प्राथमिक वर्ग: Difference between revisions
m (16 revisions imported from alpha:प्राथमिक_वर्ग) |
No edit summary |
||
Line 58: | Line 58: | ||
* {{Citation | last1=पोइज़ैट | first1=ब्रूनो | title=मॉडल थ्योरी में एक पाठ्यक्रम: समसामयिक गणितीय तर्क का परिचय | publisher=[[स्प्रिंगर-वेरलाग]] | location=बर्लिन, न्यूयॉर्क | isbn=978-0-387-98655-5 | year=2000 | url-access=पंजीकरण | url=https://archive.org/details/courseinmodelthe0000poiz }} | * {{Citation | last1=पोइज़ैट | first1=ब्रूनो | title=मॉडल थ्योरी में एक पाठ्यक्रम: समसामयिक गणितीय तर्क का परिचय | publisher=[[स्प्रिंगर-वेरलाग]] | location=बर्लिन, न्यूयॉर्क | isbn=978-0-387-98655-5 | year=2000 | url-access=पंजीकरण | url=https://archive.org/details/courseinmodelthe0000poiz }} | ||
{{DEFAULTSORT:Elementary Class}} | {{DEFAULTSORT:Elementary Class}} | ||
[[Category:CS1 errors|Elementary Class]] | |||
[[Category:Created On 07/07/2023|Elementary Class]] | |||
[[Category: | [[Category:Machine Translated Page|Elementary Class]] | ||
[[Category:Created On 07/07/2023]] | [[Category:Templates Vigyan Ready|Elementary Class]] | ||
[[Category:Vigyan Ready]] | [[Category:मॉडल सिद्धांत|Elementary Class]] |
Latest revision as of 12:17, 31 July 2023
मॉडल सिद्धांत में, गणितीय तर्क की शाखा, प्राथमिक वर्ग (या स्वयंसिद्ध वर्ग) वर्ग (समुच्चय सिद्धांत) है जिसमें निश्चित प्रथम-क्रम सिद्धांत को संतुष्ट करने वाली सभी संरचनाएं सम्मिलित होती हैंं।
परिभाषा
किसी हस्ताक्षर (तर्क) σ की संरचनाओं के वर्ग (समुच्चय सिद्धांत) K को 'प्राथमिक वर्ग' कहा जाता है यदि हस्ताक्षर σ का प्रथम-क्रम सिद्धांत T है, जैसे कि K में T के सभी मॉडल सम्मिलित हैं, अर्थात, सभी σ-संरचनाएं जो T को संतुष्ट करती हैं। यदि T एकल प्रथम-क्रम वाक्य वाले सिद्धांत के रूप में चुना जा सकता है, तब K को 'मूलभूत प्राथमिक वर्ग' कहा जाता है।
अधिक आम तौर पर, K छद्म-प्राथमिक वर्ग है यदि हस्ताक्षर का प्रथम-क्रम सिद्धांत T है जो σ का विस्तार करता है, जैसे कि K में सभी σ-संरचनाएँ सम्मिलित हैं जो T के मॉडल के σ में कम हो जाती हैं। अन्य में शब्द, σ-संरचनाओं का वर्ग K छद्म-प्राथमिक है यदि और केवल यदि कोई प्राथमिक वर्ग K' है जैसे कि K में K' में संरचनाओं के σ में त्रुटिहीन रूप से कटौती सम्मिलित है।
स्पष्ट कारणों से, प्रारंभिक वर्गओं को 'प्रथम-क्रम तर्क में स्वयंसिद्ध' भी कहा जाता है, और मूलभूत प्रारंभिक वर्गओं को 'प्रथम-क्रम तर्क में अंतिम रूप से स्वयंसिद्ध' भी कहा जाता है। इस प्रकार यह परिभाषाएँ स्पष्ट रूप से अन्य तर्कों तक फैली हुई हैं, किन्तु चूँकि प्रथम-क्रम का मामला वर्तमान तक का सबसे महत्वपूर्ण है, 'स्वयंसिद्ध' इस स्थितियों को स्पष्ट रूप से संदर्भित करता है जब कोई अन्य तर्क निर्दिष्ट नहीं किया जाता है।
विरोधाभासी और वैकल्पिक शब्दावली
जबकि उपरोक्त आजकल "अनंत" मॉडल सिद्धांत में मानक शब्दावली है‚ थोड़ी भिन्न पिछली परिभाषाएँ अभी भी परिमित मॉडल सिद्धांत में उपयोग में हैं, इस प्रकार जहां प्राथमिक वर्ग को Δ-प्राथमिक वर्ग कहा जा सकता है, और शब्द प्राथमिक वर्ग और प्रथम-क्रम स्वयंसिद्ध वर्ग शब्द मूलभूत प्राथमिक वर्गों (एबिंगहॉस) के लिए आरक्षित हैं और अन्य. 1994, एबिंगहॉस और फ़्लम 2005) हैं। इस प्रकार होजेस प्राथमिक वर्गओं को स्वयंसिद्ध वर्गएं कहते हैं, और वह मूलभूत प्राथमिक वर्गओं को निश्चित वर्गओं के रूप में संदर्भित करते हैं। इस प्रकार वह संबंधित समानार्थक शब्द EC वर्गऔर EC वर्ग (हॉजेस, 1993) का भी उपयोग करता है।
इस भिन्न शब्दावली के अच्छे कारण हैं। सामान्य मॉडल सिद्धांत में हस्ताक्षर पर विचार किया जाता है वे अधिकांशतः अनंत होते हैं, जबकि प्रथम-क्रम वाक्य (गणितीय तर्क) में केवल सीमित रूप से अनेक प्रतीक होते हैं। इसलिए, मूलभूत प्रारंभिक वर्गएं अनंत मॉडल सिद्धांत में असामान्य हैं। दूसरी ओर, परिमित मॉडल सिद्धांत लगभग विशेष रूप से परिमित हस्ताक्षरों से संबंधित है। इस प्रकार यह देखना आसान है कि प्रत्येक परिमित हस्ताक्षरों से संबंधित है। यह देखना आसान है कि प्रत्येक परिमित हस्ताक्षर σ के लिए और समरूपता के अनुसार बंद σ-संरचनाओं के प्रत्येक वर्ग K के लिए प्राथमिक वर्ग है σ-संरचनाओं की ऐसी कि K और बिल्कुल समान परिमित संरचनाएँ सम्मिलित हैं। इसलिए, प्रारंभिक वर्गएं परिमित मॉडल सिद्धांतकारों के लिए बहुत रोचक नहीं हैं।
धारणाओं के मध्य आसान संबंध
स्पष्ट रूप से प्रत्येक मूलभूत प्राथमिक वर्ग एक छद्म-प्राथमिक वर्ग हैं‚ और प्रत्येक प्रारंभिक वर्ग छद्म-प्राथमिक वर्ग है। इस प्रकार इसके अतिरिक्त, कॉम्पैक्टनेस प्रमेय के आसान परिणाम के रूप में, σ-संरचनाओं का वर्ग मूलभूत प्राथमिक है यदि और केवल यदि यह प्राथमिक है और इसका पूरक भी प्राथमिक है।
उदाहरण
एक मूलभूत प्रारंभिक वर्ग
मान लीजिए कि σ हस्ताक्षर है जिसमें केवल एकात्मक कार्य प्रतीक f सम्मिलित है। इस प्रकार σ-संरचनाओं का वर्ग K जिसमें f इंजेक्शन है (गणित)|वन-टू-वन मूलभूत प्राथमिक वर्ग है। यह सिद्धांत टी द्वारा प्रमाणित है, जिसमें केवल वाक्य सम्मिलित है
- .
एक प्राथमिक, मूलभूत छद्मप्राथमिक वर्ग जो मूलभूत प्राथमिक नहीं है
मान लीजिए σ एक इच्छानुसार हस्ताक्षर है। सभी अनंत σ-संरचनाओं का वर्ग K प्राथमिक है। इसे देखने के लिए वाक्यों पर विचार करें
- ,
- ,
और इसी तरह। (तब वाक्य कहता है कि कम से कम n तत्व हैं।) अनंत σ-संरचनाएं त्रुटिहीन रूप से सिद्धांत के मॉडल हैं
- .
किन्तु K मूलभूत प्रारंभिक वर्ग नहीं है। अन्यथा अनंत σ-संरचनाएँ बिल्कुल वही होंगी जो निश्चित प्रथम-क्रम वाक्य τ को संतुष्ट करती हैं। किन्तु फिर समुच्चय
असंगत होगा‚ सघनता प्रमेय द्वारा, कुछ प्राकृत संख्या n समुच्चय के लिए असंगत होगा‚ किन्तु यह बेतुका है, क्योंकि यह सिद्धांत या अधिक तत्वों वाली किसी भी परिमित σ-संरचना से संतुष्ट है
यद्यपि, हस्ताक्षर σ' = σ में मूलभूत प्राथमिक वर्ग K' है {f}, जहां f यूनरी फलन प्रतीक है, जैसे कि K में K' में σ'-संरचनाओं के σ में कटौती सम्मिलित है। इस प्रकार K' एकल वाक्य द्वारा स्वयंसिद्ध है , जो व्यक्त करता है कि f विशेषण है किन्तु विशेषण नहीं है। इसलिए, K प्राथमिक है और जिसे मूलभूत छद्म-प्राथमिक कहा जा सकता है, किन्तु मूलभूत प्राथमिक नहीं।
छद्म-प्राथमिक वर्ग जो गैर-प्राथमिक है
अंत में, हस्ताक्षर σ पर विचार करें जिसमें एकल एकल संबंध प्रतीक P सम्मिलित है। प्रत्येक σ-संरचना को दो उपसमूहों में विभाजित किया गया है: वह तत्व जिनके लिए P धारण करता है, और बाकी मान लीजिए कि K सभी σ-संरचनाओं का वर्ग है जिसके लिए इन दो उपसमुच्चयों की प्रमुखता समान है, अर्थात, उनके मध्य आक्षेप है। इस प्रकार यह वर्ग प्राथमिक नहीं है, क्योंकि σ-संरचना जिसमें P और उसके पूरक दोनों की प्राप्ति का समुच्चय गणनीय रूप से अनंत है, σ-संरचना के समान प्रथम-क्रम वाक्यों को त्रुटिहीन रूप से संतुष्ट करता है जिसमें समुच्चयों में से गणनीय रूप से अनंत है और अन्य बेशुमार है.
वर्तमान हस्ताक्षर पर विचार करें , जिसमें यूनरी फलन प्रतीक f के साथ P भी सम्मिलित है। होने देना सभी का वर्ग हो -संरचनाएँ ऐसी हैं कि f आक्षेप है और P, x के लिए धारण करता है यदि P, f(x) के लिए धारण नहीं करता है। स्पष्ट रूप से प्रारंभिक वर्ग है, और इसलिए K छद्म-प्राथमिक वर्ग का उदाहरण है जो प्राथमिक नहीं है।
गैर-छद्म-प्राथमिक वर्ग
मान लीजिए σ इच्छानुसार हस्ताक्षर है। सभी परिमित σ-संरचनाओं का वर्ग K प्राथमिक नहीं है, क्योंकि (जैसा कि ऊपर दिखाया गया है) इसका पूरक प्राथमिक है किन्तु मूलभूत प्राथमिक नहीं है। इस प्रकार चूँकि यह σ का विस्तार करने वाले प्रत्येक हस्ताक्षर के लिए भी सत्य है, K छद्म-प्राथमिक वर्ग भी नहीं है।
यह उदाहरण कहीं अधिक अभिव्यंजक दूसरे-क्रम तर्क के विपरीत प्रथम-क्रम तर्क में निहित अभिव्यंजक शक्ति की सीमाओं को प्रदर्शित करता है। इस प्रकार यद्यपि, द्वितीय-क्रम तर्क, प्रथम-क्रम तर्क के अनेक वांछनीय गुणों, जैसे पूर्णता और सघनता प्रमेय, को बनाए रखने में विफल रहता है।
संदर्भ
- Chang, Chen Chung; Keisler, H. Jerome (1990) [1973], मॉडल सिद्धांत, तर्क और गणित की नींव में अध्ययन (3rd ed.), Elsevier, ISBN 978-0-444-88054-3
- Ebbinghaus, हाइन्ज़-डीटर; Flum, Jörg (2005) [1995], परिमित मॉडल सिद्धांत, Berlin, New York: स्प्रिंगर-वेरलाग, p. 360, ISBN 978-3-540-28787-2
- एब्बिनघास, हाइन्ज़-डीटर; फ़्लम, Jörg; थॉमस, वोल्फगैंग (1994), गणितीय तर्क (2nd ed.), बर्लिन, न्यूयॉर्क: स्प्रिंगर-वेरलाग, ISBN 978-0-387-94258-2
{{citation}}
: Invalid|url-access=पंजीकरण
(help) - होजेस, विल्फ्रिड (1997), एक छोटा मॉडल सिद्धांत, कैम्ब्रिज यूनिवर्सिटी प्रेस, ISBN 978-0-521-58713-6
- पोइज़ैट, ब्रूनो (2000), मॉडल थ्योरी में एक पाठ्यक्रम: समसामयिक गणितीय तर्क का परिचय, बर्लिन, न्यूयॉर्क: स्प्रिंगर-वेरलाग, ISBN 978-0-387-98655-5
{{citation}}
: Invalid|url-access=पंजीकरण
(help)