out of juice". The Economist. 2014-01-18. Retrieved 2014-02-10.
  6. "Eneloop AA 4-Pack".
  7. "Eneloop Self Discharge study".
  8. "Discharge tests of Alkaline AA batteries".
  9. Denker, John S. (2004). "How to Define Anode and Cathode". See How It Flies. Denker personal website. Retrieved 8 September 2018.
  10. John S. Newman, Karen E. Thomas-Alyea, Electrochemical systems, Wiley-IEEE, 3rd ed. 2004, ISBN 0-471-47756-7
  11. W. E. Ayrton and T. Mather, Practical Electricity, Cassell and Company, London, 1911, page 170

बाहरी कड़ियाँ