प्राथमिक वर्ग: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[मॉडल सिद्धांत]] में, [[गणितीय तर्क]] की | [[मॉडल सिद्धांत]] में, [[गणितीय तर्क]] की शाखा, प्राथमिक वर्ग (या स्वयंसिद्ध वर्ग) [[वर्ग (सेट सिद्धांत)|वर्ग (समुच्चय सिद्धांत)]] है जिसमें निश्चित [[प्रथम-क्रम तर्क]] को संतुष्ट करने वाली सभी [[संरचना (गणितीय तर्क)]] शामिल होती है | प्रथम-क्रम [[सिद्धांत (गणितीय तर्क)]]। | ||
== परिभाषा == | == परिभाषा == | ||
किसी [[हस्ताक्षर (तर्क)]] σ की संरचना (गणितीय तर्क) के | किसी [[हस्ताक्षर (तर्क)]] σ की संरचना (गणितीय तर्क) के वर्ग (समुच्चय सिद्धांत) K को 'प्राथमिक वर्ग' कहा जाता है यदि हस्ताक्षर σ का प्रथम-क्रम तर्क|प्रथम-क्रम सिद्धांत (गणितीय तर्क) T है, जैसे कि K में T के सभी मॉडल शामिल हैं, यानी, सभी σ-संरचनाएं जो T को संतुष्ट करती हैं। यदि T को एकल प्रथम-क्रम वाक्य वाले सिद्धांत के रूप में चुना जा सकता है, तब K को 'बुनियादी प्राथमिक वर्ग' कहा जाता है। | ||
अधिक आम तौर पर, K | अधिक आम तौर पर, K [[छद्मप्राथमिक वर्ग]] है|छद्म-प्राथमिक वर्ग यदि हस्ताक्षर का प्रथम-क्रम सिद्धांत T है जो σ का विस्तार करता है, जैसे कि K में सभी σ-संरचनाएँ शामिल हैं जो T के मॉडल के σ में कम हो जाती हैं। अन्य में शब्द, σ-संरचनाओं का वर्ग K छद्म-प्राथमिक है यदि और केवल यदि कोई प्राथमिक वर्ग K<nowiki>'</nowiki> है जैसे कि K में K में संरचनाओं के σ में सटीक रूप से कटौती शामिल है </नोविकी>. | ||
स्पष्ट कारणों से, प्रारंभिक कक्षाओं को 'प्रथम-क्रम तर्क में स्वयंसिद्ध' भी कहा जाता है, और बुनियादी प्रारंभिक कक्षाओं को 'प्रथम-क्रम तर्क में अंतिम रूप से स्वयंसिद्ध' भी कहा जाता है। | स्पष्ट कारणों से, प्रारंभिक कक्षाओं को 'प्रथम-क्रम तर्क में स्वयंसिद्ध' भी कहा जाता है, और बुनियादी प्रारंभिक कक्षाओं को 'प्रथम-क्रम तर्क में अंतिम रूप से स्वयंसिद्ध' भी कहा जाता है। यह परिभाषाएँ स्पष्ट रूप से अन्य तर्कों तक फैली हुई हैं, लेकिन चूँकि प्रथम-क्रम का मामला अब तक का सबसे महत्वपूर्ण है, 'स्वयंसिद्ध' इस मामले को स्पष्ट रूप से संदर्भित करता है जब कोई अन्य तर्क निर्दिष्ट नहीं किया जाता है। | ||
== विरोधाभासी और वैकल्पिक शब्दावली == | == विरोधाभासी और वैकल्पिक शब्दावली == | ||
जबकि उपरोक्त आजकल मॉडल सिद्धांत में मानक शब्दावली है| अनंत मॉडल सिद्धांत, थोड़ी | जबकि उपरोक्त आजकल मॉडल सिद्धांत में मानक शब्दावली है| अनंत मॉडल सिद्धांत, थोड़ी भिन्न पिछली परिभाषाएँ अभी भी [[परिमित मॉडल सिद्धांत]] में उपयोग में हैं, जहां प्राथमिक वर्ग को Δ-प्राथमिक वर्ग कहा जा सकता है, और प्राथमिक वर्ग और प्रथम-क्रम स्वयंसिद्ध वर्ग शब्द बुनियादी प्राथमिक वर्गों (एबिंगहॉस) के लिए आरक्षित हैं और अन्य. 1994, एबिंगहॉस और फ़्लम 2005)। होजेस प्राथमिक कक्षाओं को स्वयंसिद्ध कक्षाएं कहते हैं, और वह बुनियादी प्राथमिक कक्षाओं को निश्चित कक्षाओं के रूप में संदर्भित करते हैं। वह संबंधित समानार्थक शब्द EC का भी उपयोग करता है<math>_\Delta</math> क्लास और ईसी क्लास (हॉजेस, 1993)। | ||
इस भिन्न शब्दावली के अच्छे कारण हैं। सामान्य मॉडल सिद्धांत में विचार किए जाने वाले हस्ताक्षर (तर्क) अक्सर अनंत होते हैं, जबकि | इस भिन्न शब्दावली के अच्छे कारण हैं। सामान्य मॉडल सिद्धांत में विचार किए जाने वाले हस्ताक्षर (तर्क) अक्सर अनंत होते हैं, जबकि प्रथम-क्रम तर्क|प्रथम-क्रम [[वाक्य (गणितीय तर्क)]] में केवल सीमित रूप से अनेक प्रतीक होते हैं। इसलिए, बुनियादी प्रारंभिक कक्षाएं अनंत मॉडल सिद्धांत में असामान्य हैं। दूसरी ओर, परिमित मॉडल सिद्धांत लगभग विशेष रूप से परिमित हस्ताक्षरों से संबंधित है। यह देखना आसान है कि प्रत्येक परिमित हस्ताक्षर σ के लिए और समरूपता के तहत बंद σ-संरचनाओं के प्रत्येक वर्ग ''K'' के लिए प्राथमिक वर्ग है <math>K'</math> σ-संरचनाओं की ऐसी कि K और <math>K'</math> बिल्कुल समान परिमित संरचनाएँ शामिल हैं। इसलिए, प्रारंभिक कक्षाएं परिमित मॉडल सिद्धांतकारों के लिए बहुत दिलचस्प नहीं हैं। | ||
== धारणाओं के | == धारणाओं के मध्य आसान संबंध == | ||
स्पष्ट रूप से प्रत्येक बुनियादी प्राथमिक कक्षा | स्पष्ट रूप से प्रत्येक बुनियादी प्राथमिक कक्षा प्राथमिक कक्षा है, और प्रत्येक प्रारंभिक कक्षा छद्म-प्राथमिक कक्षा है। इसके अलावा, [[सघनता प्रमेय]] के आसान परिणाम के रूप में, σ-संरचनाओं का वर्ग बुनियादी प्राथमिक है यदि और केवल यदि यह प्राथमिक है और इसका पूरक भी प्राथमिक है। | ||
== उदाहरण == | == उदाहरण == | ||
=== एक बुनियादी प्रारंभिक कक्षा === | === एक बुनियादी प्रारंभिक कक्षा === | ||
मान लीजिए कि σ | मान लीजिए कि σ हस्ताक्षर है जिसमें केवल [[एकात्मक कार्य]] प्रतीक f शामिल है। σ-संरचनाओं का वर्ग K जिसमें f इंजेक्शन है (गणित)|वन-टू-वन बुनियादी प्राथमिक वर्ग है। यह सिद्धांत टी द्वारा प्रमाणित है, जिसमें केवल वाक्य शामिल है | ||
:<math>\forall x\forall y( (f(x)=f(y)) \to (x=y) )</math>. | :<math>\forall x\forall y( (f(x)=f(y)) \to (x=y) )</math>. | ||
=== एक प्राथमिक, बुनियादी छद्मप्राथमिक वर्ग जो बुनियादी प्राथमिक नहीं है === | === एक प्राथमिक, बुनियादी छद्मप्राथमिक वर्ग जो बुनियादी प्राथमिक नहीं है === | ||
मान लीजिए σ | मान लीजिए σ मनमाना हस्ताक्षर है। सभी अनंत σ-संरचनाओं का वर्ग K प्राथमिक है। इसे देखने के लिए वाक्यों पर विचार करें | ||
:<math>\rho_2={}</math> | :<math>\rho_2={}</math> <math>\exist x_1\exist x_2(x_1 \not =x_2)</math>, | ||
:<math>\rho_3={}</math> | :<math>\rho_3={}</math> <math>\exist x_1\exist x_2\exist x_3((x_1 \not =x_2) \land (x_1 \not =x_3) \land (x_2 \not =x_3))</math>, | ||
और इसी तरह। ( | और इसी तरह। (तब वाक्य <math>\rho_n</math> कहता है कि कम से कम n तत्व हैं।) अनंत σ-संरचनाएं सटीक रूप से सिद्धांत के मॉडल हैं | ||
:<math>T_\infty=\{\rho_2, \rho_3, \rho_4, \dots\}</math>. | :<math>T_\infty=\{\rho_2, \rho_3, \rho_4, \dots\}</math>. | ||
लेकिन K | लेकिन K बुनियादी प्रारंभिक कक्षा नहीं है। अन्यथा अनंत σ-संरचनाएँ बिल्कुल वही होंगी जो निश्चित प्रथम-क्रम वाक्य τ को संतुष्ट करती हैं। लेकिन फिर समुच्चय | ||
<math>\{\neg\tau, \rho_2, \rho_3, \rho_4, \dots\}</math> असंगत होगा. सघनता प्रमेय द्वारा, कुछ प्राकृत संख्या n समुच्चय के लिए <math>\{\neg\tau, \rho_2, \rho_3, \rho_4, \dots, \rho_n\}</math> असंगत होगा. लेकिन यह बेतुका है, क्योंकि यह सिद्धांत किसी भी परिमित σ-संरचना से संतुष्ट है <math>n+1</math> या अधिक तत्व. | <math>\{\neg\tau, \rho_2, \rho_3, \rho_4, \dots\}</math> असंगत होगा. सघनता प्रमेय द्वारा, कुछ प्राकृत संख्या n समुच्चय के लिए <math>\{\neg\tau, \rho_2, \rho_3, \rho_4, \dots, \rho_n\}</math> असंगत होगा. लेकिन यह बेतुका है, क्योंकि यह सिद्धांत किसी भी परिमित σ-संरचना से संतुष्ट है <math>n+1</math> या अधिक तत्व. | ||
हालाँकि, हस्ताक्षर σ' = σ में | हालाँकि, हस्ताक्षर σ' = σ में बुनियादी प्राथमिक वर्ग K<nowiki>'</nowiki> है <math>\cup</math> {f}, जहां f यूनरी फलन प्रतीक है, जैसे कि K में K<nowiki>'</nowiki> में σ'-संरचनाओं के σ में कटौती शामिल है। K<nowiki>'</nowiki> एकल वाक्य द्वारा स्वयंसिद्ध है <math>(\forall x\forall y(f(x) = f(y) \rightarrow x=y) \land \exists y\neg\exists x(y = f(x))),</math>, जो व्यक्त करता है कि एफ विशेषण है लेकिन विशेषण नहीं है। इसलिए, K प्राथमिक है और जिसे बुनियादी छद्म-प्राथमिक कहा जा सकता है, लेकिन बुनियादी प्राथमिक नहीं। | ||
=== छद्म-प्राथमिक वर्ग जो गैर-प्राथमिक है === | === छद्म-प्राथमिक वर्ग जो गैर-प्राथमिक है === | ||
अंत में, हस्ताक्षर σ पर विचार करें जिसमें एकल एकल संबंध प्रतीक P शामिल है। प्रत्येक σ-संरचना | अंत में, हस्ताक्षर σ पर विचार करें जिसमें एकल एकल संबंध प्रतीक P शामिल है। प्रत्येक σ-संरचना समुच्चय का दो उपसमूहों में विभाजन है: वह तत्व जिनके लिए P धारण करता है, और बाकी। मान लीजिए कि K सभी σ-संरचनाओं का वर्ग है जिसके लिए इन दो उपसमुच्चयों की [[प्रमुखता]] समान है, अर्थात, उनके मध्य आक्षेप है। यह वर्ग प्राथमिक नहीं है, क्योंकि σ-संरचना जिसमें P और उसके पूरक दोनों की प्राप्ति का समुच्चय गणनीय रूप से अनंत है, σ-संरचना के समान प्रथम-क्रम वाक्यों को सटीक रूप से संतुष्ट करता है जिसमें समुच्चयों में से गणनीय रूप से अनंत है और अन्य बेशुमार है. | ||
अब हस्ताक्षर पर विचार करें <math>\sigma'</math>, जिसमें | अब हस्ताक्षर पर विचार करें <math>\sigma'</math>, जिसमें यूनरी फलन प्रतीक f के साथ P भी शामिल है। होने देना <math>K'</math> सभी का वर्ग हो <math>\sigma'</math>-संरचनाएँ ऐसी हैं कि f आक्षेप है और P, x के लिए धारण करता है यदि P, f(x) के लिए धारण नहीं करता है। <math>K'</math> स्पष्ट रूप से प्रारंभिक वर्ग है, और इसलिए K छद्म-प्राथमिक वर्ग का उदाहरण है जो प्राथमिक नहीं है। | ||
=== गैर-छद्म-प्राथमिक वर्ग=== | === गैर-छद्म-प्राथमिक वर्ग=== | ||
मान लीजिए σ | मान लीजिए σ मनमाना हस्ताक्षर है। सभी परिमित σ-संरचनाओं का वर्ग K प्राथमिक नहीं है, क्योंकि (जैसा कि ऊपर दिखाया गया है) इसका पूरक प्राथमिक है लेकिन बुनियादी प्राथमिक नहीं है। चूँकि यह σ का विस्तार करने वाले प्रत्येक हस्ताक्षर के लिए भी सत्य है, K छद्म-प्राथमिक वर्ग भी नहीं है। | ||
यह उदाहरण कहीं अधिक अभिव्यंजक दूसरे-क्रम तर्क के विपरीत प्रथम-क्रम तर्क में निहित अभिव्यंजक शक्ति की सीमाओं को प्रदर्शित करता है। हालाँकि, द्वितीय-क्रम तर्क, प्रथम-क्रम तर्क के | यह उदाहरण कहीं अधिक अभिव्यंजक दूसरे-क्रम तर्क के विपरीत प्रथम-क्रम तर्क में निहित अभिव्यंजक शक्ति की सीमाओं को प्रदर्शित करता है। हालाँकि, द्वितीय-क्रम तर्क, प्रथम-क्रम तर्क के अनेक वांछनीय गुणों को बनाए रखने में विफल रहता है, जैसे कि गोडेल की पूर्णता_प्रमेय और कॉम्पैक्टनेस प्रमेय प्रमेय। | ||
== संदर्भ == | == संदर्भ == |
Revision as of 21:06, 19 July 2023
मॉडल सिद्धांत में, गणितीय तर्क की शाखा, प्राथमिक वर्ग (या स्वयंसिद्ध वर्ग) वर्ग (समुच्चय सिद्धांत) है जिसमें निश्चित प्रथम-क्रम तर्क को संतुष्ट करने वाली सभी संरचना (गणितीय तर्क) शामिल होती है | प्रथम-क्रम सिद्धांत (गणितीय तर्क)।
परिभाषा
किसी हस्ताक्षर (तर्क) σ की संरचना (गणितीय तर्क) के वर्ग (समुच्चय सिद्धांत) K को 'प्राथमिक वर्ग' कहा जाता है यदि हस्ताक्षर σ का प्रथम-क्रम तर्क|प्रथम-क्रम सिद्धांत (गणितीय तर्क) T है, जैसे कि K में T के सभी मॉडल शामिल हैं, यानी, सभी σ-संरचनाएं जो T को संतुष्ट करती हैं। यदि T को एकल प्रथम-क्रम वाक्य वाले सिद्धांत के रूप में चुना जा सकता है, तब K को 'बुनियादी प्राथमिक वर्ग' कहा जाता है।
अधिक आम तौर पर, K छद्मप्राथमिक वर्ग है|छद्म-प्राथमिक वर्ग यदि हस्ताक्षर का प्रथम-क्रम सिद्धांत T है जो σ का विस्तार करता है, जैसे कि K में सभी σ-संरचनाएँ शामिल हैं जो T के मॉडल के σ में कम हो जाती हैं। अन्य में शब्द, σ-संरचनाओं का वर्ग K छद्म-प्राथमिक है यदि और केवल यदि कोई प्राथमिक वर्ग K' है जैसे कि K में K में संरचनाओं के σ में सटीक रूप से कटौती शामिल है </नोविकी>.
स्पष्ट कारणों से, प्रारंभिक कक्षाओं को 'प्रथम-क्रम तर्क में स्वयंसिद्ध' भी कहा जाता है, और बुनियादी प्रारंभिक कक्षाओं को 'प्रथम-क्रम तर्क में अंतिम रूप से स्वयंसिद्ध' भी कहा जाता है। यह परिभाषाएँ स्पष्ट रूप से अन्य तर्कों तक फैली हुई हैं, लेकिन चूँकि प्रथम-क्रम का मामला अब तक का सबसे महत्वपूर्ण है, 'स्वयंसिद्ध' इस मामले को स्पष्ट रूप से संदर्भित करता है जब कोई अन्य तर्क निर्दिष्ट नहीं किया जाता है।
विरोधाभासी और वैकल्पिक शब्दावली
जबकि उपरोक्त आजकल मॉडल सिद्धांत में मानक शब्दावली है| अनंत मॉडल सिद्धांत, थोड़ी भिन्न पिछली परिभाषाएँ अभी भी परिमित मॉडल सिद्धांत में उपयोग में हैं, जहां प्राथमिक वर्ग को Δ-प्राथमिक वर्ग कहा जा सकता है, और प्राथमिक वर्ग और प्रथम-क्रम स्वयंसिद्ध वर्ग शब्द बुनियादी प्राथमिक वर्गों (एबिंगहॉस) के लिए आरक्षित हैं और अन्य. 1994, एबिंगहॉस और फ़्लम 2005)। होजेस प्राथमिक कक्षाओं को स्वयंसिद्ध कक्षाएं कहते हैं, और वह बुनियादी प्राथमिक कक्षाओं को निश्चित कक्षाओं के रूप में संदर्भित करते हैं। वह संबंधित समानार्थक शब्द EC का भी उपयोग करता है क्लास और ईसी क्लास (हॉजेस, 1993)।
इस भिन्न शब्दावली के अच्छे कारण हैं। सामान्य मॉडल सिद्धांत में विचार किए जाने वाले हस्ताक्षर (तर्क) अक्सर अनंत होते हैं, जबकि प्रथम-क्रम तर्क|प्रथम-क्रम वाक्य (गणितीय तर्क) में केवल सीमित रूप से अनेक प्रतीक होते हैं। इसलिए, बुनियादी प्रारंभिक कक्षाएं अनंत मॉडल सिद्धांत में असामान्य हैं। दूसरी ओर, परिमित मॉडल सिद्धांत लगभग विशेष रूप से परिमित हस्ताक्षरों से संबंधित है। यह देखना आसान है कि प्रत्येक परिमित हस्ताक्षर σ के लिए और समरूपता के तहत बंद σ-संरचनाओं के प्रत्येक वर्ग K के लिए प्राथमिक वर्ग है σ-संरचनाओं की ऐसी कि K और बिल्कुल समान परिमित संरचनाएँ शामिल हैं। इसलिए, प्रारंभिक कक्षाएं परिमित मॉडल सिद्धांतकारों के लिए बहुत दिलचस्प नहीं हैं।
धारणाओं के मध्य आसान संबंध
स्पष्ट रूप से प्रत्येक बुनियादी प्राथमिक कक्षा प्राथमिक कक्षा है, और प्रत्येक प्रारंभिक कक्षा छद्म-प्राथमिक कक्षा है। इसके अलावा, सघनता प्रमेय के आसान परिणाम के रूप में, σ-संरचनाओं का वर्ग बुनियादी प्राथमिक है यदि और केवल यदि यह प्राथमिक है और इसका पूरक भी प्राथमिक है।
उदाहरण
एक बुनियादी प्रारंभिक कक्षा
मान लीजिए कि σ हस्ताक्षर है जिसमें केवल एकात्मक कार्य प्रतीक f शामिल है। σ-संरचनाओं का वर्ग K जिसमें f इंजेक्शन है (गणित)|वन-टू-वन बुनियादी प्राथमिक वर्ग है। यह सिद्धांत टी द्वारा प्रमाणित है, जिसमें केवल वाक्य शामिल है
- .
एक प्राथमिक, बुनियादी छद्मप्राथमिक वर्ग जो बुनियादी प्राथमिक नहीं है
मान लीजिए σ मनमाना हस्ताक्षर है। सभी अनंत σ-संरचनाओं का वर्ग K प्राथमिक है। इसे देखने के लिए वाक्यों पर विचार करें
- ,
- ,
और इसी तरह। (तब वाक्य कहता है कि कम से कम n तत्व हैं।) अनंत σ-संरचनाएं सटीक रूप से सिद्धांत के मॉडल हैं
- .
लेकिन K बुनियादी प्रारंभिक कक्षा नहीं है। अन्यथा अनंत σ-संरचनाएँ बिल्कुल वही होंगी जो निश्चित प्रथम-क्रम वाक्य τ को संतुष्ट करती हैं। लेकिन फिर समुच्चय असंगत होगा. सघनता प्रमेय द्वारा, कुछ प्राकृत संख्या n समुच्चय के लिए असंगत होगा. लेकिन यह बेतुका है, क्योंकि यह सिद्धांत किसी भी परिमित σ-संरचना से संतुष्ट है या अधिक तत्व.
हालाँकि, हस्ताक्षर σ' = σ में बुनियादी प्राथमिक वर्ग K' है {f}, जहां f यूनरी फलन प्रतीक है, जैसे कि K में K' में σ'-संरचनाओं के σ में कटौती शामिल है। K' एकल वाक्य द्वारा स्वयंसिद्ध है , जो व्यक्त करता है कि एफ विशेषण है लेकिन विशेषण नहीं है। इसलिए, K प्राथमिक है और जिसे बुनियादी छद्म-प्राथमिक कहा जा सकता है, लेकिन बुनियादी प्राथमिक नहीं।
छद्म-प्राथमिक वर्ग जो गैर-प्राथमिक है
अंत में, हस्ताक्षर σ पर विचार करें जिसमें एकल एकल संबंध प्रतीक P शामिल है। प्रत्येक σ-संरचना समुच्चय का दो उपसमूहों में विभाजन है: वह तत्व जिनके लिए P धारण करता है, और बाकी। मान लीजिए कि K सभी σ-संरचनाओं का वर्ग है जिसके लिए इन दो उपसमुच्चयों की प्रमुखता समान है, अर्थात, उनके मध्य आक्षेप है। यह वर्ग प्राथमिक नहीं है, क्योंकि σ-संरचना जिसमें P और उसके पूरक दोनों की प्राप्ति का समुच्चय गणनीय रूप से अनंत है, σ-संरचना के समान प्रथम-क्रम वाक्यों को सटीक रूप से संतुष्ट करता है जिसमें समुच्चयों में से गणनीय रूप से अनंत है और अन्य बेशुमार है.
अब हस्ताक्षर पर विचार करें , जिसमें यूनरी फलन प्रतीक f के साथ P भी शामिल है। होने देना सभी का वर्ग हो -संरचनाएँ ऐसी हैं कि f आक्षेप है और P, x के लिए धारण करता है यदि P, f(x) के लिए धारण नहीं करता है। स्पष्ट रूप से प्रारंभिक वर्ग है, और इसलिए K छद्म-प्राथमिक वर्ग का उदाहरण है जो प्राथमिक नहीं है।
गैर-छद्म-प्राथमिक वर्ग
मान लीजिए σ मनमाना हस्ताक्षर है। सभी परिमित σ-संरचनाओं का वर्ग K प्राथमिक नहीं है, क्योंकि (जैसा कि ऊपर दिखाया गया है) इसका पूरक प्राथमिक है लेकिन बुनियादी प्राथमिक नहीं है। चूँकि यह σ का विस्तार करने वाले प्रत्येक हस्ताक्षर के लिए भी सत्य है, K छद्म-प्राथमिक वर्ग भी नहीं है।
यह उदाहरण कहीं अधिक अभिव्यंजक दूसरे-क्रम तर्क के विपरीत प्रथम-क्रम तर्क में निहित अभिव्यंजक शक्ति की सीमाओं को प्रदर्शित करता है। हालाँकि, द्वितीय-क्रम तर्क, प्रथम-क्रम तर्क के अनेक वांछनीय गुणों को बनाए रखने में विफल रहता है, जैसे कि गोडेल की पूर्णता_प्रमेय और कॉम्पैक्टनेस प्रमेय प्रमेय।
संदर्भ
- Chang, Chen Chung; Keisler, H. Jerome (1990) [1973], मॉडल सिद्धांत, तर्क और गणित की नींव में अध्ययन (3rd ed.), Elsevier, ISBN 978-0-444-88054-3
- Ebbinghaus, हाइन्ज़-डीटर; Flum, Jörg (2005) [1995], परिमित मॉडल सिद्धांत, Berlin, New York: स्प्रिंगर-वेरलाग, p. 360, ISBN 978-3-540-28787-2
- एब्बिनघास, हाइन्ज़-डीटर; फ़्लम, Jörg; थॉमस, वोल्फगैंग (1994), गणितीय तर्क (2nd ed.), बर्लिन, न्यूयॉर्क: स्प्रिंगर-वेरलाग, ISBN 978-0-387-94258-2
{{citation}}
: Invalid|url-access=पंजीकरण
(help) - होजेस, विल्फ्रिड (1997), एक छोटा मॉडल सिद्धांत, कैम्ब्रिज यूनिवर्सिटी प्रेस, ISBN 978-0-521-58713-6
- पोइज़ैट, ब्रूनो (2000), मॉडल थ्योरी में एक पाठ्यक्रम: समसामयिक गणितीय तर्क का परिचय, बर्लिन, न्यूयॉर्क: स्प्रिंगर-वेरलाग, ISBN 978-0-387-98655-5
{{citation}}
: Invalid|url-access=पंजीकरण
(help)