द्विचर द्विघात रूप: Difference between revisions
No edit summary |
No edit summary |
||
Line 66: | Line 66: | ||
पूर्णांक समाधान नहीं है। यह देखने के लिए कि ऐसा क्यों है, हम ध्यान देते हैं <math>x^2 \geq 4</math> जब तक <math>x = -1, 0</math> या <math>1</math> होता है। इस प्रकार, <math>x^2+y^2</math> जब तक 3 से अधिक न हो जाए <math>(x,y)</math> के साथ नौ जोड़ियों में से कोई है <math>x</math> एवं <math>y</math> प्रत्येक के समान <math>-1, 0</math> या 1 है। हम इन नौ जोड़ियों की सीधे शोध करके देख सकते हैं कि उनमें से कोई भी <math>3 = x^2 + y^2</math>को संतुष्ट नहीं करता है, इसलिए समीकरण में पूर्णांक समाधान नहीं हैं। | पूर्णांक समाधान नहीं है। यह देखने के लिए कि ऐसा क्यों है, हम ध्यान देते हैं <math>x^2 \geq 4</math> जब तक <math>x = -1, 0</math> या <math>1</math> होता है। इस प्रकार, <math>x^2+y^2</math> जब तक 3 से अधिक न हो जाए <math>(x,y)</math> के साथ नौ जोड़ियों में से कोई है <math>x</math> एवं <math>y</math> प्रत्येक के समान <math>-1, 0</math> या 1 है। हम इन नौ जोड़ियों की सीधे शोध करके देख सकते हैं कि उनमें से कोई भी <math>3 = x^2 + y^2</math>को संतुष्ट नहीं करता है, इसलिए समीकरण में पूर्णांक समाधान नहीं हैं। | ||
समान तर्क यह दर्शाता है कि प्रत्येक <math>n</math> के लिए, समीकरण <math>n =x^2+y^2</math> के लिए समाधानों की संख्या सीमित हो सकती है <math>x^2+y^2</math>, <math>n</math> से अधिक हो जाएगा जब तक कि निरपेक्ष मान <math>|x|</math> एवं <math>|y|</math> दोनों <math>\sqrt{n}</math> से कम हैं। इस बाधा को | समान तर्क यह दर्शाता है कि प्रत्येक <math>n</math> के लिए, समीकरण <math>n =x^2+y^2</math> के लिए समाधानों की संख्या सीमित हो सकती है <math>x^2+y^2</math>, <math>n</math> से अधिक हो जाएगा जब तक कि निरपेक्ष मान <math>|x|</math> एवं <math>|y|</math> दोनों <math>\sqrt{n}</math> से कम हैं। इस बाधा को पूर्ण करने वाले जोड़े की केवल सीमित संख्या है। | ||
द्विघात रूपों से जुड़ी एवं प्राचीन समस्या हमें पेल के समीकरण | द्विघात रूपों से जुड़ी एवं प्राचीन समस्या हमें पेल के समीकरण का निवारण के लिए कहती है। उदाहरण के लिए, हम पूर्णांक x एवं y, <math>1 = x^2 - 2y^2</math>के लिए प्राप्त कर सकते हैं। किसी समाधान में x एवं y के चिह्न परिवर्तित करने से दूसरा समाधान मिलता है, इसलिए सकारात्मक पूर्णांकों में उचित समाधान ढूंढना पर्याप्त है। समाधान <math>(x,y) = (3,2)</math>है अर्थात् समानता <math>1 = 3^2 - 2 \cdot 2^2</math>है। यदि <math>(x,y)</math>, <math>1 = x^2 - 2 y^2</math> का कोई समाधान है, तब <math>(3x+4y,2x+3y)</math> ऐसी ही जोड़ी है। उदाहरण के लिए, जोड़ी <math>(3,2)</math>से, हम गणना करते हैं | ||
: <math>(3\cdot 3 + 4 \cdot 2, 2\cdot 3 + 3 \cdot 2) = (17,12)</math>, | : <math>(3\cdot 3 + 4 \cdot 2, 2\cdot 3 + 3 \cdot 2) = (17,12)</math>, | ||
एवं हम | एवं हम ज्ञात कर सकते हैं कि यह संतुष्ट <math>1 = 17^2 - 2 \cdot 12^2</math> को करता है। इस प्रक्रिया को दोहराते हुए, हमें<math>1 = x^2 - 2y^2</math> के लिए <math>(x,y)</math> साथ जोड़े मिलते हैं : | ||
: <math>\begin{align} | : <math>\begin{align} | ||
Line 78: | Line 78: | ||
(3 \cdot 99 + 4 \cdot 70, 2 \cdot 99 + 3 \cdot 70) &= (577,408),\\ | (3 \cdot 99 + 4 \cdot 70, 2 \cdot 99 + 3 \cdot 70) &= (577,408),\\ | ||
&\vdots \end{align} | &\vdots \end{align} | ||
</math> ये मान आकार में बढ़ते रहेंगे, इसलिए हम देखते हैं कि फॉर्म | </math> ये मान आकार में बढ़ते रहेंगे, इसलिए हम देखते हैं कि फॉर्म <math>x^2 - 2y^2</math> द्वारा 1 का प्रतिनिधित्व करने के अनंत विधियाँ हैं। इस पुनरावर्ती विवरण पर यूक्लिड के तत्वों पर थियोन ऑफ स्मिर्ना की टिप्पणी में चर्चा की गई थी। | ||
=== प्रतिनिधित्व समस्या === | === प्रतिनिधित्व समस्या === | ||
Line 114: | Line 114: | ||
इसका निर्धारक 1 है एवं यह f का स्वप्रतिरूपण है। अभ्यावेदन पर कार्यवाही <math>1 = f(x_1,y_1)</math> इस आव्यूहद्वारा समतुल्य प्रतिनिधित्व प्राप्त होता है <math>1 = f(3x_1 + 4y_1, 2x_1 + 3 y_1)</math>. यह अपरिमित रूप से कई समाधान उत्पन्न करने के लिए ऊपर वर्णित प्रक्रिया में पुनरावर्तन चरण है <math>1 = x^2 - 2y^2</math>. इस आव्यूहक्रिया को दोहराते हुए, हम पाते हैं कि 1 बटा f के निरूपण के अनंत समुच्चय जो ऊपर निर्धारित किए गए थे, वे सभी समतुल्य हैं। | इसका निर्धारक 1 है एवं यह f का स्वप्रतिरूपण है। अभ्यावेदन पर कार्यवाही <math>1 = f(x_1,y_1)</math> इस आव्यूहद्वारा समतुल्य प्रतिनिधित्व प्राप्त होता है <math>1 = f(3x_1 + 4y_1, 2x_1 + 3 y_1)</math>. यह अपरिमित रूप से कई समाधान उत्पन्न करने के लिए ऊपर वर्णित प्रक्रिया में पुनरावर्तन चरण है <math>1 = x^2 - 2y^2</math>. इस आव्यूहक्रिया को दोहराते हुए, हम पाते हैं कि 1 बटा f के निरूपण के अनंत समुच्चय जो ऊपर निर्धारित किए गए थे, वे सभी समतुल्य हैं। | ||
आम तौर पर दिए गए गैर-शून्य विभेदक के रूपों द्वारा पूर्णांक एन के प्रतिनिधित्व के सीमित रूप से कई समतुल्य वर्ग होते हैं <math>\Delta</math>. इन वर्गों के लिए [[प्रतिनिधि (गणित)]] का | आम तौर पर दिए गए गैर-शून्य विभेदक के रूपों द्वारा पूर्णांक एन के प्रतिनिधित्व के सीमित रूप से कई समतुल्य वर्ग होते हैं <math>\Delta</math>. इन वर्गों के लिए [[प्रतिनिधि (गणित)]] का पूर्ण समुच्चय नीचे दिए गए अनुभाग में परिभाषित संक्षिप्त रूपों के संदर्भ में दिया जा सकता है। जब <math>\Delta < 0</math>, प्रत्येक प्रतिनिधित्व संक्षिप्त रूप द्वारा अद्वितीय प्रतिनिधित्व के समान है, इसलिए प्रतिनिधियों का पूर्ण समुच्चय विभेदक के कम रूपों द्वारा एन के सीमित कई प्रतिनिधित्व द्वारा दिया जाता है <math>\Delta</math>. जब <math>\Delta > 0</math>, ज़ैगियर ने साबित किया कि विवेचक के रूप द्वारा सकारात्मक पूर्णांक n का प्रत्येक प्रतिनिधित्व <math>\Delta</math> अद्वितीय प्रतिनिधित्व के समान है <math>n = f(x,y)</math> जिसमें ज़ैगियर के अर्थ में f को कम किया गया है एवं <math>x > 0</math>, <math>y \geq 0</math>.<ref>{{harvnb|Zagier|1981|loc=}}</ref> ऐसे सभी अभ्यावेदन का समुच्चय अभ्यावेदन के समतुल्य वर्गों के लिए प्रतिनिधियों का पूर्ण समुच्चय बनता है। | ||
==कमी एवं वर्ग संख्या == | ==कमी एवं वर्ग संख्या == | ||
Line 142: | Line 142: | ||
# C की गणना ऐसे करें <math>\Delta = B^2 - 4AC</math>. यह दिखाया जा सकता है कि C पूर्णांक है। | # C की गणना ऐसे करें <math>\Delta = B^2 - 4AC</math>. यह दिखाया जा सकता है कि C पूर्णांक है। | ||
फार्म <math>Ax^2 + Bxy + Cy^2</math> की रचना है <math>f_1</math> एवं <math>f_2</math>. हम देखते हैं कि इसका प्रथम गुणांक अच्छी प्रकार से परिभाषित है, किन्तुअन्य दो बी एवं सी की पसंद पर निर्भर करते हैं। इसे अच्छी प्रकार से परिभाषित ऑपरेशन बनाने का विधि बी को चुनने के | फार्म <math>Ax^2 + Bxy + Cy^2</math> की रचना है <math>f_1</math> एवं <math>f_2</math>. हम देखते हैं कि इसका प्रथम गुणांक अच्छी प्रकार से परिभाषित है, किन्तुअन्य दो बी एवं सी की पसंद पर निर्भर करते हैं। इसे अच्छी प्रकार से परिभाषित ऑपरेशन बनाने का विधि बी को चुनने के विधियाँ के लिए मनमाना सम्मेलन बनाना है - उदाहरण के लिए, चुनें B उपरोक्त सर्वांगसमताओं की प्रणाली का सबसे छोटा सकारात्मक समाधान है। वैकल्पिक रूप से, हम रचना के परिणाम को रूप के रूप में नहीं, बल्कि प्रपत्र के आव्यूहों के समूह की क्रिया मॉड्यूलो के समतुल्य वर्ग के रूप में देख सकते हैं। | ||
: <math>\begin{pmatrix} 1 & n\\ 0 & 1\end{pmatrix}</math>, | : <math>\begin{pmatrix} 1 & n\\ 0 & 1\end{pmatrix}</math>, |
Revision as of 10:17, 21 July 2023
गणित में, द्विघात द्विघात रूप दो चरों वाला द्विघात सजातीय बहुपद है
जहां a, b, c 'गुणांक' हैं। जब गुणांक जटिल संख्याएं हो सकते हैं, तो अधिकांश परिणाम दो चर के विषयों के लिए विशिष्ट नहीं होते हैं, इसलिए उन्हें द्विघात रूप में वर्णित किया जाता है। पूर्णांक गुणांक वाले द्विघात रूप को 'अभिन्न द्विघात द्विघात रूप' कहा जाता है, जिसे अक्सर द्विघात द्विघात रूप में संक्षिप्त किया जाता है।
यह आलेख पूरी प्रकार से अभिन्न बाइनरी द्विघात रूपों के लिए समर्पित है। यह विकल्प बीजगणितीय संख्या सिद्धांत के विकास के पीछे प्रेरक शक्ति के रूप में उनकी स्थिति से प्रेरित है। उन्नीसवीं सदी के उत्तरार्ध से, द्विघात द्विघात रूपों ने बीजगणितीय संख्या सिद्धांत में अपनी प्रधानता को द्विघात क्षेत्र एवं अधिक सामान्य संख्या क्षेत्रों में छोड़ दिया है, किन्तुद्विआधारी द्विघात रूपों के लिए विशिष्ट प्रगति अभी भी अवसर पर होती है।
पियरे फ़र्मेट ने कहा कि यदि p विषम अभाज्य है तो समीकरण समाधान है iff , एवं उन्होंने समीकरणों , , एवं के विषय में समान विचार दिया एवं इसी प्रकार द्विघात रूप हैं, एवं द्विघात रूपों का सिद्धांत इन प्रमेयों को देखने एवं सिद्ध करने का एकीकृत विधि प्रदान करता है।
द्विघात रूपों का अन्य उदाहरण पेल का समीकरण है।
द्विघात द्विघात रूप द्विघात क्षेत्रों में आदर्शों से निकटता से संबंधित हैं, इससे किसी दिए गए विभेदक के कम किए गए द्विघात द्विघात रूपों की संख्या की गणना करके द्विघात क्षेत्र की वर्ग संख्या की गणना की जा सकती है।
2 वेरिएबल्स का शास्त्रीय थीटा फलन है, यदि सकारात्मक निश्चित द्विघात रूप है, तब थीटा फलन है।
समतुल्यता
यदि पूर्णांक उपस्थित हों तो दो रूप f एवं g को 'समतुल्य' कहा जाता है, जैसे कि निम्नलिखित नियम प्रस्तावित हों:
उदाहरण के लिए, एवं , , , एवं , हम पाते हैं कि f,के समतुल्य है , जो को सरल बनाता है।
उपरोक्त तुल्यता स्थितियाँ अभिन्न द्विघात रूपों के समुच्चय पर तुल्यता संबंध को परिभाषित करती हैं। इससे यह निष्कर्ष निकलता है कि द्विघात रूप समुच्चय का समतुल्य वर्गों में विभाजन है, जिन्हें द्विघात रूपों के वर्ग कहा जाता है। वर्ग अपरिवर्तनीय का अर्थ या तो रूपों के समतुल्य वर्गों पर परिभाषित फलन या वर्ग में सभी रूपों द्वारा भागित की गई संपत्ति हो सकता है।
लैग्रेंज ने समतुल्यता की भिन्न धारणा का उपयोग किया, जिसमें दूसरी प्रतिबन्ध को प्रतिस्थापित किया गया है। गॉस के पश्चात से यह माना गया है कि यह परिभाषा ऊपर दी गई परिभाषा से कमतर है। यदि अंतर करने की आवश्यकता है, तो कभी-कभी उपरोक्त परिभाषा का उपयोग करके रूपों को उचित रूप से समकक्ष कहा जाता है एवं यदि वे लैग्रेंज के अर्थ में समकक्ष हैं तो अनुचित रूप से समकक्ष कहा जाता है।
आव्यूह में, जिसका प्रयोग नीचे कभी-कभी, जब किया जाता है,
- ,
इसमें पूर्णांक प्रविष्टियाँ एवं निर्धारक 1, नक्शा , द्विआधारी द्विघात रूपों के समुच्चय पर की (दाएं) समूह क्रिया है। उपरोक्त तुल्यता संबंध समूह क्रियाओं के सामान्य सिद्धांत से उत्पन्न होता है।
यदि , तो महत्वपूर्ण अपरिवर्तनीय सम्मिलित हैं
- विभेदक है,
- सामग्री, a, b, एवं c के सबसे बड़े सामान्य भाजक के समान है।
शब्दावली का उद्भव वर्गों एवं उनके रूपों को उनकी अपरिवर्तनशीलता के आधार पर वर्गीकृत करने के लिए हुआ है। विभेदक का रूप निश्चित है यदि है, पतित है, यदि पूर्ण वर्ग है, अन्यथा अनिश्चित है। रूप आदिम है यदि इसकी सामग्री 1 है, अर्थात, यदि इसके गुणांक सहअभाज्य हैं। यदि किसी रूप का विभेदक मौलिक विभेदक है, तो रूप आदिम है।[1] विवेकशील संतुष्ट होते हैं।
ऑटोमोर्फिज्म
यदि f द्विघात रूप है, तो आव्यूह है,
में f का ऑटोमोर्फिज्म है यदि है। उदाहरण के लिए, मैट्रिक्स
का स्वप्रतिरूपण है। किसी रूप की ऑटोमोर्फिज्म का उपसमूह बनाती है। जब f निश्चित होता है, तो समूह परिमित होता है, एवं जब f अनिश्चित होता है, तो यह अनंत एवं चक्रीय समूह होता है।
प्रतिनिधित्व
द्विघात द्विघात रूप पूर्णांक का प्रतिनिधित्व करता है यदि पूर्णांक एवं ज्ञात करना संभव है जो समीकरण को संतुष्ट करता है। ऐसा समीकरण n द्वारा q प्रतिनिधित्व है।
उदाहरण
डायोफैंटस ने विचार किया कि क्या, विषम पूर्णांक के लिए, पूर्णांक एवं ज्ञात करना संभव है जिसके लिए होता है।[2] जब , तो
तो हम जोड़े ढूंढते हैं जो ट्रिक करते हैं। हम अधिक जोड़े प्राप्त करते हैं जो मानों एवं को परिवर्तित करके एवं/या एवं में किसी एक या दोनों का चिह्न परिवर्तित करकर कार्य करते हैं। कुल मिलाकर, सोलह भिन्न-भिन्न समाधान जोड़े हैं। दूसरी ओर, जब , समीकरण
पूर्णांक समाधान नहीं है। यह देखने के लिए कि ऐसा क्यों है, हम ध्यान देते हैं जब तक या होता है। इस प्रकार, जब तक 3 से अधिक न हो जाए के साथ नौ जोड़ियों में से कोई है एवं प्रत्येक के समान या 1 है। हम इन नौ जोड़ियों की सीधे शोध करके देख सकते हैं कि उनमें से कोई भी को संतुष्ट नहीं करता है, इसलिए समीकरण में पूर्णांक समाधान नहीं हैं।
समान तर्क यह दर्शाता है कि प्रत्येक के लिए, समीकरण के लिए समाधानों की संख्या सीमित हो सकती है , से अधिक हो जाएगा जब तक कि निरपेक्ष मान एवं दोनों से कम हैं। इस बाधा को पूर्ण करने वाले जोड़े की केवल सीमित संख्या है।
द्विघात रूपों से जुड़ी एवं प्राचीन समस्या हमें पेल के समीकरण का निवारण के लिए कहती है। उदाहरण के लिए, हम पूर्णांक x एवं y, के लिए प्राप्त कर सकते हैं। किसी समाधान में x एवं y के चिह्न परिवर्तित करने से दूसरा समाधान मिलता है, इसलिए सकारात्मक पूर्णांकों में उचित समाधान ढूंढना पर्याप्त है। समाधान है अर्थात् समानता है। यदि , का कोई समाधान है, तब ऐसी ही जोड़ी है। उदाहरण के लिए, जोड़ी से, हम गणना करते हैं
- ,
एवं हम ज्ञात कर सकते हैं कि यह संतुष्ट को करता है। इस प्रक्रिया को दोहराते हुए, हमें के लिए साथ जोड़े मिलते हैं :
- ये मान आकार में बढ़ते रहेंगे, इसलिए हम देखते हैं कि फॉर्म द्वारा 1 का प्रतिनिधित्व करने के अनंत विधियाँ हैं। इस पुनरावर्ती विवरण पर यूक्लिड के तत्वों पर थियोन ऑफ स्मिर्ना की टिप्पणी में चर्चा की गई थी।
प्रतिनिधित्व समस्या
द्विआधारी द्विघात रूपों के सिद्धांत में सबसे पुरानी समस्या प्रतिनिधित्व समस्या है: किसी दिए गए संख्या के प्रतिनिधित्व का वर्णन करें किसी दिए गए द्विघात रूप f द्वारा। वर्णन के विभिन्न अर्थ हो सकते हैं: सभी अभ्यावेदन उत्पन्न करने के लिए एल्गोरिदम देना, अभ्यावेदन की संख्या के लिए बंद सूत्र देना, या यहां तक कि यह निर्धारित करना कि क्या कोई अभ्यावेदन उपस्थित है।
उपरोक्त उदाहरण फॉर्म द्वारा संख्या 3 एवं 65 के लिए प्रतिनिधित्व समस्या पर चर्चा करते हैं एवं नंबर 1 के लिए फॉर्म द्वारा . हम देखते हैं कि 65 को दर्शाया गया है सोलह भिन्न-भिन्न तरीकों से, जबकि 1 का प्रतिनिधित्व किया जाता है अनंत रूप से कई तरीकों से एवं 3 द्वारा प्रदर्शित नहीं किया गया है बिलकुल। पूर्व विषयों में, सोलह अभ्यावेदन का स्पष्ट रूप से वर्णन किया गया था। यह भी दर्शाया गया कि किसी पूर्णांक के निरूपण की संख्या कितनी है सदैव सीमित है. वर्गों का योग फलन द्वारा n के निरूपण की संख्या प्रदान करता है n के फलन के रूप में। बंद फार्मूला है[3]
कहाँ n के विभाजकों की संख्या है जो 1 मॉड्यूल 4 के मॉड्यूलर अंकगणित हैं एवं n के विभाजकों की संख्या है जो 3 मॉड्यूल 4 के सर्वांगसम हैं।
प्रतिनिधित्व समस्या के लिए प्रासंगिक कई वर्ग अपरिवर्तनीय हैं:
- किसी वर्ग द्वारा प्रदर्शित पूर्णांकों का समुच्चय। यदि पूर्णांक n को वर्ग में रूप द्वारा दर्शाया जाता है, तो इसे वर्ग में अन्य सभी रूपों द्वारा दर्शाया जाता है।
- किसी वर्ग द्वारा दर्शाया गया न्यूनतम निरपेक्ष मान। यह किसी वर्ग द्वारा दर्शाए गए पूर्णांकों के समुच्चय में सबसे छोटा गैर-नकारात्मक मान है।
- सर्वांगसमता वर्ग वर्ग द्वारा दर्शाए गए वर्ग के विभेदक को मापता है।
किसी वर्ग द्वारा दर्शाया गया न्यूनतम निरपेक्ष मान पतित वर्गों के लिए शून्य है एवं निश्चित एवं अनिश्चित वर्गों के लिए सकारात्मक है। सभी संख्याएँ निश्चित रूप में प्रदर्शित होती हैं ही चिन्ह है: सकारात्मक यदि एवं नकारात्मक यदि . इस कारण से, पूर्व को सकारात्मक निश्चित रूप कहा जाता है एवं पश्चात को नकारात्मक निश्चित रूप कहा जाता है।
यदि f निश्चित है तो f रूप द्वारा पूर्णांक n के निरूपण की संख्या सीमित है एवं यदि f अनिश्चित है तो अनंत है। हमने उपरोक्त उदाहरणों में इसके उदाहरण देखे: सकारात्मक निश्चित है एवं अनिश्चितकालीन है.
समतुल्य प्रतिनिधित्व
रूपों की तुल्यता की धारणा को समकक्ष अभ्यावेदन तक बढ़ाया जा सकता है। अभ्यावेदन एवं यदि कोई आव्यूहउपस्थित है तो समतुल्य हैं
पूर्णांक प्रविष्टियों एवं निर्धारक 1 के साथ ताकि एवं
उपरोक्त स्थितियाँ समूह की (सही) कार्रवाई बताती हैं द्विआधारी द्विघात रूपों द्वारा पूर्णांकों के निरूपण के समुच्चय पर। इससे यह निष्कर्ष निकलता है कि इस प्रकार परिभाषित समतुल्यता समतुल्य संबंध है एवं विशेष रूप से समतुल्य अभ्यावेदन में उपस्थित रूप समतुल्य रूप हैं।
उदाहरण के तौर पर, आइए एवं अभ्यावेदन पर विचार करें . ऐसा प्रतिनिधित्व उपरोक्त उदाहरणों में वर्णित पेल समीकरण का समाधान है। गणित का सवाल
इसका निर्धारक 1 है एवं यह f का स्वप्रतिरूपण है। अभ्यावेदन पर कार्यवाही इस आव्यूहद्वारा समतुल्य प्रतिनिधित्व प्राप्त होता है . यह अपरिमित रूप से कई समाधान उत्पन्न करने के लिए ऊपर वर्णित प्रक्रिया में पुनरावर्तन चरण है . इस आव्यूहक्रिया को दोहराते हुए, हम पाते हैं कि 1 बटा f के निरूपण के अनंत समुच्चय जो ऊपर निर्धारित किए गए थे, वे सभी समतुल्य हैं।
आम तौर पर दिए गए गैर-शून्य विभेदक के रूपों द्वारा पूर्णांक एन के प्रतिनिधित्व के सीमित रूप से कई समतुल्य वर्ग होते हैं . इन वर्गों के लिए प्रतिनिधि (गणित) का पूर्ण समुच्चय नीचे दिए गए अनुभाग में परिभाषित संक्षिप्त रूपों के संदर्भ में दिया जा सकता है। जब , प्रत्येक प्रतिनिधित्व संक्षिप्त रूप द्वारा अद्वितीय प्रतिनिधित्व के समान है, इसलिए प्रतिनिधियों का पूर्ण समुच्चय विभेदक के कम रूपों द्वारा एन के सीमित कई प्रतिनिधित्व द्वारा दिया जाता है . जब , ज़ैगियर ने साबित किया कि विवेचक के रूप द्वारा सकारात्मक पूर्णांक n का प्रत्येक प्रतिनिधित्व अद्वितीय प्रतिनिधित्व के समान है जिसमें ज़ैगियर के अर्थ में f को कम किया गया है एवं , .[4] ऐसे सभी अभ्यावेदन का समुच्चय अभ्यावेदन के समतुल्य वर्गों के लिए प्रतिनिधियों का पूर्ण समुच्चय बनता है।
कमी एवं वर्ग संख्या
लैग्रेंज ने साबित किया कि प्रत्येक मूल्य डी के लिए, विभेदक डी के साथ द्विआधारी द्विघात रूपों के केवल सीमित रूप से कई वर्ग हैं। उनकी संख्या 'हैclass number विभेदक डी के। उन्होंने प्रत्येक वर्ग में विहित प्रतिनिधि, 'कम रूप' के निर्माण के लिए 'रिडक्शन' नामक एल्गोरिथ्म का वर्णन किया, जिसके गुणांक उपयुक्त अर्थ में सबसे छोटे हैं।
गॉस ने अंकगणितीय विवेचन में बेहतर कटौती एल्गोरिदम दिया, जो तब से पाठ्यपुस्तकों में सबसे अधिक दिया जाने वाला कटौती एल्गोरिदम रहा है। 1981 में, ज़ैगियर ने वैकल्पिक कटौती एल्गोरिदम प्रकाशित किया जिसे गॉस के विकल्प के रूप में कई उपयोग मिले हैं।[5]
रचना
रचना आमतौर पर ही विभेदक के रूपों के आदिम तुल्यता वर्गों पर द्विआधारी ऑपरेशन को संदर्भित करती है, जो गॉस की सबसे गहरी खोजों में से है, जो इस समुच्चय को परिमित एबेलियन समूह में बनाता है जिसे विभेदक का रूप वर्ग समूह (या बस वर्ग समूह) कहा जाता है। . तब से वर्ग समूह बीजगणितीय संख्या सिद्धांत में केंद्रीय विचारों में से बन गए हैं। आधुनिक दृष्टिकोण से, मौलिक विभेदक का वर्ग समूह द्विघात क्षेत्र के संकीर्ण वर्ग समूह के लिए समरूपी है विभेदक का .[6] नकारात्मक के लिए , संकीर्ण वर्ग समूह आदर्श वर्ग समूह के समान है, किन्तुसकारात्मक के लिए यह दोगुना बड़ा हो सकता है.
रचना कभी-कभी, मोटे तौर पर, द्विघात द्विघात रूपों पर द्विआधारी ऑपरेशन को भी संदर्भित करती है। यह शब्द मोटे तौर पर दो चेतावनियों को इंगित करता है: द्विआधारी द्विघात रूपों के केवल कुछ जोड़े ही बनाए जा सकते हैं, एवं परिणामी रूप अच्छी प्रकार से परिभाषित नहीं है (हालांकि इसका समतुल्य वर्ग है)। समतुल्य वर्गों पर संरचना संचालन को पूर्व रूपों की संरचना को परिभाषित करके एवं फिर यह दिखाकर परिभाषित किया जाता है कि यह कक्षाओं पर अच्छी प्रकार से परिभाषित संचालन को प्रेरित करता है।
संरचना प्रपत्रों द्वारा पूर्णांकों के निरूपण पर द्विआधारी ऑपरेशन का भी उल्लेख कर सकती है। यह ऑपरेशन काफ़ी अधिक जटिल है रूपों की संरचना से, किन्तुऐतिहासिक रूप से पूर्व उत्पन्न हुआ। हम नीचे भिन्न अनुभाग में ऐसे परिचालनों पर विचार करेंगे।
रचना का अर्थ है ही विभेदक के दो द्विघात रूप लेना एवं उन्हें मिलाकर ही विभेदक का द्विघात रूप बनाना, जैसा कि ब्रह्मगुप्त की पहचान से पता चलता है।
प्रपत्रों एवं वर्गों की रचना
गॉस की अत्यंत तकनीकी एवं सामान्य परिभाषा को सरल बनाने के प्रयास में, अक्सर रूपों की संरचना की कई प्रकार की परिभाषाएँ दी गई हैं। हम यहां अरंड्ट की विधि प्रस्तुत कर रहे हैं, क्योंकि यह हाथ से गणना करने में सक्षम होने के लिए पर्याप्त सरल होने के साथ-साथ सामान्य बनी हुई है। भार्गवा क्यूब ्स में वैकल्पिक परिभाषा का वर्णन किया गया है।
मान लीजिए हम फॉर्म बनाना चाहते हैं एवं , प्रत्येक आदिम एवं ही विभेदक का . हम निम्नलिखित कदम उठाते हैं:
- गणना करें एवं , एवं
- सर्वांगसमता प्रणाली <ब्लॉककोट> को हल करें
यह दिखाया जा सकता है कि इस प्रणाली में हमेशा अद्वितीय पूर्णांक समाधान मॉड्यूलो होता है . हम मनमाने ढंग से ऐसा समाधान चुनते हैं एवं इसे बी कहते हैं।
- C की गणना ऐसे करें . यह दिखाया जा सकता है कि C पूर्णांक है।
फार्म की रचना है एवं . हम देखते हैं कि इसका प्रथम गुणांक अच्छी प्रकार से परिभाषित है, किन्तुअन्य दो बी एवं सी की पसंद पर निर्भर करते हैं। इसे अच्छी प्रकार से परिभाषित ऑपरेशन बनाने का विधि बी को चुनने के विधियाँ के लिए मनमाना सम्मेलन बनाना है - उदाहरण के लिए, चुनें B उपरोक्त सर्वांगसमताओं की प्रणाली का सबसे छोटा सकारात्मक समाधान है। वैकल्पिक रूप से, हम रचना के परिणाम को रूप के रूप में नहीं, बल्कि प्रपत्र के आव्यूहों के समूह की क्रिया मॉड्यूलो के समतुल्य वर्ग के रूप में देख सकते हैं।
- ,
जहाँ n पूर्णांक है. यदि हम के वर्ग पर विचार करें इस क्रिया के अंतर्गत, वर्ग में रूपों के मध्य गुणांक पूर्णांक मॉड्यूलो 2ए का सर्वांगसम वर्ग बनाते हैं। इस प्रकार, रचना द्विआधारी द्विघात रूपों के जोड़े से लेकर ऐसे वर्गों तक अच्छी प्रकार से परिभाषित फलन देती है।
यह दिखाया जा सकता है कि यदि एवं के समतुल्य हैं एवं क्रमशः, फिर की रचना एवं की रचना के समतुल्य है एवं . इसका तात्पर्य यह है कि रचना विभेदक के आदिम वर्गों पर अच्छी प्रकार से परिभाषित संचालन को प्रेरित करती है , एवं जैसा कि ऊपर बताया गया है, गॉस ने दिखाया कि ये वर्ग सीमित एबेलियन समूह बनाते हैं। समूह में पहचान तत्व वर्ग सभी रूपों वाला अद्वितीय वर्ग है , यानी, पूर्व गुणांक 1 के साथ। (यह दिखाया जा सकता है कि ऐसे सभी रूप ही वर्ग में हैं, एवं प्रतिबंध तात्पर्य यह है कि प्रत्येक विवेचक का ऐसा रूप उपस्थित होता है।) किसी वर्ग के तत्व का व्युत्क्रम करने के लिए, हम प्रतिनिधि लेते हैं एवं का वर्ग बनाते हैं . वैकल्पिक रूप से, हम का वर्ग बना सकते हैं इसके पश्चात से एवं समतुल्य हैं.
द्विघात द्विघात रूपों की उत्पत्ति
गॉस ने तुल्यता की मोटे धारणा पर भी विचार किया, प्रत्येक मोटे वर्ग को रूपों का जीनस कहा जाता है। प्रत्येक जीनस ही विभेदक के समतुल्य वर्गों की सीमित संख्या का संघ है, जिसमें वर्गों की संख्या केवल विभेदक पर निर्भर करती है। द्विआधारी द्विघात रूपों के संदर्भ में, जेनेरा को या तो रूपों द्वारा दर्शाए गए संख्याओं के सर्वांगसम वर्गों के माध्यम से या रूपों के समुच्चय पर परिभाषित जीनस वर्णों द्वारा परिभाषित किया जा सकता है। तीसरी परिभाषा n चरों में द्विघात रूप के जीनस का विशेष मामला है। इसमें कहा गया है कि यदि फॉर्म सभी तर्कसंगत अभाज्य संख्याओं (बीजगणितीय संख्या फ़ील्ड#स्थान सहित) पर स्थानीय रूप से समतुल्य हैं, तो वे ही जीनस में हैं।
इतिहास
द्विआधारी द्विघात रूपों से युक्त बीजगणितीय पहचानों के आद्य-ऐतिहासिक ज्ञान के परिस्थितिजन्य साक्ष्य हैं।[7] द्विआधारी द्विघात रूपों से संबंधित प्रथम समस्या विशेष द्विआधारी द्विघात रूपों द्वारा पूर्णांकों के निरूपण के अस्तित्व या निर्माण की मांग करती है। प्रमुख उदाहरण पेल के समीकरण का समाधान एवं दो वर्गों के योग के रूप में पूर्णांकों का प्रतिनिधित्व हैं। पेल के समीकरण पर भारतीय गणितज्ञ ब्रह्मगुप्त ने 7वीं शताब्दी ई. में पूर्व ही विचार कर लिया था। कई शताब्दियों के पश्चात, उनके विचारों को पेल के समीकरण के पूर्ण समाधान तक विस्तारित किया गया, जिसे चक्रवाला विधि के रूप में जाना जाता है, जिसका श्रेय भारतीय गणितज्ञ जयदेव (गणितज्ञ) या भास्कर द्वितीय को दिया जाता है।[8] दो वर्गों के योग द्वारा पूर्णांकों को निरूपित करने की समस्या पर तीसरी शताब्दी में डायोफैंटस द्वारा विचार किया गया था।[9] 17वीं शताब्दी में, डायोफैंटस के अंकगणित को पढ़ते समय प्रेरित होकर, फर्मेट ने विशिष्ट द्विघात रूपों द्वारा निरूपण के विषय में कई टिप्पणियाँ कीं, जिसमें वह भी सम्मिलित था जिसे अब दो वर्गों के योग पर फ़र्मेट के प्रमेय के रूप में जाना जाता है।[10] यूलर ने फ़र्मेट की टिप्पणियों का प्रथम प्रमाण प्रदान किया एवं बिना किसी प्रमाण के विशिष्ट रूपों द्वारा प्रतिनिधित्व के विषय में कुछ नए अनुमान जोड़े।[11]द्विघात रूपों का सामान्य सिद्धांत लैग्रेंज द्वारा 1775 में गणित में महत्वपूर्ण प्रकाशनों की अपनी सूची में प्रारम्भ किया गया था #Recherches d'Arithmétique|Recherches d'Arithmétique। लैग्रेंज ने सबसे पूर्व यह महसूस किया कि सुसंगत सामान्य सिद्धांत के लिए सभी रूपों पर साथ विचार करने की आवश्यकता होती है।[12] वह विभेदक के महत्व को पहचानने एवं तुल्यता एवं कमी की आवश्यक धारणाओं को परिभाषित करने वाले पूर्व व्यक्ति थे, जो वेइल के अनुसार, तब से द्विघात रूपों के पूरे विषय पर हावी हो गए हैं।[13] लैग्रेंज ने दिखाया कि दिए गए विभेदक के सारे समतुल्य वर्ग हैं, जिससे प्रथम बार अंकगणितीय आदर्श वर्ग समूह को परिभाषित किया गया है। कटौती की उनकी प्रारम्भ ने दिए गए विभेदक के वर्गों की त्वरित गणना की अनुमति दी एवं बुनियादी आकृति (संख्या सिद्धांत) के अंतिम विकास का पूर्वाभास दिया। 1798 में, एड्रियन मैरी लीजेंड्रे ने एस्साई सुर ला थियोरी डेस नोम्ब्रेस प्रकाशित किया, जिसमें यूलर एवं लैग्रेंज के कार्य का सारांश दिया गया एवं उनके स्वयं के कुछ योगदानों को जोड़ा गया, जिसमें रूपों पर रचना संचालन की प्रथम छवि भी सम्मिलित थी।
गणित में महत्वपूर्ण प्रकाशनों की सूची #Disquisitiones Arithmeticae के खंड V में कार्ल फ्रेडरिक गॉस द्वारा सिद्धांत को अधिक सीमा तक विस्तारित एवं परिष्कृत किया गया था। गॉस ने कंपोज़िशन ऑपरेटर का बहुत ही सामान्य संस्करण प्रस्तुत किया जो विभिन्न विभेदकों एवं अभेद्य रूपों के समान रूपों की रचना करने की अनुमति प्रदान करता है। उन्होंने लैग्रेंज की समतुल्यता को उचित समतुल्यता की अधिक त्रुटिहीन धारणा के साथ प्रतिस्थापित किया, एवं इससे उन्हें यह दिखाने में सहायता मिली कि दिए गए विभेदक के आदिम वर्ग रचना संचालन के अंतर्गत समूह (गणित) बनाते हैं। उन्होंने जीनस सिद्धांत प्रस्तुत किया, जो वर्गों के उपसमूह द्वारा वर्ग समूह के भागफल को समझने की शक्तिशाली विधि प्रदान करता है। (गॉस एवं उसके पश्चात के कई लेखकों ने b के स्थान पर 2b लिखा; xy के गुणांक को विषम मानने वाली आधुनिक परंपरा गॉटथोल्ड ईसेनस्टीन के कारण है)।
गॉस की इन शोधों ने दो से अधिक चरों में द्विघात रूपों के अंकगणितीय सिद्धांत एवं बीजगणितीय संख्या सिद्धांत के पश्चात के विकास दोनों को दृढ़ता से प्रभावित किया, जहां द्विघात क्षेत्रों को अधिक सामान्य संख्या क्षेत्रों से परिवर्तित कर दिया जाता है। किन्तु प्रभाव तत्काल नहीं था. डिस्क्विज़िशन के खंड V में वास्तव में क्रांतिकारी विचार सम्मिलित हैं एवं इसमें जटिल गणनाएँ सम्मिलित हैं, जिन्हें कभी-कभी पाठक पर छोड़ दिया जाता है। संयुक्त रूप से, नवीनता एवं जटिलता ने खंड V को अत्यंत कठिन बना दिया। Dirichlet ने सिद्धांत का सरलीकरण प्रकाशित किया जिसने इसे व्यापक दर्शकों के लिए सुलभ बना दिया। इस कार्य की परिणति उनका पाठ गणित में महत्वपूर्ण प्रकाशनों की सूची#वोरलेसुंगेन उबेर ज़हलेन्थियोरी|वोरलेसुंगेन उबेर ज़हलेनथियोरी है। इस कार्य के तीसरे संस्करण में डेडेकाइंड के दो पूरक सम्मिलित हैं। अनुपूरक XI रिंग सिद्धांत का परिचय प्रदान करता है, एवं तब से, विशेष रूप से 1897 में हिल्बर्ट के प्रकाशन के पश्चात|हिल्बर्ट की गणित में महत्वपूर्ण प्रकाशनों की सूची#ज़ाहलबेरिच, द्विआधारी द्विघात रूपों के सिद्धांत ने बीजगणितीय संख्या सिद्धांत में अपनी प्रमुख स्थिति खो दी एवं अधिक सामान्य द्वारा छायांकित हो गया बीजगणितीय संख्या क्षेत्रों का सिद्धांत।
फिर भी, पूर्णांक गुणांक वाले द्विआधारी द्विघात रूपों पर कार्य आज भी जारी है। इसमें द्विघात संख्या क्षेत्रों के विषय में कई परिणाम सम्मिलित हैं, जिन्हें अक्सर द्विआधारी द्विघात रूपों की भाषा में अनुवादित किया जा सकता है, किन्तुइसमें स्वयं रूपों के विषय में विकास भी सम्मिलित है या जो रूपों के विषय में सोचने से उत्पन्न हुए हैं, जिनमें डैनियल शैंक्स|शैंक्स का बुनियादी ढांचा, डॉन ज़ैगियर|ज़ैगियर का कटौती एल्गोरिदम सम्मिलित है। , जॉन हॉर्टन कॉनवे|कॉनवे के स्थलाकृति, एवं मंजुल भार्गव|भार्गव क्यूब्स के माध्यम से रचना की पुनर्व्याख्या।
यह भी देखें
- भार्गव घन
- दो वर्गों के योग पर फ़र्मेट का प्रमेय
- पौराणिक प्रतीक
- ब्रह्मगुप्त की पहचान
टिप्पणियाँ
- ↑ Cohen 1993, §5.2
- ↑ Weil 2001, p. 30
- ↑ Hardy & Wright 2008, Thm. 278
- ↑ Zagier 1981
- ↑ Zagier 1981
- ↑ Fröhlich & Taylor 1993, Theorem 58
- ↑ Weil 2001, Ch.I §§VI, VIII
- ↑ Weil 2001, Ch.I §IX
- ↑ Weil 2001, Ch.I §IX
- ↑ Weil 2001, Ch.II §§VIII-XI
- ↑ Weil 2001, Ch.III §§VII-IX
- ↑ Weil 2001, p.318
- ↑ Weil 2001, p.317
संदर्भ
- Johannes Buchmann, Ulrich Vollmer: Binary Quadratic Forms, Springer, Berlin 2007, ISBN 3-540-46367-4
- Duncan A. Buell: Binary Quadratic Forms, Springer, New York 1989
- David A Cox, Primes of the form , Fermat, class field theory, and complex multiplication
- Cohen, Henri (1993), A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, vol. 138, Berlin, New York: Springer-Verlag, ISBN 978-3-540-55640-4, MR 1228206
- Fröhlich, Albrecht; Taylor, Martin (1993), Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, ISBN 978-0-521-43834-6, MR 1215934
- Hardy, G. H.; Wright, E. M. (2008) [1938], An Introduction to the Theory of Numbers, Revised by D. R. Heath-Brown and J. H. Silverman. Foreword by Andrew Wiles. (6th ed.), Oxford: Clarendon Press, ISBN 978-0-19-921986-5, MR 2445243, Zbl 1159.11001
- Weil, André (2001), Number Theory: An approach through history from Hammurapi to Legendre, Birkhäuser Boston
- Zagier, Don (1981), Zetafunktionen und quadratische Körper: eine Einführung in die höhere Zahlentheorie, Springer
बाहरी संबंध
- Peter Luschny, Positive numbers represented by a binary quadratic form
- A. V. Malyshev (2001) [1994], "Binary quadratic form", Encyclopedia of Mathematics, EMS Press