घन पारस्परिकता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Conditions under which the congruence x^3 equals p (mod q) is solvable}}
{{short description|Conditions under which the congruence x^3 equals p (mod q) is solvable}}
'''घन पारस्परिकता''' [[संख्या सिद्धांत]] प्राथमिक संख्या सिद्धांत और [[बीजगणितीय संख्या सिद्धांत]] संख्या सिद्धांत में प्रमेयों का संग्रह है जो उन स्थितियों को बताता है जिनके अनुसार [[मॉड्यूलर अंकगणित]] ''x''<sup>3</sup> ≡ p (mod q) हल करने योग्य है; '''"पारस्परिकता"''' शब्द प्रमेय के कथन के रूप से आया है, जिसमें कहा गया है कि यदि p और q [[आइज़ेंस्टीन पूर्णांक]] के वलय में प्राथमिक संख्याएं हैं, तब दोनों 3 के सहअभाज्य हैं, सर्वांगसमता x<sup>3</sup> ≡ p (mod q) हल करने योग्य है यदि और केवल यदि x<sup>3</sup> ≡ q (mod p) हल करने योग्य है।
'''घन पारस्परिकता''' [[संख्या सिद्धांत]] प्राथमिक संख्या सिद्धांत और [[बीजगणितीय संख्या सिद्धांत]] संख्या सिद्धांत में प्रमेयों का संग्रह है इस प्रकार जो उन स्थितियों को बताता है जिनके अनुसार [[मॉड्यूलर अंकगणित]] ''x''<sup>3</sup> ≡ p (mod q) हल करने योग्य है; '''"पारस्परिकता"''' शब्द प्रमेय के कथन के रूप से आया है, जिसमें कहा गया है कि यदि p और q [[आइज़ेंस्टीन पूर्णांक]] के वलय में प्राथमिक संख्याएं हैं, तब दोनों 3 के सहअभाज्य हैं, सर्वांगसमता x<sup>3</sup> ≡ p (mod q) हल करने योग्य है यदि और केवल यदि x<sup>3</sup> ≡ q (mod p) हल करने योग्य है।


=='''इतिहास'''==
=='''इतिहास'''==
Line 6: Line 6:
वर्ष 1748 से कुछ समय पहले [[लियोनहार्ड यूलर|यूलर]] ने छोटे पूर्णांकों के घन अवशिष्ट के बारे में पहला अनुमान लगाया था, किन्तु उनकी मृत्यु के पश्चात् वर्ष 1849 तक वह प्रकाशित नहीं हुए थे।<ref>Euler, ''Tractatus ...'', §§ 407&ndash;410</ref>
वर्ष 1748 से कुछ समय पहले [[लियोनहार्ड यूलर|यूलर]] ने छोटे पूर्णांकों के घन अवशिष्ट के बारे में पहला अनुमान लगाया था, किन्तु उनकी मृत्यु के पश्चात् वर्ष 1849 तक वह प्रकाशित नहीं हुए थे।<ref>Euler, ''Tractatus ...'', §§ 407&ndash;410</ref>


गॉस के प्रकाशित कार्यों में घन अवशेषों और पारस्परिकता का तीन बार उल्लेख किया गया है: [[अंकगणितीय विवेचन]] (1801) में घन अवशेषों से संबंधित परिणाम है।<ref>Gauss, DA, footnote to  art. 358</ref> द्विघात पारस्परिकता के पांचवें और छठे प्रमाण के परिचय में (1818)<ref>Gauss, ''Theorematis fundamentalis ...''</ref> उन्होंने कहा कि वह इन प्रमाणों को प्रकाशित कर रहे हैं क्योंकि उनकी विधि '''(क्रमशः गॉस की लेम्मा और गॉसियन रकम)''' को घन और [[द्विघात पारस्परिकता]] पर प्रयुक्त किया जा सकता है। अंत में, द्विघात पारस्परिकता (1832) पर दूसरे (दो में से) मोनोग्राफ के फ़ुटनोट में कहा गया है कि घन पारस्परिकता को आइज़ेंस्टीन पूर्णांकों के वृत्त में सबसे आसानी से वर्णित किया गया है।<ref>Gauss, BQ, § 30</ref>
गॉस के प्रकाशित कार्यों में घन अवशेषों और पारस्परिकता का तीन बार उल्लेख किया गया है: [[अंकगणितीय विवेचन]] (1801) में घन अवशेषों से संबंधित परिणाम है।<ref>Gauss, DA, footnote to  art. 358</ref> इस प्रकार द्विघात पारस्परिकता के पांचवें और छठे प्रमाण के परिचय में (1818)<ref>Gauss, ''Theorematis fundamentalis ...''</ref> उन्होंने कहा कि वह इन प्रमाणों को प्रकाशित कर रहे हैं क्योंकि उनकी विधि '''(क्रमशः गॉस की लेम्मा और गॉसियन रकम)''' को घन और [[द्विघात पारस्परिकता]] पर प्रयुक्त किया जा सकता है। इस प्रकार अंत में, द्विघात पारस्परिकता (1832) पर दूसरे (दो में से) मोनोग्राफ के फ़ुटनोट में कहा गया है कि घन पारस्परिकता को आइज़ेंस्टीन पूर्णांकों के वृत्त में सबसे आसानी से वर्णित किया गया है।<ref>Gauss, BQ, § 30</ref>


उनकी डायरी और अन्य अप्रकाशित स्रोतों से, ऐसा प्रतीत होता है कि गॉस सत्र 1805 तक पूर्णांकों के घन और चतुर्थक अवशिष्टता के नियमों को जानते थे, और सत्र 1814 के आसपास घन और द्विघात पारस्परिकता के पूर्ण विकसित प्रमेयों और प्रमाणों की खोज की।<ref>Cox, pp. 83&ndash;90</ref><ref>Lemmermeyer, pp. 199&ndash;201, 222&ndash;224</ref> इनके प्रमाण उनके मरणोपरांत कागजात में पाए गए, किन्तु यह स्पष्ट नहीं है कि वह उनके हैं या आइज़ेंस्टीन के हैं।<ref name="Lemmermeyer">Lemmermeyer, p. 200</ref>
उनकी डायरी और अन्य अप्रकाशित स्रोतों से, ऐसा प्रतीत होता है कि गॉस सत्र 1805 तक पूर्णांकों के घन और चतुर्थक अवशिष्टता के नियमों को जानते थे, और इस प्रकार सत्र 1814 के आसपास घन और द्विघात पारस्परिकता के पूर्ण विकसित प्रमेयों और प्रमाणों की खोज की।<ref>Cox, pp. 83&ndash;90</ref><ref>Lemmermeyer, pp. 199&ndash;201, 222&ndash;224</ref> इनके प्रमाण उनके मरणोपरांत कागजात में पाए गए, किन्तु यह स्पष्ट नहीं है कि वह उनके हैं या आइज़ेंस्टीन के हैं।<ref name="Lemmermeyer">Lemmermeyer, p. 200</ref>


[[कार्ल गुस्ताव जैकब जैकोबी]] ने सत्र 1827 में घन अवशिष्टता के बारे में अनेक प्रमेय प्रकाशित किए, किन्तु कोई प्रमाण नहीं मिला।<ref>Jacobi, ''De residuis cubicis ...''.</ref> सत्र 1836-37 के अपने कोनिग्सबर्ग व्याख्यान में जैकोबी ने प्रमाण प्रस्तुत किये।<ref name="Lemmermeyer" />सबसे पहले प्रकाशित प्रमाण आइज़ेंस्टीन (1844) द्वारा थे।<ref>Eisenstein, ''Beweis des Reciprocitätssatzes ...''</ref><ref>Eisenstein, ''Nachtrag zum cubischen...''</ref><ref>Eisenstein, ''Application de l'algèbre...''</ref>
[[कार्ल गुस्ताव जैकब जैकोबी]] ने सत्र 1827 में घन अवशिष्टता के बारे में अनेक प्रमेय प्रकाशित किए, किन्तु कोई प्रमाण नहीं मिला।<ref>Jacobi, ''De residuis cubicis ...''.</ref> सत्र 1836-37 के अपने कोनिग्सबर्ग व्याख्यान में जैकोबी ने प्रमाण प्रस्तुत किये।<ref name="Lemmermeyer" /> इस प्रकार सबसे पहले प्रकाशित प्रमाण आइज़ेंस्टीन (1844) द्वारा थे।<ref>Eisenstein, ''Beweis des Reciprocitätssatzes ...''</ref><ref>Eisenstein, ''Nachtrag zum cubischen...''</ref><ref>Eisenstein, ''Application de l'algèbre...''</ref>
=='''पूर्णांक'''==
=='''पूर्णांक'''==


Line 26: Line 26:


:<math> x^{2q-1} = x^{6n + 3} = \left  (x^{2n+1} \right )^3.</math>
:<math> x^{2q-1} = x^{6n + 3} = \left  (x^{2n+1} \right )^3.</math>
इसलिए, एकमात्र रोचक मामला तब है जब मापांक p ≡ 1 (mod 3) हो‚ इस स्थितियों में गैर-शून्य अवशेष वर्ग (mod p) को तीन समुच्चयों में विभाजित किया जा सकता है, प्रत्येक में (p −1)/3 संख्याएं होती हैं। मान लीजिए e घन गैर-अवशेष है। पहला समुच्चय घन अवशेष है; दूसरा है पहले समुच्चय की संख्याओं का e गुना, और तीसरा है पहले सेट की संख्याओं का e2 गुना। इस विभाजन का वर्णन करने का दूसरी प्रणाली यह है कि ई को आदिम मूल मॉड्यूलो एन (mod p ) माना जाए; तब पहला (सम्मान दूसरा, तीसरा) समुच्चय वह संख्याएं हैं जिनके इस मूल के संबंध में सूचकांक 0 (सम्मान 1, 2) (mod 3) के अनुरूप हैं। [[समूह सिद्धांत]] की शब्दावली में, पहला समुच्चय गुणक समूह के उपसमूह 3 के सूचकांक का उपसमूह है <math>(\Z/p\Z)^{\times}</math> और अन्य दो इसके सहसमुच्चय हैं।
इसलिए, एकमात्र रोचक मामला तब है जब मापांक p ≡ 1 (mod 3) हो‚ इस स्थितियों में गैर-शून्य अवशेष वर्ग (mod p) को तीन समुच्चयों में विभाजित किया जा सकता है, प्रत्येक में (p −1)/3 संख्याएं होती हैं। मान लीजिए e घन गैर-अवशेष है। पहला समुच्चय घन अवशेष है; दूसरा है पहले समुच्चय की संख्याओं का e गुना, और तीसरा है पहले सेट की संख्याओं का e2 गुना। इस प्रकार विभाजन का वर्णन करने की दूसरी प्रणाली यह है कि ई को आदिम मूल मॉड्यूलो एन (mod p ) माना जाए; तब पहला (सम्मान दूसरा, तीसरा) समुच्चय वह संख्याएं हैं जिनके इस मूल के संबंध में सूचकांक 0 (सम्मान 1, 2) (mod 3) के अनुरूप हैं। [[समूह सिद्धांत]] की शब्दावली में, पहला समुच्चय गुणक समूह के उपसमूह 3 के सूचकांक का उपसमूह है <math>(\Z/p\Z)^{\times}</math> और अन्य दो इसके सहसमुच्चय हैं।


===प्राइम्स ≡ 1 (mod 3)===
===प्राइम्स ≡ 1 (mod 3)===
Line 104: Line 104:
===पृष्ठभूमि===
===पृष्ठभूमि===


द्विघात पारस्परिकता पर अपने दूसरे मोनोग्राफ में, गॉस कहते हैं:
द्विघात पारस्परिकता पर अपने दूसरे मोनोग्राफ में, '''गॉस''' कहते हैं:


द्विघात अवशेषों पर प्रमेय सबसे बड़ी सरलता और वास्तविक सुंदरता के साथ तभी चमकते हैं जब अंकगणित का क्षेत्र '''काल्पनिक''' संख्याओं तक बढ़ाया जाता है, जिससे कि बिना किसी प्रतिबंध के ''ए'' + ''बी'' रूप की संख्याएं बन सकें अध्ययन की वस्तु... हम ऐसी संख्याओं को '''अभिन्न समष्टि संख्याएँ''' कहते हैं।<ref>Gauss, BQ, § 30, translation in Cox, p. 83</ref>  
द्विघात अवशेषों पर प्रमेय सबसे बड़ी सरलता और वास्तविक सुंदरता के साथ तभी चमकते हैं जब अंकगणित का क्षेत्र '''काल्पनिक''' संख्याओं तक बढ़ाया जाता है, जिससे कि बिना किसी प्रतिबंध के ''ए'' + ''बी'' रूप की संख्याएं बन सकें अध्ययन की वस्तु... हम ऐसी संख्याओं को '''अभिन्न समष्टि संख्याएँ''' कहते हैं।<ref>Gauss, BQ, § 30, translation in Cox, p. 83</ref>  
Line 114: Line 114:
घन अवशेषों का सिद्धांत इसी प्रकार a + bh के रूप की संख्याओं के विचार पर आधारित होना चाहिए जहां h समीकरण ''h''<sup>3</sup> = 1 का काल्पनिक मूल है ''... और इसी प्रकार उच्च शक्तियों के अवशेषों का सिद्धांत अन्य काल्पनिक मात्राओं के परिचय की ओर ले जाता है।<ref>Gauss, BQ, § 30, translation in Cox, p. 84</ref>''
घन अवशेषों का सिद्धांत इसी प्रकार a + bh के रूप की संख्याओं के विचार पर आधारित होना चाहिए जहां h समीकरण ''h''<sup>3</sup> = 1 का काल्पनिक मूल है ''... और इसी प्रकार उच्च शक्तियों के अवशेषों का सिद्धांत अन्य काल्पनिक मात्राओं के परिचय की ओर ले जाता है।<ref>Gauss, BQ, § 30, translation in Cox, p. 84</ref>''


घन पारस्परिकता पर अपने पहले मोनोग्राफ में<ref>Ireland & Rosen p. 14</ref> आइज़ेंस्टीन ने एकता के घनमूल से बनी संख्याओं का सिद्धांत विकसित किया; अभी उन्हें [[आइज़ेंस्टीन पूर्णांक|आइज़ेंस्टीन पूर्णांकों]] का वलय कहा जाता है। आइज़ेंस्टीन ने कहा (व्याख्यात्मक रूप से) '''"इस वलय के गुणों की जांच करने के लिए किसी को केवल Z[''i''] पर गॉस के काम से परामर्श लेने और सबूतों को संशोधित करना होगा"।''' यह आश्चर्य की बात नहीं है क्योंकि दोनों वलय [[अद्वितीय गुणनखंडन डोमेन]] हैं।
घन पारस्परिकता पर अपने पहले मोनोग्राफ में<ref>Ireland & Rosen p. 14</ref> आइज़ेंस्टीन ने एकता के घनमूल से बनी संख्याओं का सिद्धांत विकसित किया; अभी उन्हें [[आइज़ेंस्टीन पूर्णांक|आइज़ेंस्टीन पूर्णांकों]] का वलय कहा जाता है। इस प्रकार आइज़ेंस्टीन ने कहा (व्याख्यात्मक रूप से) '''"इस वलय के गुणों की जांच करने के लिए किसी को केवल Z[''i''] पर गॉस के काम से परामर्श लेने और सबूतों को संशोधित करना होगा"।''' यह आश्चर्य की बात नहीं है क्योंकि दोनों वलय [[अद्वितीय गुणनखंडन डोमेन]] हैं।


'''"उच्च शक्तियों के अवशेषों के सिद्धांत"''' के लिए आवश्यक '''"अन्य काल्पनिक मात्राएँ"''' [[साइक्लोटोमिक क्षेत्र|साइक्लोटोमिक क्षेत्रों]] के पूर्णांकों की रिंग हैं; गॉसियन और आइज़ेंस्टीन पूर्णांक इनके सबसे सरल उदाहरण हैं।
'''"उच्च शक्तियों के अवशेषों के सिद्धांत"''' के लिए आवश्यक '''"अन्य काल्पनिक मात्राएँ"''' [[साइक्लोटोमिक क्षेत्र|साइक्लोटोमिक क्षेत्रों]] के पूर्णांकों की रिंग हैं; इस प्रकार गॉसियन और आइज़ेंस्टीन पूर्णांक इनके सबसे सरल उदाहरण हैं।


===तथ्य और शब्दावली===
===तथ्य और शब्दावली===
Line 171: Line 171:
* सर्वांगसमता <math>x^3 \equiv \alpha \bmod{\pi}</math> में समाधान है <math>\Z[\omega]</math> यदि और केवल यदि <math>\left(\tfrac{\alpha}{\pi}\right)_3 = 1.</math><ref>Ireland & Rosen, Prop. 9.3.3</ref>
* सर्वांगसमता <math>x^3 \equiv \alpha \bmod{\pi}</math> में समाधान है <math>\Z[\omega]</math> यदि और केवल यदि <math>\left(\tfrac{\alpha}{\pi}\right)_3 = 1.</math><ref>Ireland & Rosen, Prop. 9.3.3</ref>
* यदि <math>a, b \in \Z</math> ऐसे हैं <math>\gcd(a, b) = \gcd(b, 3) = 1,</math> तब <math>\left(\tfrac{a}{b}\right)_3 = 1.</math><ref>Ireland & Rosen, Prop. 9.3.4</ref><ref>Lemmermeyer, Prop 7.7</ref>
* यदि <math>a, b \in \Z</math> ऐसे हैं <math>\gcd(a, b) = \gcd(b, 3) = 1,</math> तब <math>\left(\tfrac{a}{b}\right)_3 = 1.</math><ref>Ireland & Rosen, Prop. 9.3.4</ref><ref>Lemmermeyer, Prop 7.7</ref>
*घन वर्ण को हर में भाज्य संख्याओं (3 से सहअभाज्य) तक गुणात्मक रूप से बढ़ाया जा सकता है, उसी तरह से लीजेंड्रे प्रतीक को [[जैकोबी प्रतीक]] में सामान्यीकृत किया जाता है। जैकोबी प्रतीक की तरह, यह विस्तार अंश को त्याग देता है जो कि घन अवशेष mod है, जिसका अर्थ है: जब अंश घन अवशेष है, तब प्रतीक अभी भी 1 होने की गारंटी देता है, किन्तु कॉनवर्स अभी मान्य नहीं है।
*घन वर्ण को हर में भाज्य संख्याओं (3 से सहअभाज्य) तक गुणात्मक रूप से बढ़ाया जा सकता है, उसी तरह से लीजेंड्रे प्रतीक को [[जैकोबी प्रतीक]] में सामान्यीकृत किया जाता है। इस प्रकार जैकोबी प्रतीक की तरह, यह विस्तार अंश को त्याग देता है जो कि घन अवशेष mod है, जिसका अर्थ है: जब अंश घन अवशेष है, तब प्रतीक अभी भी 1 होने की गारंटी देता है, किन्तु कॉनवर्स अभी मान्य नहीं है।
::<math>\left(\frac{\alpha}{\lambda}\right)_3 = \left(\frac{\alpha}{\pi_1}\right)_3^{\alpha_1} \left(\frac{\alpha}{\pi_2}\right)_3^{\alpha_2} \cdots,</math>
::<math>\left(\frac{\alpha}{\lambda}\right)_3 = \left(\frac{\alpha}{\pi_1}\right)_3^{\alpha_1} \left(\frac{\alpha}{\pi_2}\right)_3^{\alpha_2} \cdots,</math>
:कहाँ
:कहाँ
Line 191: Line 191:




<!--Along the same lines, von Lienen proved<ref>Lemmermeyer, p. 226&ndash;227</ref>
<!--उसी तर्ज पर, वॉन लिएनेन
proved<ref>Lemmermeyer, p. 226&ndash;227</ref>


:<math>\left(\frac{p}{q}\right)_3 \left(\frac{q}{p}\right)_3  = \left(\frac{\frac{L'M+LM'}{2M}}{p}\right)_3^2.</math>
:<math>\left(\frac{p}{q}\right)_3 \left(\frac{q}{p}\right)_3  = \left(\frac{\frac{L'M+LM'}{2M}}{p}\right)_3^2.</math>
Line 212: Line 213:
One can choose {{math|{{pi}} {{=}} −4 − 3''ω''}} and {{math|''ρ'' {{=}} −7 + 3''ω''}}.  Then {{math|''χ''<sub>''ρ''</sub>(''p'') {{=}} ''ω''<sup>2</sup>}}, {{math|''χ''<sub>{{pi}}</sub>(''q'') {{=}} 1}}, {{math|''χ''<sub>{{pi}}</sub>(''N''/2''M'') {{=}} ''ω''}}, satisfying {{math|''χ''<sub>''ρ''</sub>(''p'')&thinsp;''χ''<sub>{{pi}}</sub>(''q'') {{=}} (''χ''<sub>{{pi}}</sub>(''N''/2''M''))<sup>2</sup>}}, that is {{math|Li(''p'', ''q'')&thinsp;Li(''q'', ''p'') {{=}} (Li(''N''/2''M'', ''p''))<sup>2</sup>}}.
One can choose {{math|{{pi}} {{=}} −4 − 3''ω''}} and {{math|''ρ'' {{=}} −7 + 3''ω''}}.  Then {{math|''χ''<sub>''ρ''</sub>(''p'') {{=}} ''ω''<sup>2</sup>}}, {{math|''χ''<sub>{{pi}}</sub>(''q'') {{=}} 1}}, {{math|''χ''<sub>{{pi}}</sub>(''N''/2''M'') {{=}} ''ω''}}, satisfying {{math|''χ''<sub>''ρ''</sub>(''p'')&thinsp;''χ''<sub>{{pi}}</sub>(''q'') {{=}} (''χ''<sub>{{pi}}</sub>(''N''/2''M''))<sup>2</sup>}}, that is {{math|Li(''p'', ''q'')&thinsp;Li(''q'', ''p'') {{=}} (Li(''N''/2''M'', ''p''))<sup>2</sup>}}.


Alternatively, one can choose {{math|{{pi}} {{=}} −1 + 3''ω''}} and {{math|''ρ'' {{=}} −10 − 3''ω''}}.  Then {{math|''χ''<sub>''ρ''</sub>(''p'') {{=}} ''ω'', χ<sub>π</sub>(''q'') {{=}} 1, ''χ''<sub>{{pi}}</sub>(''N''/2''M'') {{=}} ''ω''<sup>2</sup>}}.  These values are different from the previous ones, but they satisfy the same relationship. -->
Alternatively, one can choose {{math|{{pi}} {{=}} −1 + 3''ω''}} and {{math|''ρ'' {{=}} −10 − 3''ω''}}.  Then {{math|''χ''<sub>''ρ''</sub>(''p'') {{=}} ''ω'', χ<sub>π</sub>(''q'') {{=}} 1, ''χ''<sub>{{pi}}</sub>(''N''/2''M'') {{=}} ''ω''<sup>2</sup>}}.  ये मूल्य पिछले मूल्यों से भिन्न हैं, लेकिन वे समान संबंध को संतुष्ट करते हैं। -->


==यह भी देखें==
==यह भी देखें==
Line 249: Line 250:


*{{citation
*{{citation
   | last1 = Gauss | first1 = Carl Friedrich
   | last1 = गॉस | first1 = कार्ल फ्रेडरिक
   | title = Theoria residuorum biquadraticorum, Commentatio prima
   | title = थियोरिया रेसिड्यूओरम बाइकाड्रैटिकोरम, कमेंटेटियो प्राइमा
   | publisher = Comment. Soc. regiae sci, Göttingen 6
   | publisher = टिप्पणी। समाज. रेजिया विज्ञान, गौटिंगेन 6
   | location = Göttingen
   | location = गौटिंगेन
   | date = 1828}}
   | date = 1828}}


*{{citation
*{{citation
   | last1 = Gauss | first1 = Carl Friedrich
   | last1 = गॉस | first1 = कार्ल फ्रेडरिक
   | title = Theoria residuorum biquadraticorum, Commentatio secunda
   | title = थियोरिया रेसिड्यूओरम बाइकाड्रैटिकोरम, कमेंटेटियो सेकुंडा
   | publisher = Comment. Soc. regiae sci, Göttingen 7
   | publisher = टिप्पणी। समाज. रेजिया विज्ञान, गौटिंगेन 7
   | location = Göttingen
   | location = गौटिंगेन
   | date = 1832}}
   | date = 1832}}


Line 267: Line 268:


*{{citation
*{{citation
   | last1 = Gauss | first1 = Carl Friedrich
   | last1 = गॉस | first1 = कार्ल फ्रेडरिक
   | title = Theoramatis fundamentalis in doctrina de residuis quadraticis demonstrationes et amplicationes novae
   | title = डॉक्ट्रिना डे रेसिडुइस क्वाड्रैटिसिस प्रदर्शन और एम्प्लिकेशंस नोवा में थियोरैमेटिस फंडामेंटलिस
     | date = 1818}}
     | date = 1818}}


Line 276: Line 277:


*{{citation
*{{citation
   | last1 = Gauss | first1 = Carl Friedrich
   | last1 = गॉस | first1 = कार्ल फ्रेडरिक
   | last2 = Maser | first2 = H. (translator into German)   
   | last2 = मेसर | first2 = एच. (जर्मन में अनुवादक)   
   | title = Untersuchungen uber hohere Arithmetik (Disquisitiones Arithmeticae & other papers on number theory) (Second edition)
   | title = अन्टरसुचुंगेन उबर होहेरे अरिथमेटिक (डिस्क्विजिशन अरिथमेटिके और संख्या सिद्धांत पर अन्य पेपर) (दूसरा संस्करण)
   | publisher = Chelsea
   | publisher = चेल्सी
   | location = New York
   | location = न्यूयॉर्क
   | date = 1965
   | date = 1965
   | isbn = 0-8284-0191-8}}
   | isbn = 0-8284-0191-8}}
Line 287: Line 288:


*{{citation
*{{citation
   | last1 = Eisenstein | first1 = Ferdinand Gotthold
   | last1 = Eisenstein | first1 = फर्डिनेंड गोटथोल्ड
   | title = Beweis des Reciprocitätssatzes für die cubischen Reste in der Theorie der aus den dritten Wurzeln der Einheit zusammengesetzen Zahlen
   | title = इस थ्योरी डेर ऑस डेन ड्रिटन वुर्जेलन डेर एइनहाइट ज़ुसामेंगेसेटज़ेन ज़हलेन में क्यूबिस्चेन रेस्ट के लिए पारस्परिक पारस्परिकता
   | publisher = J. Reine Angew. Math. 27, pp. 289&ndash;310 (Crelle's Journal)
   | publisher = जे. रेइन एंज्यू। गणित। 27, पृ. 289-310 (क्रेल्स जर्नल)
   | date = 1844}}
   | date = 1844}}


*{{citation
*{{citation
   | last1 = Eisenstein | first1 = Ferdinand Gotthold
   | last1 = Eisenstein | first1 = फर्डिनेंड गोटथोल्ड
   | title = Nachtrag zum cubischen Reciprocitätssatzes für die aus den dritten Wurzeln der Einheit zusammengesetzen Zahlen, Criterien des cubischen Characters der Zahl 3 and ihrer Teiler
   | title = नचत्राग ज़ुम क्यूबिस्चेन रेसिप्रोसिटैट्ससैट्ज़ फर डाई ऑस डेन ड्रिटन वुर्जेलन डेर एइनहाइट ज़ुसामेंगेसेटज़ेन ज़हलेन, क्राइटेरियन डेस क्यूबिसचेन कैरेक्टर्स डेर ज़हल 3 और इहरर टेलर
   | publisher = J. Reine Angew. Math. 28, pp. 28&ndash;35 (Crelle's Journal)
   | publisher = जे. रेइन एंज्यू। गणित। 28, पृ. 28-35 (क्रेल्स जर्नल)
   | date = 1844}}
   | date = 1844}}


*{{citation
*{{citation
   | last1 = Eisenstein | first1 = Ferdinand Gotthold
   | last1 = Eisenstein | first1 = फर्डिनेंड गोटथोल्ड
   | title = Application de l'algèbre à l'arithmétique transcendante
   | title = अंकगणित पारगमन के बीजगणित का अनुप्रयोग
   | publisher = J. Reine Angew. Math. 29 pp. 177&ndash;184 (Crelle's Journal)
   | publisher = जे. रेइन एंज्यू। गणित। 29 पृष्ठ 177-184 (क्रेल्स जर्नल)
   | date = 1845}}
   | date = 1845}}


Line 309: Line 310:


*{{citation
*{{citation
   | last1 = Jacobi | first1 = Carl Gustave Jacob
   | last1 = जैकोबी | first1 = कार्ल गुस्ताव जैकब
   | title = De residuis cubicis commentatio numerosa
   | title = डे रेसिडुइस क्यूबिसिस कमेंटेटियो न्यूमेरोसा
   | publisher = J. Reine Angew. Math. 2 pp. 66&ndash;69 (Crelle's Journal)
   | publisher = जे. रेइन एंज्यू। गणित। 2 पृष्ठ 66-69 (क्रेल्स जर्नल)
   | date = 1827}}
   | date = 1827}}


Line 319: Line 320:


*{{citation
*{{citation
   | last1 = Cox | first1 = David A.
   | last1 = कॉक्स | first1 = डेविड ए.
   | title = Primes of the form x<sup>2</sup> + n y<sup>2</sup>
   | title = Primes of the form x<sup>2</sup> + n y<sup>2</sup>
   | publisher = Wiley
   | publisher = विले
   | location = New York
   | location = न्यूयॉर्क
   | date = 1989
   | date = 1989
   | isbn = 0-471-50654-0}}
   | isbn = 0-471-50654-0}}


*{{citation
*{{citation
   | last1 = Ireland | first1 = Kenneth
   | last1 = आयरलैंड | first1 = केनेथ
   | last2 = Rosen  | first2 = Michael
   | last2 = Rosen  | first2 = Michael
   | title = A Classical Introduction to Modern Number Theory (Second edition)
   | title = आधुनिक संख्या सिद्धांत का एक शास्त्रीय परिचय (दूसरा संस्करण)
   | publisher = [[Springer Science+Business Media|Springer]]
   | publisher = [[स्प्रिंगर साइंस+बिजनेस मीडिया|स्प्रिंगर]]
   | location = New York
   | location = न्यूयॉर्क
   | date = 1990
   | date = 1990
   | isbn = 0-387-97329-X}}
   | isbn = 0-387-97329-X}}


*{{citation
*{{citation
   | last1 = Lemmermeyer | first1 = Franz
   | last1 = लेमरमेयर | first1 = फ्रांज
   | title = Reciprocity Laws: from Euler to Eisenstein
   | title = पारस्परिकता कानून: यूलर से ईसेनस्टीन तक
   | publisher = [[Springer Science+Business Media|Springer]]
   | publisher = [[स्प्रिंगर साइंस+बिजनेस मीडिया|स्प्रिंगर]]
   | location = Berlin
   | location = बर्लिन
   | date = 2000
   | date = 2000
   | isbn = 3-540-66957-4}}
   | isbn = 3-540-66957-4}}

Revision as of 09:46, 21 July 2023

घन पारस्परिकता संख्या सिद्धांत प्राथमिक संख्या सिद्धांत और बीजगणितीय संख्या सिद्धांत संख्या सिद्धांत में प्रमेयों का संग्रह है इस प्रकार जो उन स्थितियों को बताता है जिनके अनुसार मॉड्यूलर अंकगणित x3 ≡ p (mod q) हल करने योग्य है; "पारस्परिकता" शब्द प्रमेय के कथन के रूप से आया है, जिसमें कहा गया है कि यदि p और q आइज़ेंस्टीन पूर्णांक के वलय में प्राथमिक संख्याएं हैं, तब दोनों 3 के सहअभाज्य हैं, सर्वांगसमता x3 ≡ p (mod q) हल करने योग्य है यदि और केवल यदि x3 ≡ q (mod p) हल करने योग्य है।

इतिहास

वर्ष 1748 से कुछ समय पहले यूलर ने छोटे पूर्णांकों के घन अवशिष्ट के बारे में पहला अनुमान लगाया था, किन्तु उनकी मृत्यु के पश्चात् वर्ष 1849 तक वह प्रकाशित नहीं हुए थे।[1]

गॉस के प्रकाशित कार्यों में घन अवशेषों और पारस्परिकता का तीन बार उल्लेख किया गया है: अंकगणितीय विवेचन (1801) में घन अवशेषों से संबंधित परिणाम है।[2] इस प्रकार द्विघात पारस्परिकता के पांचवें और छठे प्रमाण के परिचय में (1818)[3] उन्होंने कहा कि वह इन प्रमाणों को प्रकाशित कर रहे हैं क्योंकि उनकी विधि (क्रमशः गॉस की लेम्मा और गॉसियन रकम) को घन और द्विघात पारस्परिकता पर प्रयुक्त किया जा सकता है। इस प्रकार अंत में, द्विघात पारस्परिकता (1832) पर दूसरे (दो में से) मोनोग्राफ के फ़ुटनोट में कहा गया है कि घन पारस्परिकता को आइज़ेंस्टीन पूर्णांकों के वृत्त में सबसे आसानी से वर्णित किया गया है।[4]

उनकी डायरी और अन्य अप्रकाशित स्रोतों से, ऐसा प्रतीत होता है कि गॉस सत्र 1805 तक पूर्णांकों के घन और चतुर्थक अवशिष्टता के नियमों को जानते थे, और इस प्रकार सत्र 1814 के आसपास घन और द्विघात पारस्परिकता के पूर्ण विकसित प्रमेयों और प्रमाणों की खोज की।[5][6] इनके प्रमाण उनके मरणोपरांत कागजात में पाए गए, किन्तु यह स्पष्ट नहीं है कि वह उनके हैं या आइज़ेंस्टीन के हैं।[7]

कार्ल गुस्ताव जैकब जैकोबी ने सत्र 1827 में घन अवशिष्टता के बारे में अनेक प्रमेय प्रकाशित किए, किन्तु कोई प्रमाण नहीं मिला।[8] सत्र 1836-37 के अपने कोनिग्सबर्ग व्याख्यान में जैकोबी ने प्रमाण प्रस्तुत किये।[7] इस प्रकार सबसे पहले प्रकाशित प्रमाण आइज़ेंस्टीन (1844) द्वारा थे।[9][10][11]

पूर्णांक

एक घन अवशेष (mod p) पूर्णांक (mod p) की तीसरी घात के अनुरूप कोई भी संख्या है। यदि x3 ≡ a (mod p) का कोई पूर्णांक समाधान नहीं है, a 'घन अवशिष्ट' (mod p) है।[12]

जैसा कि संख्या सिद्धांत में अधिकांशतः होता है, मॉड्यूलो अभाज्य संख्याओं पर काम करना आसान होता है, इसलिए इस खंड में सभी मॉड्यूल p , q , आदि को धनात्मक , विषम अभाज्य माना जाता है।[12]

हम पहले ध्यान दें कि यदि q ≡ 2 (mod 3) अभाज्य है तब प्रत्येक संख्या घन अवशेष मॉड्यूल q है। मान लीजिए q = 3n + 2; चूँकि 0 = 03स्पष्ट रूप से घन अवशेष है, मान लें कि x, q से विभाज्य नहीं है। फिर फ़र्मेट के छोटे प्रमेय द्वारा,

हमारे पास उपस्तिथ दो सर्वांगसमताओं को गुणा करना

अभी q के लिए 3n + 2 प्रतिस्थापित करने पर हमें प्राप्त होता है:

इसलिए, एकमात्र रोचक मामला तब है जब मापांक p ≡ 1 (mod 3) हो‚ इस स्थितियों में गैर-शून्य अवशेष वर्ग (mod p) को तीन समुच्चयों में विभाजित किया जा सकता है, प्रत्येक में (p −1)/3 संख्याएं होती हैं। मान लीजिए e घन गैर-अवशेष है। पहला समुच्चय घन अवशेष है; दूसरा है पहले समुच्चय की संख्याओं का e गुना, और तीसरा है पहले सेट की संख्याओं का e2 गुना। इस प्रकार विभाजन का वर्णन करने की दूसरी प्रणाली यह है कि ई को आदिम मूल मॉड्यूलो एन (mod p ) माना जाए; तब पहला (सम्मान दूसरा, तीसरा) समुच्चय वह संख्याएं हैं जिनके इस मूल के संबंध में सूचकांक 0 (सम्मान 1, 2) (mod 3) के अनुरूप हैं। समूह सिद्धांत की शब्दावली में, पहला समुच्चय गुणक समूह के उपसमूह 3 के सूचकांक का उपसमूह है और अन्य दो इसके सहसमुच्चय हैं।

प्राइम्स ≡ 1 (mod 3)

फ़र्मेट के प्रमेय[13][14] में कहा गया है कि प्रत्येक अभाज्य p ≡ 1 (mod 3) को p = a2 + 3b2 के रूप में लिखा जा सकता है और (ए और बी के संकेतों को छोड़कर) यह प्रतिनिधित्व अद्वितीय है।

मान लीजिए m = a + b और n = a − b, हम देखते हैं कि यह p = m2mn + n2 के सामान्तर है (जो (nm)2 − (nm)n + n2 = m2 + m(nm) + (nm)2 के सामान्तर है), इसलिए m और n विशिष्ट रूप से निर्धारित नहीं हैं)। इस प्रकार,

और यह दिखाने के लिए सीधा अभ्यास है कि वास्तव में m, n, या m - n में से 3 का गुणज है, इसलिए

और यह प्रतिनिधित्व एल और एम के संकेतों तक अद्वितीय है।[15]

अपेक्षाकृत अभाज्य पूर्णांकों m और n के लिए 'तर्कसंगत घन अवशेष प्रतीक' को इस प्रकार परिभाषित करें

यह ध्यान रखना महत्वपूर्ण है कि इस प्रतीक में लीजेंड्रे प्रतीक के गुणक गुण नहीं हैं; इसके लिए, हमें नीचे परिभाषित वास्तविक घन वर्ण की आवश्यकता है।

'यूलर के अनुमान.' मान लीजिए p = a2 + 3b2 एक अभाज्य है। फिर निम्नलिखित होल्ड करें:[16][17][18]

पहले दो को इस प्रकार पुनः कहा जा सकता है। मान लीजिए p अभाज्य है जो 1 मॉड्यूलो 3 के सर्वांगसम है। तब:[19][20][21]

  • 2, p का घनीय अवशेष है यदि और केवल यदि p = a2+27बी2.
  • 3, p का घनीय अवशेष है यदि और केवल यदि 4p = a2+243बी2.
गॉस का प्रमेय. मान लीजिए कि p धनात्मक अभाज्य है
:तब [22][23]

कोई आसानी से देख सकता है कि गॉस के प्रमेय का तात्पर्य है:

जैकोबी का प्रमेय (बिना प्रमाण के बताया गया)[24] मान लीजिए q ≡ p ≡ 1 (mod 6) धनात्मक अभाज्य संख्याएँ हैं। स्पष्ट रूप से p और q दोनों 1 मॉड्यूलो 3 के सर्वांगसम हैं, इसलिए मान लें:
:मान लीजिए x, x का हल है2 ≡ −3 (mod q). तब
और हमारे पास है:
एम्मा लेहमर की प्रमेय. मान लीजिए q और p अभाज्य हैं तब:[25]
कहाँ

ध्यान दें कि पहली शर्त का तात्पर्य है: कोई भी संख्या जो एल या एम को विभाजित करती है वह घन अवशेष (mod p ) है।

पहले कुछ उदाहरण[26] इनमें से यूलर के अनुमान के सामान्तर हैं:

चूंकि स्पष्ट रूप से एल ≡ एम (mod 2), q = 2 के लिए मानदंड को इस प्रकार सरल बनाया जा सकता है:

मार्टिनेट का प्रमेय. मान लीजिए pq ≡ 1 (mod 3) अभाज्य हैं, तब[27]
शरीफ़ी का प्रमेय. मान लीजिए p = 1 + 3x + 9x2 प्रमुख बनें. तब x का कोई भी भाजक घन अवशेष (mod p) होता है।[28]

आइसेनस्टीन पूर्णांक

पृष्ठभूमि

द्विघात पारस्परिकता पर अपने दूसरे मोनोग्राफ में, गॉस कहते हैं:

द्विघात अवशेषों पर प्रमेय सबसे बड़ी सरलता और वास्तविक सुंदरता के साथ तभी चमकते हैं जब अंकगणित का क्षेत्र काल्पनिक संख्याओं तक बढ़ाया जाता है, जिससे कि बिना किसी प्रतिबंध के + बी रूप की संख्याएं बन सकें अध्ययन की वस्तु... हम ऐसी संख्याओं को अभिन्न समष्टि संख्याएँ कहते हैं।[29]

इन संख्याओं को अभी गॉसियन पूर्णांकों का वलय (गणित) कहा जाता है, जिन्हें Z[i] द्वारा दर्शाया जाता है। ध्यान दें कि i, 1 का चौथा मूल है।

एक फ़ुटनोट में वह कहते हैं

घन अवशेषों का सिद्धांत इसी प्रकार a + bh के रूप की संख्याओं के विचार पर आधारित होना चाहिए जहां h समीकरण h3 = 1 का काल्पनिक मूल है ... और इसी प्रकार उच्च शक्तियों के अवशेषों का सिद्धांत अन्य काल्पनिक मात्राओं के परिचय की ओर ले जाता है।[30]

घन पारस्परिकता पर अपने पहले मोनोग्राफ में[31] आइज़ेंस्टीन ने एकता के घनमूल से बनी संख्याओं का सिद्धांत विकसित किया; अभी उन्हें आइज़ेंस्टीन पूर्णांकों का वलय कहा जाता है। इस प्रकार आइज़ेंस्टीन ने कहा (व्याख्यात्मक रूप से) "इस वलय के गुणों की जांच करने के लिए किसी को केवल Z[i] पर गॉस के काम से परामर्श लेने और सबूतों को संशोधित करना होगा"। यह आश्चर्य की बात नहीं है क्योंकि दोनों वलय अद्वितीय गुणनखंडन डोमेन हैं।

"उच्च शक्तियों के अवशेषों के सिद्धांत" के लिए आवश्यक "अन्य काल्पनिक मात्राएँ" साइक्लोटोमिक क्षेत्रों के पूर्णांकों की रिंग हैं; इस प्रकार गॉसियन और आइज़ेंस्टीन पूर्णांक इनके सबसे सरल उदाहरण हैं।

तथ्य और शब्दावली

होने देना

और आइज़ेंस्टीन पूर्णांकों के वलय पर विचार करें:

यह यूक्लिडियन डोमेन है जिसमें नॉर्म (गणित) फलन दिया गया है:

ध्यान दें कि मानदंड सदैव 0 या 1 (mod 3) के अनुरूप होता है।

में इकाइयों का समूह (गुणात्मक व्युत्क्रम वाले तत्व या समकक्ष इकाई मानदंड वाले तत्व) एकता की छठी जड़ों का चक्रीय समूह है,

अद्वितीय गुणनखंडन डोमेन है। अभाज्य संख्याएँ तीन वर्गों में आती हैं:[32]

  • 3 विशेष मामला है:
यह एकमात्र प्राइम इन है अभाज्य के वर्ग से विभाज्य . प्राइम 3 को गैलोज़ एक्सटेंशन में प्राइम आदर्शों के विभाजन के लिए कहा जाता है।
  • धनात्मक अभाज्य संख्याएँ 2 (mod 3) के सर्वांगसम भी अभाज्य हैं . कहा जाता है कि यह अभाज्य संख्याएँ गैलोज़ एक्सटेंशन में प्रधान आदर्शों का विभाजन बनी हुई हैं . ध्यान दें कि यदि तब क्या कोई अक्रिय अभाज्य है:
  • धनात्मक अभाज्य संख्याएँ 1 (mod 3) के सर्वांगसम दो संयुग्म अभाज्यों का गुणनफल हैं . इन अभाज्य संख्याओं को गैलोज़ एक्सटेंशन में अभाज्य आदर्शों के विभाजन के लिए कहा जाता है . उनका गुणनखंडन इस प्रकार दिया गया है:
:उदाहरण के लिए

एक संख्या प्राथमिक होती है यदि वह 3 से सहअभाज्य हो और साधारण पूर्णांक मॉड्यूलो के सर्वांगसम हो जो यह कहने के समान है कि यह सर्वांगसम है मॉड्यूलो 3. यदि में से या प्राथमिक है. इसके अतिरिक्त, दो प्राथमिक संख्याओं का गुणनफल प्राथमिक होता है और प्राथमिक संख्या का संयुग्मन भी प्राथमिक होता है।

के लिए अद्वितीय गुणनखंड प्रमेय है: यदि तब

जहां प्रत्येक प्राथमिक (आइसेनस्टीन की परिभाषा के अनुसार ) अभाज्य है। और यह प्रतिनिधित्व कारकों के क्रम तक अद्वितीय है।

मॉड्यूलर अंकगणित की धारणाएँ[33] और सबसे बड़ा सामान्य भाजक[34] में उसी तरह से परिभाषित किया गया है जैसे वह सामान्य पूर्णांकों के लिए होते हैं . चूँकि इकाइयाँ सभी संख्याओं को विभाजित करती हैं, सर्वांगसमता मॉड्यूलो किसी भी सहयोगी का मॉड्यूलो भी सच है , और जीसीडी का कोई भी सहयोगी भी जीसीडी है।

घन अवशेष वर्ण

परिभाषा

फ़र्मेट के छोटे प्रमेय का एनालॉग सत्य है : यदि अभाज्य से विभाज्य नहीं है ,[35]

अभी मान लीजिये जिससे कि या भिन्न तरह से कहें तब हम लिख सकते हैं:

एक अद्वितीय इकाई के लिए इस इकाई को घन अवशेष लक्षण कहा जाता है मापांक और द्वारा दर्शाया गया है[36] :

गुण

घन अवशेष चरित्र में लीजेंड्रे प्रतीक के समान औपचारिक गुण होते हैं:

  • यदि तब
  • जहां बार समष्टि संयुग्मन को दर्शाता है।
  • यदि और तब सहयोगी हैं
  • सर्वांगसमता में समाधान है यदि और केवल यदि [37]
  • यदि ऐसे हैं तब [38][39]
  • घन वर्ण को हर में भाज्य संख्याओं (3 से सहअभाज्य) तक गुणात्मक रूप से बढ़ाया जा सकता है, उसी तरह से लीजेंड्रे प्रतीक को जैकोबी प्रतीक में सामान्यीकृत किया जाता है। इस प्रकार जैकोबी प्रतीक की तरह, यह विस्तार अंश को त्याग देता है जो कि घन अवशेष mod है, जिसका अर्थ है: जब अंश घन अवशेष है, तब प्रतीक अभी भी 1 होने की गारंटी देता है, किन्तु कॉनवर्स अभी मान्य नहीं है।
कहाँ

प्रमेय का कथन

मान लीजिए α और β प्राथमिक हैं। तब

पूरक प्रमेय हैं[40][41] इकाइयों और अभाज्य 1 - ω के लिए:

मान लीजिए α = a + bω प्राथमिक है, a = 3m + 1 और b = 3n है। (यदि कोई ≡ 2 (mod 3) α को उसके सहयोगी −α से प्रतिस्थापित करता है; इससे घन वर्णों का मान नहीं बदलेगा।) फिर


यह भी देखें

टिप्पणियाँ

  1. Euler, Tractatus ..., §§ 407–410
  2. Gauss, DA, footnote to art. 358
  3. Gauss, Theorematis fundamentalis ...
  4. Gauss, BQ, § 30
  5. Cox, pp. 83–90
  6. Lemmermeyer, pp. 199–201, 222–224
  7. 7.0 7.1 Lemmermeyer, p. 200
  8. Jacobi, De residuis cubicis ....
  9. Eisenstein, Beweis des Reciprocitätssatzes ...
  10. Eisenstein, Nachtrag zum cubischen...
  11. Eisenstein, Application de l'algèbre...
  12. 12.0 12.1 cf. Gauss, BQ § 2
  13. Gauss, DA, Art. 182
  14. Cox, Ex. 1.4–1.5
  15. Ireland & Rosen, Props 8.3.1 & 8.3.2
  16. Euler, Tractatus, §§ 407–401
  17. Lemmermeyer, p. 222–223
  18. Tractatus de numerorum doctrina capita sedecim, quae supersunt, 411, footnote (chapter 11) [1]
  19. Cox, p. 2, Thm. 4.15, Ex. 4.15
  20. Ireland & Rosen, Prop. 9.6.2, Ex 9.23
  21. Lemmermeyer, Prop. 7.1 & 7.2
  22. Gauss, DA footnote to art. 358
  23. Lemmermeyer, Ex. 7.9
  24. Jacobi, De residuis cubicis...
  25. Lemmermeyer, Prop.7.4
  26. Lemmermeyer, pp. 209–212, Props 7.1–7.3
  27. Lemmermeyer, Ex. 7.11
  28. Lemmermeyer, Ex. 7.12
  29. Gauss, BQ, § 30, translation in Cox, p. 83
  30. Gauss, BQ, § 30, translation in Cox, p. 84
  31. Ireland & Rosen p. 14
  32. Ireland & Rosen Prop 9.1.4
  33. cf. Gauss, BQ, §§ 38–45
  34. cf. Gauss, BQ, §§ 46–47
  35. Ireland & Rosen. Prop. 9.3.1
  36. Ireland & Rosen, p. 112
  37. Ireland & Rosen, Prop. 9.3.3
  38. Ireland & Rosen, Prop. 9.3.4
  39. Lemmermeyer, Prop 7.7
  40. Lemmermeyer, Th. 6.9
  41. Ireland & Rosen, Ex. 9.32–9.37

संदर्भ

यूलर, जैकोबी और ईसेनस्टीन के मूल पत्रों के संदर्भों को लेमरमेयर और कॉक्स की ग्रंथ सूची से कॉपी किया गया था, और इस लेख की तैयारी में उनका उपयोग नहीं किया गया था।

यूलर

  • यूलर, लियोंहार्ड (1849), ट्रैक्टेटस डे न्यूमेरोउम डॉक्ट्रिना कैपिटा सेडेसिम क्वाए सुपरसंट, टिप्पणी। अंकगणित. 2

यह वास्तव में 1748-1750 में लिखा गया था, किन्तु केवल मरणोपरांत प्रकाशित किया गया था; यह खंड V, पृष्ठ 182-283 में है

  • यूलर, लियोंहार्ड (1911–1944), ओपेरा ओमनिया, सीरीज़ प्राइमा, वॉल्यूम –V, लीपज़िग से बर्लिन तक: टेबनेर

गॉस

द्विघात पारस्परिकता पर गॉस द्वारा प्रकाशित दो मोनोग्राफ में लगातार क्रमांकित खंड हैं: पहले में §§ 1-23 और दूसरे में §§ 24-76 हैं। इन्हें संदर्भित करने वाले फ़ुटनोट गॉस, बीक्यू, § एन के रूप में हैं। डिस्क्विज़िशन अरिथमेटिके को संदर्भित करने वाले फ़ुटनोट गॉस, डीए, आर्ट के रूप में हैं। एन ।

  • गॉस, कार्ल फ्रेडरिक (1828), थियोरिया रेसिड्यूओरम बाइकाड्रैटिकोरम, कमेंटेटियो प्राइमा, गौटिंगेन: टिप्पणी। समाज. रेजिया विज्ञान, गौटिंगेन 6
  • गॉस, कार्ल फ्रेडरिक (1832), थियोरिया रेसिड्यूओरम बाइकाड्रैटिकोरम, कमेंटेटियो सेकुंडा, गौटिंगेन: टिप्पणी। समाज. रेजिया विज्ञान, गौटिंगेन 7

यह गॉस वेर्के, खंड II, पृष्ठ 65-92 और 93-148 में हैं

गॉस के द्विघात पारस्परिकता के पाँचवें और छठे प्रमाण हैं

  • गॉस, कार्ल फ्रेडरिक (1818), डॉक्ट्रिना डे रेसिडुइस क्वाड्रैटिसिस प्रदर्शन और एम्प्लिकेशंस नोवा में थियोरैमेटिस फंडामेंटलिस

यह गॉस वेर्के, खंड II, पृष्ठ 47-64 में है

उपरोक्त तीनों के जर्मन अनुवाद निम्नलिखित हैं, जिनमें संख्या सिद्धांत पर डिस्क्विज़िशन्स अरिथमेटिके और गॉस के अन्य पेपर भी हैं।

  • गॉस, कार्ल फ्रेडरिक; मेसर, एच. (जर्मन में अनुवादक) (1965), अन्टरसुचुंगेन उबर होहेरे अरिथमेटिक (डिस्क्विजिशन अरिथमेटिके और संख्या सिद्धांत पर अन्य पेपर) (दूसरा संस्करण), न्यूयॉर्क: चेल्सी, ISBN 0-8284-0191-8

आइसेनस्टीन

  • Eisenstein, फर्डिनेंड गोटथोल्ड (1844), इस थ्योरी डेर ऑस डेन ड्रिटन वुर्जेलन डेर एइनहाइट ज़ुसामेंगेसेटज़ेन ज़हलेन में क्यूबिस्चेन रेस्ट के लिए पारस्परिक पारस्परिकता, जे. रेइन एंज्यू। गणित। 27, पृ. 289-310 (क्रेल्स जर्नल)
  • Eisenstein, फर्डिनेंड गोटथोल्ड (1844), नचत्राग ज़ुम क्यूबिस्चेन रेसिप्रोसिटैट्ससैट्ज़ फर डाई ऑस डेन ड्रिटन वुर्जेलन डेर एइनहाइट ज़ुसामेंगेसेटज़ेन ज़हलेन, क्राइटेरियन डेस क्यूबिसचेन कैरेक्टर्स डेर ज़हल 3 और इहरर टेलर, जे. रेइन एंज्यू। गणित। 28, पृ. 28-35 (क्रेल्स जर्नल)
  • Eisenstein, फर्डिनेंड गोटथोल्ड (1845), अंकगणित पारगमन के बीजगणित का अनुप्रयोग, जे. रेइन एंज्यू। गणित। 29 पृष्ठ 177-184 (क्रेल्स जर्नल)

यह सभी कागजात उनके वर्के के खंड I में हैं।

जैकोबी

  • जैकोबी, कार्ल गुस्ताव जैकब (1827), डे रेसिडुइस क्यूबिसिस कमेंटेटियो न्यूमेरोसा, जे. रेइन एंज्यू। गणित। 2 पृष्ठ 66-69 (क्रेल्स जर्नल)

यह उनके वर्के के खंड VI में है।

आधुनिक लेखक

  • कॉक्स, डेविड ए. (1989), Primes of the form x2 + n y2, न्यूयॉर्क: विले, ISBN 0-471-50654-0
  • आयरलैंड, केनेथ; Rosen, Michael (1990), आधुनिक संख्या सिद्धांत का एक शास्त्रीय परिचय (दूसरा संस्करण), न्यूयॉर्क: स्प्रिंगर, ISBN 0-387-97329-X
  • लेमरमेयर, फ्रांज (2000), पारस्परिकता कानून: यूलर से ईसेनस्टीन तक, बर्लिन: स्प्रिंगर, ISBN 3-540-66957-4

बाहरी संबंध