एक मॉड्यूल का समर्थन: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 39: Line 39:
*{{EGA|book=I}}
*{{EGA|book=I}}
* [[Michael Atiyah|Atiyah, M. F.]], and [[I. G. Macdonald]], ''Introduction to Commutative Algebra'', Perseus Books, 1969, {{isbn|0-201-00361-9}} {{MR|242802}}
* [[Michael Atiyah|Atiyah, M. F.]], and [[I. G. Macdonald]], ''Introduction to Commutative Algebra'', Perseus Books, 1969, {{isbn|0-201-00361-9}} {{MR|242802}}
[[Category:Vigyan Ready]]


[[Category:CS1 maint]]
[[Category:CS1 maint]]
Line 46: Line 45:
[[Category:Pages with script errors]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates Vigyan Ready]]
[[Category:Vigyan Ready]]
[[Category:मॉड्यूल सिद्धांत]]
[[Category:मॉड्यूल सिद्धांत]]

Latest revision as of 17:13, 1 August 2023

क्रमविनिमेय बीजगणित में, एक क्रमविनिमेय वलय A पर एक मॉड्यूल M का सपोर्ट, A के सभी अभाज्य आदर्शों का समुच्चय है, जैसे कि (अर्थात्, पर M का स्थानीयकरण शून्य के समान नहीं है)।[1] इस प्रकार इसे से दर्शाया जाता है. परिभाषा के अनुसार सपोर्ट A के स्पेक्ट्रम का एक उपसमुच्चय है।

गुण

  • यदि और केवल यदि इसका सपोर्ट रिक्त समुच्चय है।
  • मान लीजिए A-मॉड्यूल का संक्षिप्त स्पष्ट अनुक्रम बनें। तब
ध्यान दें कि यह फेडरेशन असंयुक्त फेडरेशन नहीं हो सकता है।
  • यदि सबमॉड्यूल का योग है , तब
  • यदि एक अंतिम रूप से उत्पन्न ए-मॉड्यूल है तो M के एनीहिलेटर वाले सभी प्रमुख आदर्शों का समूह है। विशेष रूप से, यह स्पेक ए पर ज़ारिस्की टोपोलॉजी में विवृत है।
  • यदि फिर, अंतिम रूप से ए-मॉड्यूल उत्पन्न होते हैं
  • यदि एक अंतिम रूप से उत्पन्न A-मॉड्यूल है और I, A का एक आदर्श (वलय सिद्धांत) है, तो वाले सभी अभाज्य आदर्शों का समुच्चय है, यह है

क्वासिकोहेरेंट शीफ़ का सपोर्ट

यदि f स्कीम (गणित) x पर क्वासिकोहेरेंट शीफ है, तो f का सपोर्ट x में सभी बिंदुओं x का समुच्चय है जैसे कि डंठल (शीफ) fx शून्येतर है इस प्रकार यह परिभाषा स्पेस x पर सपोर्ट (गणित) की परिभाषा के समान है, और यह सपोर्ट शब्द का उपयोग करने के लिए प्रेरणा है। सपोर्ट के अधिकांश गुण मॉड्यूल से शब्द दर शब्द क्वासिकोहेरेंट शीव्स तक सामान्यीकृत होते हैं। उदाहरण के लिए, संबंधित शीफ (या अधिक सामान्यतः, परिमित प्रकार का शीफ) का सपोर्ट x का विवृत उपस्थान है।[2]

यदि M वलय A के ऊपर मॉड्यूल है, तो मॉड्यूल के रूप में M का सपोर्ट मॉड्यूल क्वासिकोहेरेंट शीफ एफ़िन स्कीम Spec A पर से जुड़े शीफ के सपोर्ट से मेल खाता है । इसके अतिरिक्त, यदि एक स्कीम x का एक एफ़िन आवरण है, तो एक क्वासिकोहेरेंट शीफ़ f का सपोर्ट प्रत्येक Aα पर संबंधित मॉड्यूल mα के सपोर्ट के फेडरेशन के समान है।.[3]

उदाहरण

जैसा कि ऊपर उल्लेख किया गया है, एक प्रमुख आदर्श तभी सपोर्ट में है जब इसमें का एन्निहिलेटर सम्मिलित होता है।[4] उदाहरण के लिए से अधिक, मॉड्यूल का एन्निहिलेटर है

आदर्श है. इसका तात्पर्य यह है कि , बहुपद f का लुप्त बिंदु है। संक्षिप्त स्पष्ट अनुक्रम को देखते हुए

इस प्रकार हम गलती से अनुमान लगा सकते हैं कि I = (f) का सपोर्ट Spec(R(f)) है, जो बहुपद f के लुप्त बिंदु का पूरक है। वास्तव में, चूँकि R एक अभिन्न डोमेन है, आदर्श I = (f) = Rf एक मॉड्यूल के रूप में R के समरूपी है, इसलिए इसका सपोर्ट संपूर्ण स्थान Supp(I) = Spec(R) है।

नोथेरियन वलय पर परिमित मॉड्यूल का सपोर्ट सदैव विशेषज्ञता के अनुसार विवृत रहता है।

अब, यदि हम एक अभिन्न डोमेन में दो बहुपद लेते हैं जो एक पूर्ण प्रतिच्छेदन आदर्श बनाते हैं तो टेंसर गुण हमें दिखाता है

यह भी देखें

संदर्भ

  1. EGA 0I, 1.7.1.
  2. The Stacks Project authors (2017). Stacks Project, Tag 01B4.
  3. The Stacks Project authors (2017). स्टैक प्रोजेक्ट, टैग 01एएस.
  4. Eisenbud, David. बीजगणितीय ज्यामिति की ओर एक दृष्टिकोण के साथ क्रमविनिमेय बीजगणित. corollary 2.7. p. 67.{{cite book}}: CS1 maint: location (link)