आंशिक ऑक्सीकरण: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
आंशिक ऑक्सीकरण (पीओएक्स) एक प्रकार की [[रासायनिक प्रतिक्रिया]] है। इस प्रकार यह तब होता है जब [[स्तुईचिओमेटरी| | '''आंशिक ऑक्सीकरण (पीओएक्स)''' एक प्रकार की [[रासायनिक प्रतिक्रिया|रासायनिक अभिक्रिया]] है। इस प्रकार से यह तब होता है जब [[स्तुईचिओमेटरी|उपस्टोइकोमेट्रिक]] ईंधन-वायु मिश्रण को एक सुधारक में आंशिक रूप से दहन किया जाता है, जिससे हाइड्रोजन-समृद्ध सिनगैस बनता है जिसे बाद में आगे उपयोग में लाया जा सकता है, उदाहरण के लिए [[ईंधन सेल]] में है। उष्मीय आंशिक ऑक्सीकरण (टीपीओएक्स) और उत्प्रेरक आंशिक ऑक्सीकरण (सीपीओएक्स) के बीच अंतर किया जाता है। | ||
==सिद्धांत== | ==सिद्धांत== | ||
आंशिक ऑक्सीकरण एक तकनीकी रूप से परिपक्व प्रक्रिया है इस प्रकार जिसमें [[प्राकृतिक गैस]] या भारी हाइड्रोकार्बन ईंधन ([[गर्म तेल]]) को [[ एक्ज़ोथिर्मिक |ऊष्माक्षेपी]] प्रक्रिया में सीमित मात्रा में ऑक्सीजन के साथ मिलाया जाता है।<ref>{{cite book |last1=Hornback |first1=Joseph |title=कार्बनिक रसायन विज्ञान|publisher=Brooks/Cole, Cengage Learning |isbn=978-0-534-38951-2 |pages=146–147}}</ref> | अतः आंशिक ऑक्सीकरण एक तकनीकी रूप से परिपक्व प्रक्रिया है इस प्रकार से जिसमें [[प्राकृतिक गैस]] या भारी हाइड्रोकार्बन ईंधन ([[गर्म तेल|उष्ण तेल]]) को [[ एक्ज़ोथिर्मिक |ऊष्माक्षेपी]] प्रक्रिया में सीमित मात्रा में ऑक्सीजन के साथ मिलाया जाता है।<ref>{{cite book |last1=Hornback |first1=Joseph |title=कार्बनिक रसायन विज्ञान|publisher=Brooks/Cole, Cengage Learning |isbn=978-0-534-38951-2 |pages=146–147}}</ref> | ||
* सामान्य | * सामान्य अभिक्रिया: <chem>{C_\mathit{n}H_\mathit{m}} + \frac\mathit{n}{2}{O2} -> \mathit{n}{CO} + \frac\mathit{m}{2}H2</chem> | ||
* तेल | * तेल उष्ण करने के लिए आदर्श अभिक्रिया: <chem>{C12H24} + 6O2 -> {12CO} + 12H2</chem> | ||
*कोयले के लिए आदर्शीकृत | *कोयले के लिए आदर्शीकृत अभिक्रिया: <chem>{C24H12} + 12O2 -> {24CO} + 6H2</chem> | ||
कोयले और | अतः कोयले और उष्मीय तेल के लिए दिए गए सूत्र इन जटिल ईंधनों का मात्र एक विशिष्ट प्रतिनिधि दिखाते हैं। इस प्रकार से दहन तापमान को कम करने और कोयला निर्माण को कम करने के लिए जल मिलाया जा सकता है। कुछ ईंधन के पूर्ण रूप से कार्बन डाइऑक्साइड और जल में जलने के कारण पैदावार उचित तत्वानुपातकीय से कम होती है । | ||
==[[टीपीओएक्स]]== | ==[[टीपीओएक्स]]== | ||
टीपीओएक्स ( | अतः टीपीओएक्स (उष्मीय आंशिक ऑक्सीकरण) अभिक्रिया तापमान [[वायु-ईंधन अनुपात]] या ऑक्सीजन-ईंधन अनुपात पर इस प्रकार पूर्ण रूप से निर्भर होते हैं। विशिष्ट अभिक्रिया तापमान 1200°C और इससे अधिक है। | ||
==सीपीओएक्स== | ==सीपीओएक्स== | ||
[[उत्प्रेरक]] आंशिक ऑक्सीकरण ([[उत्प्रेरक आंशिक ऑक्सीकरण]]) में उत्प्रेरक के उपयोग से आवश्यक तापमान लगभग 800°C - 900°C तक कम हो जाता है। | [[उत्प्रेरक]] आंशिक ऑक्सीकरण ([[उत्प्रेरक आंशिक ऑक्सीकरण]]) में उत्प्रेरक के उपयोग से आवश्यक तापमान लगभग 800°C - 900°C तक कम हो जाता है। | ||
अतः इस प्रकार [[उत्प्रेरक सुधार]] तकनीक का चुनाव उपयोग किए जा रहे ईंधन में एक [[ गंधक |गंधक]] पदार्थ पर निर्भर करता है। यदि सल्फर की मात्रा 50 [[भाग प्रति दस लाख]] से कम है तो सीपीओएक्स का उपयोग इस प्रकार किया जा सकता है। उच्च सल्फर पदार्थ उत्प्रेरक को विष दे सकती है, इसलिए ऐसे ईंधन के लिए टीपीओएक्स प्रक्रिया का उपयोग किया जाता है। चूंकि, वर्तमान के शोध से पता चलता है कि 400पीपीएम तक की सल्फर पदार्थ के साथ सीपीओएक्स संभव है।<ref name="e-collection.ethbib.ethz.ch">[http://e-collection.ethbib.ethz.ch/view/eth:41553 Electricity from wood through the combination of gasification and solid oxide fuel cells], Ph.D. Thesis by Florian Nagel, Swiss Federal Institute of Technology Zurich, 2008</ref> | |||
==इतिहास== | ==इतिहास== | ||
इस प्रकार 1926 - [[इलिनोइस विश्वविद्यालय]] में वंदेवीर और पार्र ने | इस प्रकार से 1926 - [[इलिनोइस विश्वविद्यालय]] में वंदेवीर और पार्र ने वायु के स्थान पर ऑक्सीजन का उपयोग किया था।<ref>[https://books.google.com/books?id=cXNmyTTGbRIC ''Industrial Gas Handbook'', Frank G. Kerry, p. 230].</ref> | ||
==यह भी देखें== | ==यह भी देखें== | ||
*[[हाइड्रोजन उत्पादन]] | *[[हाइड्रोजन उत्पादन]] |
Revision as of 10:06, 27 July 2023
आंशिक ऑक्सीकरण (पीओएक्स) एक प्रकार की रासायनिक अभिक्रिया है। इस प्रकार से यह तब होता है जब उपस्टोइकोमेट्रिक ईंधन-वायु मिश्रण को एक सुधारक में आंशिक रूप से दहन किया जाता है, जिससे हाइड्रोजन-समृद्ध सिनगैस बनता है जिसे बाद में आगे उपयोग में लाया जा सकता है, उदाहरण के लिए ईंधन सेल में है। उष्मीय आंशिक ऑक्सीकरण (टीपीओएक्स) और उत्प्रेरक आंशिक ऑक्सीकरण (सीपीओएक्स) के बीच अंतर किया जाता है।
सिद्धांत
अतः आंशिक ऑक्सीकरण एक तकनीकी रूप से परिपक्व प्रक्रिया है इस प्रकार से जिसमें प्राकृतिक गैस या भारी हाइड्रोकार्बन ईंधन (उष्ण तेल) को ऊष्माक्षेपी प्रक्रिया में सीमित मात्रा में ऑक्सीजन के साथ मिलाया जाता है।[1]
- सामान्य अभिक्रिया:
- तेल उष्ण करने के लिए आदर्श अभिक्रिया:
- कोयले के लिए आदर्शीकृत अभिक्रिया:
अतः कोयले और उष्मीय तेल के लिए दिए गए सूत्र इन जटिल ईंधनों का मात्र एक विशिष्ट प्रतिनिधि दिखाते हैं। इस प्रकार से दहन तापमान को कम करने और कोयला निर्माण को कम करने के लिए जल मिलाया जा सकता है। कुछ ईंधन के पूर्ण रूप से कार्बन डाइऑक्साइड और जल में जलने के कारण पैदावार उचित तत्वानुपातकीय से कम होती है ।
टीपीओएक्स
अतः टीपीओएक्स (उष्मीय आंशिक ऑक्सीकरण) अभिक्रिया तापमान वायु-ईंधन अनुपात या ऑक्सीजन-ईंधन अनुपात पर इस प्रकार पूर्ण रूप से निर्भर होते हैं। विशिष्ट अभिक्रिया तापमान 1200°C और इससे अधिक है।
सीपीओएक्स
उत्प्रेरक आंशिक ऑक्सीकरण (उत्प्रेरक आंशिक ऑक्सीकरण) में उत्प्रेरक के उपयोग से आवश्यक तापमान लगभग 800°C - 900°C तक कम हो जाता है।
अतः इस प्रकार उत्प्रेरक सुधार तकनीक का चुनाव उपयोग किए जा रहे ईंधन में एक गंधक पदार्थ पर निर्भर करता है। यदि सल्फर की मात्रा 50 भाग प्रति दस लाख से कम है तो सीपीओएक्स का उपयोग इस प्रकार किया जा सकता है। उच्च सल्फर पदार्थ उत्प्रेरक को विष दे सकती है, इसलिए ऐसे ईंधन के लिए टीपीओएक्स प्रक्रिया का उपयोग किया जाता है। चूंकि, वर्तमान के शोध से पता चलता है कि 400पीपीएम तक की सल्फर पदार्थ के साथ सीपीओएक्स संभव है।[2]
इतिहास
इस प्रकार से 1926 - इलिनोइस विश्वविद्यालय में वंदेवीर और पार्र ने वायु के स्थान पर ऑक्सीजन का उपयोग किया था।[3]
यह भी देखें
- हाइड्रोजन उत्पादन
- औद्योगिक गैस
- प्रोक्स
- छोटा स्थिर सुधारक
- ईंधन सेल शब्दों की शब्दावली
- हाइड्रोजन प्रौद्योगिकियों की समयरेखा
संदर्भ
- ↑ Hornback, Joseph. कार्बनिक रसायन विज्ञान. Brooks/Cole, Cengage Learning. pp. 146–147. ISBN 978-0-534-38951-2.
- ↑ Electricity from wood through the combination of gasification and solid oxide fuel cells, Ph.D. Thesis by Florian Nagel, Swiss Federal Institute of Technology Zurich, 2008
- ↑ Industrial Gas Handbook, Frank G. Kerry, p. 230.