राइबोसोम बायोजेनेसिस: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{short description|Cellular process}} | {{short description|Cellular process}} | ||
'''[[राइबोसोम]] बायोजेनेसिस''' राइबोसोम बनाने की प्रक्रिया है। प्रोकैरियोट्स में, यह प्रक्रिया [[ कोशिका द्रव्य |कोशिका द्रव्य]] में अनेक राइबोसोम जीन ऑपेरॉन के [[प्रतिलेखन (आनुवांशिकी)]] | '''[[राइबोसोम]] बायोजेनेसिस''' राइबोसोम बनाने की प्रक्रिया है। प्रोकैरियोट्स में, यह प्रक्रिया [[ कोशिका द्रव्य |कोशिका द्रव्य]] में अनेक राइबोसोम जीन ऑपेरॉन के [[प्रतिलेखन (आनुवांशिकी)|प्रतिलेखन]] के साथ साइटोप्लाज्म में होती है। यूकेरियोट्स में, यह साइटोप्लाज्म और [[ न्यूक्लियस |न्यूक्लियस]] दोनों में होता है। इस प्रकार इसमें तीन [[प्रोकार्योटिक]] या चार [[यूकेरियोटिक]] [[आरआरएनए]] के संश्लेषण और प्रसंस्करण में 200 से अधिक [[प्रोटीन]] का समन्वित कार्य सम्मिलित है, साथ ही राइबोसोमल प्रोटीन के साथ उन आरआरएनए का संयोजन भी सम्मिलित है। इस प्रकार अधिकांश राइबोसोमल प्रोटीन एटीपी पर निर्भर आरएनए हेलिकेज़, एएए-एटीपीसेस, जीटीपीसेस और किनेज सहित विभिन्न ऊर्जा-खपत वाले एंजाइम परिवारों में आते हैं।<ref name=Kressler>{{cite journal|last1=Kressler|first1=Dieter|last2=Hurt|first2=Ed|last3=Babler|first3=Jochen|title=ड्राइविंग राइबोसोम असेंबली|journal=Biochimica et Biophysica Acta (BBA) - Molecular Cell Research|date=2009|volume=1803|issue=6|pages=673–683|doi=10.1016/j.bbamcr.2009.10.009|pmid=19879902|url=http://doc.rero.ch/record/17283/files/kressler_dra.pdf}}</ref> कोशिका की लगभग 60% ऊर्जा राइबोसोम के उत्पादन और रखरखाव पर खर्च होती है।<ref name=StU>{{cite news |title=शोधकर्ताओं का कहना है कि जीन नियमन की नई पहचान की प्रक्रिया ने विज्ञान को स्वीकार कर लिया है|author=Krista Conger |volume=9 |number=12 | work=Inside Stanford Medicine |date=June 26, 2017 |publisher=Stanford University}}</ref> | ||
राइबोसोम बायोजेनेसिस बहुत ही सख्त विनियमित प्रक्रिया है, और यह विकास और विभाजन जैसी अन्य कोशिकीय गतिविधियों से निकटता से जुड़ी हुई है।<ref name="Emma">{{cite journal|last1=Thomson|first1=Emma|last2=Ferreira-Cerca|first2=Sebastien|last3=Hurt|first3=Ed|title=यूकेरियोटिक राइबोसोम बायोजेनेसिस एक नज़र में|journal=Journal of Cell Science|date=2013|volume=126|issue=21|pages=4815–4821|doi=10.1242/jcs.111948|pmid=24172536|doi-access=free}}</ref><ref>{{cite journal | vauthors = Lu T, Stroot PG, Oerther DB | title = Reverse transcription of 16S rRNA to monitor ribosome-synthesizing bacterial populations in the environment | journal = Applied and Environmental Microbiology | volume = 75 | issue = 13 | pages = 4589–4598 | date = 2009 | pmid = 19395563 | doi = 10.1128/AEM.02970-08 | pmc = 2704851 | bibcode = 2009ApEnM..75.4589L }}</ref> | राइबोसोम बायोजेनेसिस बहुत ही सख्त विनियमित प्रक्रिया है, और यह विकास और विभाजन जैसी अन्य कोशिकीय गतिविधियों से निकटता से जुड़ी हुई है।<ref name="Emma">{{cite journal|last1=Thomson|first1=Emma|last2=Ferreira-Cerca|first2=Sebastien|last3=Hurt|first3=Ed|title=यूकेरियोटिक राइबोसोम बायोजेनेसिस एक नज़र में|journal=Journal of Cell Science|date=2013|volume=126|issue=21|pages=4815–4821|doi=10.1242/jcs.111948|pmid=24172536|doi-access=free}}</ref><ref>{{cite journal | vauthors = Lu T, Stroot PG, Oerther DB | title = Reverse transcription of 16S rRNA to monitor ribosome-synthesizing bacterial populations in the environment | journal = Applied and Environmental Microbiology | volume = 75 | issue = 13 | pages = 4589–4598 | date = 2009 | pmid = 19395563 | doi = 10.1128/AEM.02970-08 | pmc = 2704851 | bibcode = 2009ApEnM..75.4589L }}</ref> | ||
कुछ लोगों ने अनुमान लगाया है कि जीवन की उत्पत्ति में, राइबोसोम जैवजनन कोशिकाओं से पहले का है, और | इस प्रकार कुछ लोगों ने अनुमान लगाया है कि जीवन की उत्पत्ति में, राइबोसोम जैवजनन कोशिकाओं से पहले का है, और राइबोसोम की प्रजनन क्षमता को बढ़ाने के लिए जीन और कोशिकाएं विकसित हुईं।<ref>{{cite journal|last1=Root-Bernstein|first1=Meredith|last2=Root-Bernstein|first2=Robert|title=जीवन के विकास में एक लापता कड़ी के रूप में राइबोसोम|journal=Journal of Theoretical Biology|date=21 February 2015|volume=367|pages=130–158|doi=10.1016/j.jtbi.2014.11.025|pmid=25500179|doi-access=free}}</ref> | ||
== [[राइबोसोम]] == | == [[राइबोसोम|'''राइबोसोम''']] == | ||
राइबोसोम मैक्रोमोलेक्युलर मशीनें हैं जो प्रोटीन में [[एमआरएनए]] [[अनुवाद]] के लिए जिम्मेदार हैं। यूकेरियोटिक राइबोसोम, जिसे 80S राइबोसोम भी कहा जाता है, दो सबयूनिट्स से बना होता है - बड़ी 60S सबयूनिट (जिसमें 25S [पौधों में] या 28S [स्तनधारियों में], 5.8S, और 5S आरआरएनए और 46 राइबोसोमल प्रोटीन होते हैं) और | राइबोसोम मैक्रोमोलेक्युलर मशीनें हैं जो प्रोटीन में [[एमआरएनए]] [[अनुवाद]] के लिए जिम्मेदार हैं। यूकेरियोटिक राइबोसोम, जिसे 80S राइबोसोम भी कहा जाता है, दो सबयूनिट्स से बना होता है - बड़ी 60S सबयूनिट (जिसमें 25S [पौधों में] या 28S [स्तनधारियों में], 5.8S, और 5S आरआरएनए और 46 राइबोसोमल प्रोटीन होते हैं) और एक छोटी 40S सबयूनिट (जिसमें 18S आरआरएनए और 33 राइबोसोमल प्रोटीन होते हैं)।<ref>{{Cite journal | doi=10.1242/jcs.111948| pmid=24172536| title=यूकेरियोटिक राइबोसोम बायोजेनेसिस एक नज़र में| journal=Journal of Cell Science| volume=126| issue=21| pages=4815–4821| year=2013| last1=Thomson| first1=E.| last2=Ferreira-Cerca| first2=S.| last3=Hurt| first3=E.| doi-access=free}}</ref> इस प्रकार राइबोसोमल प्रोटीन राइबोसोमल जीन द्वारा एन्कोड किए जाते हैं। | ||
{| class="wikitable" | {| class="wikitable" | ||
|+आरआरएनए प्रोकैरियोटिक और यूकेरियोटिक राइबोसोम में पाया जाता है | |+आरआरएनए प्रोकैरियोटिक और यूकेरियोटिक राइबोसोम में पाया जाता है | ||
Line 26: | Line 26: | ||
|40S ([[18S ribosomal RNA|18S]] : 1869 nt<ref>{{cite journal|url=https://www.ncbi.nlm.nih.gov/nuccore/NR_003286.2|title=''Homo sapiens'' 18S ribosomal RNA|date=2017-02-04}}</ref>) | |40S ([[18S ribosomal RNA|18S]] : 1869 nt<ref>{{cite journal|url=https://www.ncbi.nlm.nih.gov/nuccore/NR_003286.2|title=''Homo sapiens'' 18S ribosomal RNA|date=2017-02-04}}</ref>) | ||
|} | |} | ||
== प्रोकैरियोट्स == | == '''प्रोकैरियोट्स''' == | ||
52 जीन हैं जो राइबोसोमल प्रोटीन को एनकोड करते हैं, और वह प्रोकैरियोटिक डीएनए के अंदर 20 ऑपेरॉन में पाए जा सकते हैं। राइबोसोम संश्लेषण का | 52 जीन हैं जो राइबोसोमल प्रोटीन को एनकोड करते हैं, और वह प्रोकैरियोटिक डीएनए के अंदर 20 ऑपेरॉन में पाए जा सकते हैं। इस प्रकार राइबोसोम संश्लेषण का विनियमन स्वयं आरआरएनए के नियमन पर ही निर्भर करता है। | ||
सबसे पहले, | सबसे पहले, अमीनोएसिल-टीआरएनए में कमी से प्रोकैरियोटिक कोशिका प्रतिलेखन और अनुवाद को कम करके प्रतिक्रिया करेगी। यह चरणों की श्रृंखला के माध्यम से होता है, जिसकी शुरुआत कठोर कारकों से प्रारंभ होती है जो राइबोसोम से जुड़ते हैं और प्रतिक्रिया को उत्प्रेरित करते हैं: | ||
GTP + ATP --> pppGpp + AMP | |||
इसके पश्चात् γ-फॉस्फेट को हटा दिया जाता है और ppGpp आरएनए पोलीमरेज़ से जुड़ जाता है और बाधित हो जाता है। इस प्रकार यह बंधन आरआरएनए प्रतिलेखन में कमी का कारण बनता है। आरआरएनए की कम मात्रा का कारण है कि राइबोसोमल प्रोटीन (आर-प्रोटीन) का अनुवाद किया जाएगा किन्तु बाध्य करने के लिए आरआरएनए नहीं होगा। इसके अतिरिक्त, वह ऋणात्मक प्रतिक्रिया देंगे और आर-प्रोटीन संश्लेषण को दबाते हुए अपने स्वयं के एमआरएनए से बंध जाएंगे। इस प्रकार ध्यान दें कि यदि आर-प्रोटीन उपस्तिथ है तो एमआरएनए के अतिरिक्त आर-प्रोटीन अधिमानतः अपने पूरक आरआरएनए से जुड़ते हैं। | |||
राइबोसोम ऑपेरॉन में [[आरएनए पोलीमरेज़]] और [[बढ़ाव कारक|बढ़ाव कारकों]] (आरएनए अनुवाद में प्रयुक्त) के जीन भी सम्मिलित हैं। इस प्रकार इन सभी जीनों का विनियमन एक साथ प्रोकैरियोट्स में प्रतिलेखन और अनुवाद के मध्य युग्मन को स्पष्ट करता है। | |||
यूकेरियोट्स | == '''यूकेरियोट्स''' == | ||
न्यूक्लियोलस में, डीएनए को उच्च गति से स्थानांतरित किया जाता है, जिसमें सभी 45S आरआरएनए जीन होते हैं। एकमात्र अपवाद 5S आरआरएनए है जो न्यूक्लियोलस के बाहर | यूकेरियोट्स में राइबोसोमल प्रोटीन संश्लेषण प्रमुख चयापचय गतिविधि है। यह, अधिकांश प्रोटीन संश्लेषण की तरह, नाभिक के ठीक बाहर साइटोप्लाज्म में होता है। इस प्रकार व्यक्तिगत राइबोसोमल प्रोटीन को [[परमाणु छिद्र]] के माध्यम से नाभिक में संश्लेषित और आयात किया जाता है। नाभिक में राइबोसोमल प्रोटीन के संचलन के बारे में अधिक जानकारी के लिए [[परमाणु आयात]] देखें। | ||
न्यूक्लियोलस में, डीएनए को उच्च गति से स्थानांतरित किया जाता है, जिसमें सभी 45S आरआरएनए जीन होते हैं। इस प्रकार एकमात्र अपवाद 5S आरआरएनए है जो '''न्यूक्लियोलस के बाहर''' प्रतिलेखित होता है। प्रतिलेखन के पश्चात्, आरआरएनए राइबोसोमल प्रोटीन के साथ जुड़ते हैं, जिससे दो प्रकार के राइबोसोमल सबयूनिट्स (बड़े और छोटे) बनते हैं। यह पश्चात् में कार्यशील राइबोसोम बनाने के लिए साइटोसोल में एकत्रित होंगे। राइबोसोमल उपइकाइयों के नाभिक से बाहर जाने के बारे में अधिक जानकारी के लिए [[परमाणु निर्यात]] देखें।<ref>{{cite journal|last=Lafontaine|first=Denis L.J.|title=A 'garbage can' for ribosomes: how eukaryotes degrade their ribosomes|date=2010|pmid=20097077|doi=10.1016/j.tibs.2009.12.006|volume=35|issue=5|journal=Trends Biochem Sci|pages=267–77}}</ref> | |||
=== प्रसंस्करण === | === प्रसंस्करण === | ||
यूकेरियोटिक कोशिकाएं चरणों की श्रृंखला के माध्यम से परिपक्व आरआरएनए प्रजातियों | यूकेरियोटिक कोशिकाएं चरणों की श्रृंखला के माध्यम से तीन परिपक्व आरआरएनए प्रजातियों का सह-प्रतिलेखन करती हैं। इस प्रकार आरआरएनए की परिपक्वता प्रक्रिया और आर-प्रोटीन की भर्ती की प्रक्रिया पूर्ववर्ती राइबोसोमल कणों में होती है, जिसे कभी-कभी प्री-राइबोसोम भी कहा जाता है, और न्यूक्लियोलस, [[न्यूक्लियोप्लाज्म]] और साइटोप्लाज्म में होता है। यीस्ट, एस. सेरेविसिया राइबोसोम जैवजनन के अध्ययन के लिए यूकेरियोटिक मॉडल जीव है। | ||
राइबोसोम बायोजेनेसिस 'न्यूक्लियोलस' में प्रारंभ होता है। वहां, 35S प्री-आरएनए को राइबोसोमल जीन से आरएनए पोलीमरेज़ | |||
राइबोसोम बायोजेनेसिस '''<nowiki/>'न्यूक्लियोलस'''' में प्रारंभ होता है। वहां, 35S प्री-आरएनए को राइबोसोमल जीन से आरएनए पोलीमरेज़ द्वारा [[ polycistronic |पॉलीसिस्ट्रोनिक]] ट्रांसक्रिप्ट के रूप में स्थानांतरित किया जाता है और 18S, 5.8S, और आरआरएनए के 25S सबयूनिट्स में संसाधित किया जाता है।<ref name="Kressler" /> <ref name="Emma" /> | |||
पोलीमरेज़ | पोलीमरेज़ का ट्रांसक्रिप्शन (आनुवांशिकी) पोल दीक्षा परिसर से प्रारंभ होता है जो rDNA प्रमोटर (आनुवांशिकी) से जुड़ता है। इस प्रकार इस कॉम्प्लेक्स के निर्माण के लिए अपस्ट्रीम एक्टिवेटिंग फैक्टर या यूएएफ की सहायता की आवश्यकता होती है जो टाटा-बॉक्स बाइंडिंग प्रोटीन और कोर फैक्टर (CF) से जुड़ता है। साथ दो प्रतिलेखन कारक आरएनए पोल कॉम्प्लेक्स को पोलीमरेज़ दीक्षा कारक, Rrn3 के साथ बाँधने की अनुमति देते हैं। जैसा कि पोल I प्रतिलेख का उत्पादन होता है, लगभग 75 छोटे न्यूक्लियर राइबोन्यूक्लियोपार्टिकल्स (snoRNPs)> 100 आरआरएनए अवशेषों के सह-ट्रांसक्रिप्शनल [[सहसंयोजक]] संशोधनों की सुविधा प्रदान करते हैं। इस प्रकार यह स्नोआरएनपी न्यूक्लियोटाइड्स के 2'-ओ-राइबोस मेथिलिकरण को नियंत्रित करते हैं और [[स्यूडोयूरिडीन]] के निर्माण में भी सहायता करते हैं।<ref name="Kressler" />आरआरएनए प्रतिलेखों के 5' छोर पर, छोटे सबयूनिट राइबोसोमल प्रोटीन (आरपीएस) और गैर-राइबोसोमल कारक पूर्व-आरएनए प्रतिलेखों के साथ इकट्ठा होकर गेंद जैसी गांठें बनाते हैं। यह नॉब छोटे (40S) राइबोसोमल सबयूनिट पाथवे में पहले प्री-राइबोसोमल कण हैं।<ref name="Kressler" />आरआरएनए प्रतिलेख ए2 साइट पर विभाजित किया जाता है, और यह प्रारंभिक 40S प्री-राइबोसोम को शेष प्री-आरआरएनए से भिन्न करता है जो बड़े सबयूनिट राइबोसोमल प्रोटीन (Rpl) और अन्य गैर-राइबोसोमल कारकों के साथ मिलकर प्री-60S राइबोसोमल कणों का निर्माण करेगा।<ref name="Kressler" /> | ||
=== 40S सबयूनिट === | === 40S सबयूनिट === | ||
40 [[स्वेडबर्ग]] सबयूनिट अग्रदूत की ट्रांसक्रिप्शनल असेंबली, जिसे कभी-कभी छोटे सबयूनिट प्रोसेसोम (SSU) या 90S कण के रूप में संदर्भित किया जाता है, पदानुक्रमित फैशन में होता है - अनिवार्य रूप से यूटीपी-A, यूटीपी-B, और यूटीपी-C उपसमुच्चय का चरणबद्ध समावेश। यह सब-कॉम्प्लेक्स 30 से अधिक गैर-राइबोसोमल प्रोटीन कारकों, U3 snoRNP कण, कुछ Rps प्रोटीन और 35S प्री-आरआरएनए से बने होते हैं। उनकी त्रुटिहीन भूमिका, चूंकि खोजी नहीं गई है।<ref name=Emma /> U3 snoRNPA आश्रित स्थलों (साइटों A0, A1, और A2) पर दरार बनने के पश्चात् पूर्व-40S कण की संरचना में भारी परिवर्तन होता है। यह दरार घटना 20S प्री-आरआरएनए बनाता है और राइबोसोमल कारकों को प्री-40S कण से भिन्न करने का कारण बनता है। U3 नवजात 40S से हेलीकॉप्टर Dhr1 द्वारा विस्थापित किया गया है।<ref>{{cite journal |last1=Sardana |first1=R |last2=Liu |first2=X |last3=Granneman |first3=S |last4=Zhu |first4=J |last5=Gill |first5=M |last6=Papoulas |first6=O |last7=Marcotte |first7=EM |last8=Tollervey |first8=D |last9=Correll |first9=CC |last10=Johnson |first10=AW |title=The DEAH-box helicase Dhr1 dissociates U3 from the pre-rRNA to promote formation of the central pseudoknot. |journal=PLOS Biology |date=February 2015 |volume=13 |issue=2 |pages=e1002083 |doi=10.1371/journal.pbio.1002083 |pmid=25710520|pmc=4340053 }}</ref> इस बिंदु पर राइबोसोम बायोजेनेसिस प्रक्रिया में, 40S प्री-राइबोसोम पहले से ही परिपक्व 40S सबयूनिट के "सिर" और '''"शरीर"''' संरचनाओं को दर्शाता है। 40S प्री-राइबोसोम को न्यूक्लियोलस से बाहर और साइटोप्लाज्म में ले जाया जाता है। साइटोप्लाज्मिक 40S प्री-राइबोसोम में वर्तमान राइबोसोमल प्रोटीन, 20s आरआरएनए और कुछ गैर-राइबोसोमल कारक होते हैं। 40S सबयूनिट '''"बीक"''' संरचना का अंतिम गठन Enp1-Ltv1-Rps3 कॉम्प्लेक्स और [[काइनेज]], Hrr25 से जुड़े फॉस्फोराइलेशन और [[डे[[phosphorylation|फास्फारिलीकरण]]]] इवेंट के पश्चात् होता है। डी-साइट पर 20S प्री-आरआरएनए का विदलन परिपक्व 18s आरआरएनए बनाता है। यह दरार की घटना अनेक गैर-राइबोसोमल कारकों जैसे Nob1, Rio1, Rio2, Tsr1 और Fap7 पर निर्भर है।<ref name=Kressler /> | 40 [[स्वेडबर्ग]] सबयूनिट अग्रदूत की ट्रांसक्रिप्शनल असेंबली, जिसे कभी-कभी छोटे सबयूनिट प्रोसेसोम (SSU) या 90S कण के रूप में संदर्भित किया जाता है, पदानुक्रमित फैशन में होता है - अनिवार्य रूप से यूटीपी-A, यूटीपी-B, और यूटीपी-C उपसमुच्चय का चरणबद्ध समावेश। यह सब-कॉम्प्लेक्स 30 से अधिक गैर-राइबोसोमल प्रोटीन कारकों, U3 snoRNP कण, कुछ Rps प्रोटीन और 35S प्री-आरआरएनए से बने होते हैं। इस प्रकार उनकी त्रुटिहीन भूमिका, चूंकि खोजी नहीं गई है।<ref name=Emma /> U3 snoRNPA आश्रित स्थलों (साइटों A0, A1, और A2) पर दरार बनने के पश्चात् पूर्व-40S कण की संरचना में भारी परिवर्तन होता है। यह दरार घटना 20S प्री-आरआरएनए बनाता है और राइबोसोमल कारकों को प्री-40S कण से भिन्न करने का कारण बनता है। U3 नवजात 40S से हेलीकॉप्टर Dhr1 द्वारा विस्थापित किया गया है।<ref>{{cite journal |last1=Sardana |first1=R |last2=Liu |first2=X |last3=Granneman |first3=S |last4=Zhu |first4=J |last5=Gill |first5=M |last6=Papoulas |first6=O |last7=Marcotte |first7=EM |last8=Tollervey |first8=D |last9=Correll |first9=CC |last10=Johnson |first10=AW |title=The DEAH-box helicase Dhr1 dissociates U3 from the pre-rRNA to promote formation of the central pseudoknot. |journal=PLOS Biology |date=February 2015 |volume=13 |issue=2 |pages=e1002083 |doi=10.1371/journal.pbio.1002083 |pmid=25710520|pmc=4340053 }}</ref> इस प्रकार इस बिंदु पर राइबोसोम बायोजेनेसिस प्रक्रिया में, 40S प्री-राइबोसोम पहले से ही परिपक्व 40S सबयूनिट के "सिर" और '''"शरीर"''' संरचनाओं को दर्शाता है। 40S प्री-राइबोसोम को न्यूक्लियोलस से बाहर और साइटोप्लाज्म में ले जाया जाता है। साइटोप्लाज्मिक 40S प्री-राइबोसोम में वर्तमान राइबोसोमल प्रोटीन, 20s आरआरएनए और कुछ गैर-राइबोसोमल कारक होते हैं। 40S सबयूनिट '''"बीक"''' संरचना का अंतिम गठन Enp1-Ltv1-Rps3 कॉम्प्लेक्स और [[काइनेज]], Hrr25 से जुड़े फॉस्फोराइलेशन और [[डे[[phosphorylation|फास्फारिलीकरण]]]] इवेंट के पश्चात् होता है। डी-साइट पर 20S प्री-आरआरएनए का विदलन परिपक्व 18s आरआरएनए बनाता है। यह दरार की घटना अनेक गैर-राइबोसोमल कारकों जैसे Nob1, Rio1, Rio2, Tsr1 और Fap7 पर निर्भर है।<ref name=Kressler /> | ||
=== 60S सबयूनिट === | === 60S सबयूनिट === | ||
पूर्व-60एस सबयूनिट की परिपक्व 60एस सबयूनिट में परिपक्वता के लिए अनेक बायोजेनेसिस कारकों की आवश्यकता होती है जो सहयोगी और भिन्न होते हैं। इसके अतिरिक्त, कुछ असेंबली कारक 60S सबयूनिट के साथ जुड़ते हैं जबकि अन्य इसके साथ केवल क्षणिक रूप से बातचीत करते हैं। समग्र प्रवृत्ति के रूप में, पूर्व-60एस सबयूनिट की परिपक्वता समष्टिता में क्रमिक कमी के रूप में चिह्नित है। सबयूनिट परिपक्व हो जाता है क्योंकि यह न्यूक्लियोलस से साइटोप्लाज्म तक जाता है और धीरे-धीरे [[ ट्रांस-अभिनय |ट्रांस-अभिनय]] कारकों की संख्या कम हो जाती है।<ref name=Emma />60S सबयूनिट की परिपक्वता के लिए लगभग 80 कारकों की सहायता की आवश्यकता होती है। इनमें से आठ कारक सीधे 27S A3 प्री-आरआरएनए के प्रसंस्करण से जुड़े हैं, जो वास्तव में 5.8S आरआरएनए के परिपक्व 5'एंड के गठन को पूरा करता है। A3 कारक प्री-आरएनए के साथ-साथ एक-दूसरे के दूर के स्थलों से जुड़ते हैं। इसके पश्चात्, वह आरआरएनए के क्षेत्रों को साथ लाते हैं और प्री-आरआरएनए के प्रसंस्करण और रिबोसोमल प्रोटीन की भर्ती को बढ़ावा देते हैं। तीन AAA-प्रकार के [[ATPase]]s 60S प्री-राइबोसोम के परिपक्व होने से कारकों को हटाने का काम करते हैं। ATPases में से डायनेन जैसा Rea1 प्रोटीन है जो 6 भिन्न-भिन्न ATPase डोमेन से बना होता है जो रिंग संरचना बनाते हैं। रिंग संरचना लचीली पूंछ से जुड़ी होती है जिसमें MIDAS (धातु आयन-निर्भर आसंजन साइट) टिप होता है। Rea1 अपने रिंग के माध्यम से 60S प्री-राइबोसोम के साथ इंटरैक्ट करता है जबकि दो [[ सब्सट्रेट (जैव रसायन) |सब्सट्रेट (जैव रसायन)]] Ytm1 और Rsa1 अपने MIDAS टिप के माध्यम से Rea1 के साथ इंटरैक्ट करते हैं। इन सबस्ट्रेट्स की भूमिका अभी तक परिभाषित नहीं की गई है। दोनों चूंकि, उनकी बातचीत के साथ, 60S प्री-राइबोसोम की परिपक्वता प्रक्रिया में हटा दिए जाते हैं। अन्य दो ATPases, Rix7 और Drg1 भी परिपक्व 60S सबयूनिट से असेंबली कारकों को हटाने के लिए कार्य करते हैं। पूर्ण 60S सबयूनिट बनाने के लिए असेंबली कारकों को हटाने और आरएनए की पुनर्व्यवस्था में हेलिकेज और GTPases भी सम्मिलित हैं। साइटोप्लाज्म में बार (परमाणु निर्यात देखें), 60S सबयूनिट कार्यात्मक होने के लिए आगे प्रसंस्करण से गुजरती है। बाकी बड़े सबयूनिट राइबोसोमल कण 60S यूनिट के साथ जुड़ते हैं और शेष गैर-राइबोसोमल असेंबली कारक भिन्न हो जाते हैं। बायोजेनेसिस कारकों की रिहाई अधिकतर [[जीटीपीसेस]] जैसे एलएसजी1 और एटीपीसेस जैसे डीआरजी1 द्वारा मध्यस्थता की जाती है। इन घटनाओं का त्रुटिहीन क्रम अस्पष्ट रहता है। जहां तक वर्तमान ज्ञान का संबंध है, 60S साइटोप्लाज्मिक परिपक्वता का मार्ग अधूरा रहता है।<ref name=Emma /> | पूर्व-60एस सबयूनिट की परिपक्व 60एस सबयूनिट में परिपक्वता के लिए अनेक बायोजेनेसिस कारकों की आवश्यकता होती है जो सहयोगी और भिन्न होते हैं। इसके अतिरिक्त, कुछ असेंबली कारक 60S सबयूनिट के साथ जुड़ते हैं जबकि अन्य इसके साथ केवल क्षणिक रूप से बातचीत करते हैं। समग्र प्रवृत्ति के रूप में, पूर्व-60एस सबयूनिट की परिपक्वता समष्टिता में क्रमिक कमी के रूप में चिह्नित है। सबयूनिट परिपक्व हो जाता है क्योंकि यह न्यूक्लियोलस से साइटोप्लाज्म तक जाता है और धीरे-धीरे [[ ट्रांस-अभिनय |ट्रांस-अभिनय]] कारकों की संख्या कम हो जाती है।<ref name=Emma />60S सबयूनिट की परिपक्वता के लिए लगभग 80 कारकों की सहायता की आवश्यकता होती है। इस प्रकार इनमें से आठ कारक सीधे 27S A3 प्री-आरआरएनए के प्रसंस्करण से जुड़े हैं, जो वास्तव में 5.8S आरआरएनए के परिपक्व 5'एंड के गठन को पूरा करता है। A3 कारक प्री-आरएनए के साथ-साथ एक-दूसरे के दूर के स्थलों से जुड़ते हैं। इसके पश्चात्, वह आरआरएनए के क्षेत्रों को साथ लाते हैं और प्री-आरआरएनए के प्रसंस्करण और रिबोसोमल प्रोटीन की भर्ती को बढ़ावा देते हैं। तीन AAA-प्रकार के [[ATPase]]s 60S प्री-राइबोसोम के परिपक्व होने से कारकों को हटाने का काम करते हैं। इस प्रकार ATPases में से डायनेन जैसा Rea1 प्रोटीन है जो 6 भिन्न-भिन्न ATPase डोमेन से बना होता है जो रिंग संरचना बनाते हैं। रिंग संरचना लचीली पूंछ से जुड़ी होती है जिसमें MIDAS (धातु आयन-निर्भर आसंजन साइट) टिप होता है। Rea1 अपने रिंग के माध्यम से 60S प्री-राइबोसोम के साथ इंटरैक्ट करता है जबकि दो [[ सब्सट्रेट (जैव रसायन) |सब्सट्रेट (जैव रसायन)]] Ytm1 और Rsa1 अपने MIDAS टिप के माध्यम से Rea1 के साथ इंटरैक्ट करते हैं। इन सबस्ट्रेट्स की भूमिका अभी तक परिभाषित नहीं की गई है। इस प्रकार दोनों चूंकि, उनकी बातचीत के साथ, 60S प्री-राइबोसोम की परिपक्वता प्रक्रिया में हटा दिए जाते हैं। अन्य दो ATPases, Rix7 और Drg1 भी परिपक्व 60S सबयूनिट से असेंबली कारकों को हटाने के लिए कार्य करते हैं। इस प्रकार पूर्ण 60S सबयूनिट बनाने के लिए असेंबली कारकों को हटाने और आरएनए की पुनर्व्यवस्था में हेलिकेज और GTPases भी सम्मिलित हैं। साइटोप्लाज्म में बार (परमाणु निर्यात देखें), 60S सबयूनिट कार्यात्मक होने के लिए आगे प्रसंस्करण से गुजरती है। इस प्रकार बाकी बड़े सबयूनिट राइबोसोमल कण 60S यूनिट के साथ जुड़ते हैं और शेष गैर-राइबोसोमल असेंबली कारक भिन्न हो जाते हैं। बायोजेनेसिस कारकों की रिहाई अधिकतर [[जीटीपीसेस]] जैसे एलएसजी1 और एटीपीसेस जैसे डीआरजी1 द्वारा मध्यस्थता की जाती है। इन घटनाओं का त्रुटिहीन क्रम अस्पष्ट रहता है। जहां तक वर्तमान ज्ञान का संबंध है, 60S साइटोप्लाज्मिक परिपक्वता का मार्ग अधूरा रहता है।<ref name=Emma /> | ||
== परमाणु निर्यात == | == '''परमाणु निर्यात''' == | ||
प्री-राइबोसोमल इकाइयों को पूरी तरह से परिपक्व होने के लिए, उन्हें साइटोप्लाज्म में निर्यात किया जाना चाहिए। न्यूक्लियोलस से साइटोप्लाज्म को प्रभावी ढंग से स्थानांतरित करने के लिए, प्री-राइबोसोम निर्यात रिसेप्टर्स के साथ परमाणु ताकना परिसर के हाइड्रोफोबिक केंद्रीय चैनल के माध्यम से स्थानांतरित करने के लिए बातचीत करते हैं।<ref name=Emma />[[कैरियोफेरिन]] [[Crm1]] दोनों राइबोसोमल सबयूनिट्स के लिए रिसेप्टर है और [[रैन (जीन)]] | प्री-राइबोसोमल इकाइयों को पूरी तरह से परिपक्व होने के लिए, उन्हें साइटोप्लाज्म में निर्यात किया जाना चाहिए। इस प्रकार न्यूक्लियोलस से साइटोप्लाज्म को प्रभावी ढंग से स्थानांतरित करने के लिए, प्री-राइबोसोम निर्यात रिसेप्टर्स के साथ परमाणु ताकना परिसर के हाइड्रोफोबिक केंद्रीय चैनल के माध्यम से स्थानांतरित करने के लिए बातचीत करते हैं।<ref name=Emma /> [[कैरियोफेरिन]] [[Crm1]] दोनों राइबोसोमल सबयूनिट्स के लिए रिसेप्टर है और [[रैन (जीन)]] रैन-जीटीपी निर्भर फैशन में मध्यस्थ निर्यात करता है। यह उन अणुओं को पहचानता है जिनमें [[ल्यूसीन]] युक्त परमाणु निर्यात संकेत होते हैं। Nmd3 नामक एडेप्टर प्रोटीन की सहायता से Crm1 को बड़े 60S सबयूनिट में खींचा जाता है। इस प्रकार 40S यूनिट के लिए एडेप्टर प्रोटीन अज्ञात है। Crm1 के अतिरिक्त, अन्य कारक प्री-राइबोसोम के परमाणु निर्यात में भूमिका निभाते हैं। इस प्रकार सामान्य एमआरएनए निर्यात रिसेप्टर, जिसे मेक्स67 कहा जाता है, साथ ही हीट-रिपीटिंग-युक्त प्रोटीन, आरआरपी12, दोनों उपइकाइयों के निर्यात की सुविधा प्रदान करता है। यह कारक गैर-आवश्यक प्रोटीन हैं और प्री-राइबोसोम के निर्यात को अनुकूलित करने में सहायता करते हैं क्योंकि वह बड़े अणु होते हैं।<ref name=Emma /> | ||
== गुणवत्ता नियंत्रण == | == '''गुणवत्ता नियंत्रण''' == | ||
क्योंकि राइबोसोम इतने समष्टि होते हैं, राइबोसोम की निश्चित संख्या को गलत तरीके से इकट्ठा किया जाता है और गैर-कार्यात्मक प्रोटीन को संश्लेषित करते समय संभावित रूप से सेलुलर ऊर्जा और संसाधनों को बर्बाद कर सकता है। इसे रोकने के लिए, क्षतिग्रस्त या दोषपूर्ण रिबोसोम को पहचानने और उन्हें गिरावट के लिए लक्षित करने के लिए कोशिकाओं में सक्रिय निगरानी प्रणाली होती है। गैर-कार्यात्मक पूर्व-राइबोसोम के साथ-साथ गैर-कार्यात्मक परिपक्व राइबोसोम का पता लगाने के लिए निगरानी तंत्र उपस्तिथ है। इसके अतिरिक्त, निगरानी प्रणाली आवश्यक गिरावट उपकरण लाती है और वास्तव में गैर-कार्यात्मक राइबोसोम को नीचा दिखाती है।<ref name=Kressler />प्री-राइबोसोम जो न्यूक्लियस में बनते हैं, [[एक्सोसोम कॉम्प्लेक्स]] द्वारा नष्ट हो जाते हैं, जो [[exonuclease|एक्सोन्यूक्लिज़]] गतिविधि के साथ मल्टीसबयूनिट कॉम्प्लेक्स है। यदि दोषपूर्ण राइबोसोमल सबयूनिट्स इसे न्यूक्लियोलस से बाहर और साइटोप्लाज्म में बनाने के लिए होते हैं, तब साइटोप्लाज्म में खराब राइबोसोम को गिरावट के लिए लक्षित करने के लिए वहां दूसरी निगरानी प्रणाली होती है। बड़े राइबोसोम सबयूनिट के अवशेषों में कुछ उत्परिवर्तन वास्तव में आरएनए क्षय और इस प्रकार इकाई के क्षरण का परिणाम होगा। क्योंकि रिबोसोम असेंबली में संभावित दोषों की मात्रा इतनी व्यापक है, यह अभी भी अज्ञात है कि कैसे निगरानी प्रणाली सभी दोषों का पता लगाती है, किन्तु यह माना गया है कि विशिष्ट दोषों को लक्षित करने के अतिरिक्त, निगरानी प्रणाली उन दोषों के परिणामों को पहचानती है - जैसे असेंबली में देरी। मतलब, यदि परिपक्व राइबोसोम की असेंबली या परिपक्वता में कोई व्यवधान होता है, तब निगरानी प्रणाली कार्य करेगी जैसे कि सबयूनिट दोषपूर्ण है।<ref name=Emma /> | क्योंकि राइबोसोम इतने समष्टि होते हैं, राइबोसोम की निश्चित संख्या को गलत तरीके से इकट्ठा किया जाता है और गैर-कार्यात्मक प्रोटीन को संश्लेषित करते समय संभावित रूप से सेलुलर ऊर्जा और संसाधनों को बर्बाद कर सकता है। इस प्रकार इसे रोकने के लिए, क्षतिग्रस्त या दोषपूर्ण रिबोसोम को पहचानने और उन्हें गिरावट के लिए लक्षित करने के लिए कोशिकाओं में सक्रिय निगरानी प्रणाली होती है। गैर-कार्यात्मक पूर्व-राइबोसोम के साथ-साथ गैर-कार्यात्मक परिपक्व राइबोसोम का पता लगाने के लिए निगरानी तंत्र उपस्तिथ है। इसके अतिरिक्त, निगरानी प्रणाली आवश्यक गिरावट उपकरण लाती है और वास्तव में गैर-कार्यात्मक राइबोसोम को नीचा दिखाती है।<ref name=Kressler /> इस प्रकार प्री-राइबोसोम जो न्यूक्लियस में बनते हैं, [[एक्सोसोम कॉम्प्लेक्स]] द्वारा नष्ट हो जाते हैं, जो [[exonuclease|एक्सोन्यूक्लिज़]] गतिविधि के साथ मल्टीसबयूनिट कॉम्प्लेक्स है। यदि दोषपूर्ण राइबोसोमल सबयूनिट्स इसे न्यूक्लियोलस से बाहर और साइटोप्लाज्म में बनाने के लिए होते हैं, तब साइटोप्लाज्म में खराब राइबोसोम को गिरावट के लिए लक्षित करने के लिए वहां दूसरी निगरानी प्रणाली होती है। बड़े राइबोसोम सबयूनिट के अवशेषों में कुछ उत्परिवर्तन वास्तव में आरएनए क्षय और इस प्रकार इकाई के क्षरण का परिणाम होगा। इस प्रकार क्योंकि रिबोसोम असेंबली में संभावित दोषों की मात्रा इतनी व्यापक है, यह अभी भी अज्ञात है कि कैसे निगरानी प्रणाली सभी दोषों का पता लगाती है, किन्तु यह माना गया है कि विशिष्ट दोषों को लक्षित करने के अतिरिक्त, निगरानी प्रणाली उन दोषों के परिणामों को पहचानती है - जैसे असेंबली में देरी। मतलब, यदि परिपक्व राइबोसोम की असेंबली या परिपक्वता में कोई व्यवधान होता है, तब निगरानी प्रणाली कार्य करेगी जैसे कि सबयूनिट दोषपूर्ण है।<ref name=Emma /> | ||
== मानव रोग == | == '''मानव रोग''' == | ||
{{Main|राइबोसोमोपैथी}} | {{Main|राइबोसोमोपैथी}} | ||
राइबोसोम बायोजेनेसिस में उत्परिवर्तन अनेक मानव [[राइबोसोमोपैथी]] [[आनुवंशिक रोग]] | राइबोसोम बायोजेनेसिस में उत्परिवर्तन अनेक मानव [[राइबोसोमोपैथी]] [[आनुवंशिक रोग|आनुवंशिक रोगों]] से जुड़े होते हैं, जिनमें वंशानुगत अस्थि मज्जा विफलता सिंड्रोम भी सम्मिलित हैं, जो कि [[कैंसर]] की प्रवृत्ति और रक्त कोशिकाओं की कम संख्या की विशेषता है। इस प्रकार राइबोसोमल डिसग्रुलेशन भी मांसपेशियों की बर्बादी में भूमिका निभा सकता है।<ref>{{Cite journal | pmid = 29215200| pmc = 5879973| year = 2017| last1 = Connolly| first1 = Martin| title = miR-424-5p reduces ribosomal RNA and protein synthesis in muscle wasting.| journal = Journal of Cachexia, Sarcopenia and Muscle| volume = 9| issue = 2| pages = 400–416| doi = 10.1002/jcsm.12266}}</ref> | ||
== यह भी देखें == | == '''यह भी देखें''' == | ||
* आरएनए पोलीमरेज़ | * आरएनए पोलीमरेज़ | ||
==संदर्भ== | =='''संदर्भ'''== | ||
<references /> | <references /> | ||
Revision as of 11:17, 26 July 2023
राइबोसोम बायोजेनेसिस राइबोसोम बनाने की प्रक्रिया है। प्रोकैरियोट्स में, यह प्रक्रिया कोशिका द्रव्य में अनेक राइबोसोम जीन ऑपेरॉन के प्रतिलेखन के साथ साइटोप्लाज्म में होती है। यूकेरियोट्स में, यह साइटोप्लाज्म और न्यूक्लियस दोनों में होता है। इस प्रकार इसमें तीन प्रोकार्योटिक या चार यूकेरियोटिक आरआरएनए के संश्लेषण और प्रसंस्करण में 200 से अधिक प्रोटीन का समन्वित कार्य सम्मिलित है, साथ ही राइबोसोमल प्रोटीन के साथ उन आरआरएनए का संयोजन भी सम्मिलित है। इस प्रकार अधिकांश राइबोसोमल प्रोटीन एटीपी पर निर्भर आरएनए हेलिकेज़, एएए-एटीपीसेस, जीटीपीसेस और किनेज सहित विभिन्न ऊर्जा-खपत वाले एंजाइम परिवारों में आते हैं।[1] कोशिका की लगभग 60% ऊर्जा राइबोसोम के उत्पादन और रखरखाव पर खर्च होती है।[2]
राइबोसोम बायोजेनेसिस बहुत ही सख्त विनियमित प्रक्रिया है, और यह विकास और विभाजन जैसी अन्य कोशिकीय गतिविधियों से निकटता से जुड़ी हुई है।[3][4]
इस प्रकार कुछ लोगों ने अनुमान लगाया है कि जीवन की उत्पत्ति में, राइबोसोम जैवजनन कोशिकाओं से पहले का है, और राइबोसोम की प्रजनन क्षमता को बढ़ाने के लिए जीन और कोशिकाएं विकसित हुईं।[5]
राइबोसोम
राइबोसोम मैक्रोमोलेक्युलर मशीनें हैं जो प्रोटीन में एमआरएनए अनुवाद के लिए जिम्मेदार हैं। यूकेरियोटिक राइबोसोम, जिसे 80S राइबोसोम भी कहा जाता है, दो सबयूनिट्स से बना होता है - बड़ी 60S सबयूनिट (जिसमें 25S [पौधों में] या 28S [स्तनधारियों में], 5.8S, और 5S आरआरएनए और 46 राइबोसोमल प्रोटीन होते हैं) और एक छोटी 40S सबयूनिट (जिसमें 18S आरआरएनए और 33 राइबोसोमल प्रोटीन होते हैं)।[6] इस प्रकार राइबोसोमल प्रोटीन राइबोसोमल जीन द्वारा एन्कोड किए जाते हैं।
प्रकार | आकार | बड़ी उप इकाई(एलएसयू आरआरएनए ) | छोटी उप इकाई (एसएसयू आरआरएनए ) |
prokaryotic | 70S | 50S (5S : 120 nt, 23S : 2906 nt) | 30S (16S : 1542 nt) |
eukaryotic | 80S | 60S (5S : 121 nt,[7] 5.8S : 156 nt,[8] 28S : 5070 nt[9]) | 40S (18S : 1869 nt[10]) |
प्रोकैरियोट्स
52 जीन हैं जो राइबोसोमल प्रोटीन को एनकोड करते हैं, और वह प्रोकैरियोटिक डीएनए के अंदर 20 ऑपेरॉन में पाए जा सकते हैं। इस प्रकार राइबोसोम संश्लेषण का विनियमन स्वयं आरआरएनए के नियमन पर ही निर्भर करता है।
सबसे पहले, अमीनोएसिल-टीआरएनए में कमी से प्रोकैरियोटिक कोशिका प्रतिलेखन और अनुवाद को कम करके प्रतिक्रिया करेगी। यह चरणों की श्रृंखला के माध्यम से होता है, जिसकी शुरुआत कठोर कारकों से प्रारंभ होती है जो राइबोसोम से जुड़ते हैं और प्रतिक्रिया को उत्प्रेरित करते हैं:
GTP + ATP --> pppGpp + AMP
इसके पश्चात् γ-फॉस्फेट को हटा दिया जाता है और ppGpp आरएनए पोलीमरेज़ से जुड़ जाता है और बाधित हो जाता है। इस प्रकार यह बंधन आरआरएनए प्रतिलेखन में कमी का कारण बनता है। आरआरएनए की कम मात्रा का कारण है कि राइबोसोमल प्रोटीन (आर-प्रोटीन) का अनुवाद किया जाएगा किन्तु बाध्य करने के लिए आरआरएनए नहीं होगा। इसके अतिरिक्त, वह ऋणात्मक प्रतिक्रिया देंगे और आर-प्रोटीन संश्लेषण को दबाते हुए अपने स्वयं के एमआरएनए से बंध जाएंगे। इस प्रकार ध्यान दें कि यदि आर-प्रोटीन उपस्तिथ है तो एमआरएनए के अतिरिक्त आर-प्रोटीन अधिमानतः अपने पूरक आरआरएनए से जुड़ते हैं।
राइबोसोम ऑपेरॉन में आरएनए पोलीमरेज़ और बढ़ाव कारकों (आरएनए अनुवाद में प्रयुक्त) के जीन भी सम्मिलित हैं। इस प्रकार इन सभी जीनों का विनियमन एक साथ प्रोकैरियोट्स में प्रतिलेखन और अनुवाद के मध्य युग्मन को स्पष्ट करता है।
यूकेरियोट्स
यूकेरियोट्स में राइबोसोमल प्रोटीन संश्लेषण प्रमुख चयापचय गतिविधि है। यह, अधिकांश प्रोटीन संश्लेषण की तरह, नाभिक के ठीक बाहर साइटोप्लाज्म में होता है। इस प्रकार व्यक्तिगत राइबोसोमल प्रोटीन को परमाणु छिद्र के माध्यम से नाभिक में संश्लेषित और आयात किया जाता है। नाभिक में राइबोसोमल प्रोटीन के संचलन के बारे में अधिक जानकारी के लिए परमाणु आयात देखें।
न्यूक्लियोलस में, डीएनए को उच्च गति से स्थानांतरित किया जाता है, जिसमें सभी 45S आरआरएनए जीन होते हैं। इस प्रकार एकमात्र अपवाद 5S आरआरएनए है जो न्यूक्लियोलस के बाहर प्रतिलेखित होता है। प्रतिलेखन के पश्चात्, आरआरएनए राइबोसोमल प्रोटीन के साथ जुड़ते हैं, जिससे दो प्रकार के राइबोसोमल सबयूनिट्स (बड़े और छोटे) बनते हैं। यह पश्चात् में कार्यशील राइबोसोम बनाने के लिए साइटोसोल में एकत्रित होंगे। राइबोसोमल उपइकाइयों के नाभिक से बाहर जाने के बारे में अधिक जानकारी के लिए परमाणु निर्यात देखें।[11]
प्रसंस्करण
यूकेरियोटिक कोशिकाएं चरणों की श्रृंखला के माध्यम से तीन परिपक्व आरआरएनए प्रजातियों का सह-प्रतिलेखन करती हैं। इस प्रकार आरआरएनए की परिपक्वता प्रक्रिया और आर-प्रोटीन की भर्ती की प्रक्रिया पूर्ववर्ती राइबोसोमल कणों में होती है, जिसे कभी-कभी प्री-राइबोसोम भी कहा जाता है, और न्यूक्लियोलस, न्यूक्लियोप्लाज्म और साइटोप्लाज्म में होता है। यीस्ट, एस. सेरेविसिया राइबोसोम जैवजनन के अध्ययन के लिए यूकेरियोटिक मॉडल जीव है।
राइबोसोम बायोजेनेसिस 'न्यूक्लियोलस' में प्रारंभ होता है। वहां, 35S प्री-आरएनए को राइबोसोमल जीन से आरएनए पोलीमरेज़ द्वारा पॉलीसिस्ट्रोनिक ट्रांसक्रिप्ट के रूप में स्थानांतरित किया जाता है और 18S, 5.8S, और आरआरएनए के 25S सबयूनिट्स में संसाधित किया जाता है।[1] [3]
पोलीमरेज़ का ट्रांसक्रिप्शन (आनुवांशिकी) पोल दीक्षा परिसर से प्रारंभ होता है जो rDNA प्रमोटर (आनुवांशिकी) से जुड़ता है। इस प्रकार इस कॉम्प्लेक्स के निर्माण के लिए अपस्ट्रीम एक्टिवेटिंग फैक्टर या यूएएफ की सहायता की आवश्यकता होती है जो टाटा-बॉक्स बाइंडिंग प्रोटीन और कोर फैक्टर (CF) से जुड़ता है। साथ दो प्रतिलेखन कारक आरएनए पोल कॉम्प्लेक्स को पोलीमरेज़ दीक्षा कारक, Rrn3 के साथ बाँधने की अनुमति देते हैं। जैसा कि पोल I प्रतिलेख का उत्पादन होता है, लगभग 75 छोटे न्यूक्लियर राइबोन्यूक्लियोपार्टिकल्स (snoRNPs)> 100 आरआरएनए अवशेषों के सह-ट्रांसक्रिप्शनल सहसंयोजक संशोधनों की सुविधा प्रदान करते हैं। इस प्रकार यह स्नोआरएनपी न्यूक्लियोटाइड्स के 2'-ओ-राइबोस मेथिलिकरण को नियंत्रित करते हैं और स्यूडोयूरिडीन के निर्माण में भी सहायता करते हैं।[1]आरआरएनए प्रतिलेखों के 5' छोर पर, छोटे सबयूनिट राइबोसोमल प्रोटीन (आरपीएस) और गैर-राइबोसोमल कारक पूर्व-आरएनए प्रतिलेखों के साथ इकट्ठा होकर गेंद जैसी गांठें बनाते हैं। यह नॉब छोटे (40S) राइबोसोमल सबयूनिट पाथवे में पहले प्री-राइबोसोमल कण हैं।[1]आरआरएनए प्रतिलेख ए2 साइट पर विभाजित किया जाता है, और यह प्रारंभिक 40S प्री-राइबोसोम को शेष प्री-आरआरएनए से भिन्न करता है जो बड़े सबयूनिट राइबोसोमल प्रोटीन (Rpl) और अन्य गैर-राइबोसोमल कारकों के साथ मिलकर प्री-60S राइबोसोमल कणों का निर्माण करेगा।[1]
40S सबयूनिट
40 स्वेडबर्ग सबयूनिट अग्रदूत की ट्रांसक्रिप्शनल असेंबली, जिसे कभी-कभी छोटे सबयूनिट प्रोसेसोम (SSU) या 90S कण के रूप में संदर्भित किया जाता है, पदानुक्रमित फैशन में होता है - अनिवार्य रूप से यूटीपी-A, यूटीपी-B, और यूटीपी-C उपसमुच्चय का चरणबद्ध समावेश। यह सब-कॉम्प्लेक्स 30 से अधिक गैर-राइबोसोमल प्रोटीन कारकों, U3 snoRNP कण, कुछ Rps प्रोटीन और 35S प्री-आरआरएनए से बने होते हैं। इस प्रकार उनकी त्रुटिहीन भूमिका, चूंकि खोजी नहीं गई है।[3] U3 snoRNPA आश्रित स्थलों (साइटों A0, A1, और A2) पर दरार बनने के पश्चात् पूर्व-40S कण की संरचना में भारी परिवर्तन होता है। यह दरार घटना 20S प्री-आरआरएनए बनाता है और राइबोसोमल कारकों को प्री-40S कण से भिन्न करने का कारण बनता है। U3 नवजात 40S से हेलीकॉप्टर Dhr1 द्वारा विस्थापित किया गया है।[12] इस प्रकार इस बिंदु पर राइबोसोम बायोजेनेसिस प्रक्रिया में, 40S प्री-राइबोसोम पहले से ही परिपक्व 40S सबयूनिट के "सिर" और "शरीर" संरचनाओं को दर्शाता है। 40S प्री-राइबोसोम को न्यूक्लियोलस से बाहर और साइटोप्लाज्म में ले जाया जाता है। साइटोप्लाज्मिक 40S प्री-राइबोसोम में वर्तमान राइबोसोमल प्रोटीन, 20s आरआरएनए और कुछ गैर-राइबोसोमल कारक होते हैं। 40S सबयूनिट "बीक" संरचना का अंतिम गठन Enp1-Ltv1-Rps3 कॉम्प्लेक्स और काइनेज, Hrr25 से जुड़े फॉस्फोराइलेशन और [[डेफास्फारिलीकरण]] इवेंट के पश्चात् होता है। डी-साइट पर 20S प्री-आरआरएनए का विदलन परिपक्व 18s आरआरएनए बनाता है। यह दरार की घटना अनेक गैर-राइबोसोमल कारकों जैसे Nob1, Rio1, Rio2, Tsr1 और Fap7 पर निर्भर है।[1]
60S सबयूनिट
पूर्व-60एस सबयूनिट की परिपक्व 60एस सबयूनिट में परिपक्वता के लिए अनेक बायोजेनेसिस कारकों की आवश्यकता होती है जो सहयोगी और भिन्न होते हैं। इसके अतिरिक्त, कुछ असेंबली कारक 60S सबयूनिट के साथ जुड़ते हैं जबकि अन्य इसके साथ केवल क्षणिक रूप से बातचीत करते हैं। समग्र प्रवृत्ति के रूप में, पूर्व-60एस सबयूनिट की परिपक्वता समष्टिता में क्रमिक कमी के रूप में चिह्नित है। सबयूनिट परिपक्व हो जाता है क्योंकि यह न्यूक्लियोलस से साइटोप्लाज्म तक जाता है और धीरे-धीरे ट्रांस-अभिनय कारकों की संख्या कम हो जाती है।[3]60S सबयूनिट की परिपक्वता के लिए लगभग 80 कारकों की सहायता की आवश्यकता होती है। इस प्रकार इनमें से आठ कारक सीधे 27S A3 प्री-आरआरएनए के प्रसंस्करण से जुड़े हैं, जो वास्तव में 5.8S आरआरएनए के परिपक्व 5'एंड के गठन को पूरा करता है। A3 कारक प्री-आरएनए के साथ-साथ एक-दूसरे के दूर के स्थलों से जुड़ते हैं। इसके पश्चात्, वह आरआरएनए के क्षेत्रों को साथ लाते हैं और प्री-आरआरएनए के प्रसंस्करण और रिबोसोमल प्रोटीन की भर्ती को बढ़ावा देते हैं। तीन AAA-प्रकार के ATPases 60S प्री-राइबोसोम के परिपक्व होने से कारकों को हटाने का काम करते हैं। इस प्रकार ATPases में से डायनेन जैसा Rea1 प्रोटीन है जो 6 भिन्न-भिन्न ATPase डोमेन से बना होता है जो रिंग संरचना बनाते हैं। रिंग संरचना लचीली पूंछ से जुड़ी होती है जिसमें MIDAS (धातु आयन-निर्भर आसंजन साइट) टिप होता है। Rea1 अपने रिंग के माध्यम से 60S प्री-राइबोसोम के साथ इंटरैक्ट करता है जबकि दो सब्सट्रेट (जैव रसायन) Ytm1 और Rsa1 अपने MIDAS टिप के माध्यम से Rea1 के साथ इंटरैक्ट करते हैं। इन सबस्ट्रेट्स की भूमिका अभी तक परिभाषित नहीं की गई है। इस प्रकार दोनों चूंकि, उनकी बातचीत के साथ, 60S प्री-राइबोसोम की परिपक्वता प्रक्रिया में हटा दिए जाते हैं। अन्य दो ATPases, Rix7 और Drg1 भी परिपक्व 60S सबयूनिट से असेंबली कारकों को हटाने के लिए कार्य करते हैं। इस प्रकार पूर्ण 60S सबयूनिट बनाने के लिए असेंबली कारकों को हटाने और आरएनए की पुनर्व्यवस्था में हेलिकेज और GTPases भी सम्मिलित हैं। साइटोप्लाज्म में बार (परमाणु निर्यात देखें), 60S सबयूनिट कार्यात्मक होने के लिए आगे प्रसंस्करण से गुजरती है। इस प्रकार बाकी बड़े सबयूनिट राइबोसोमल कण 60S यूनिट के साथ जुड़ते हैं और शेष गैर-राइबोसोमल असेंबली कारक भिन्न हो जाते हैं। बायोजेनेसिस कारकों की रिहाई अधिकतर जीटीपीसेस जैसे एलएसजी1 और एटीपीसेस जैसे डीआरजी1 द्वारा मध्यस्थता की जाती है। इन घटनाओं का त्रुटिहीन क्रम अस्पष्ट रहता है। जहां तक वर्तमान ज्ञान का संबंध है, 60S साइटोप्लाज्मिक परिपक्वता का मार्ग अधूरा रहता है।[3]
परमाणु निर्यात
प्री-राइबोसोमल इकाइयों को पूरी तरह से परिपक्व होने के लिए, उन्हें साइटोप्लाज्म में निर्यात किया जाना चाहिए। इस प्रकार न्यूक्लियोलस से साइटोप्लाज्म को प्रभावी ढंग से स्थानांतरित करने के लिए, प्री-राइबोसोम निर्यात रिसेप्टर्स के साथ परमाणु ताकना परिसर के हाइड्रोफोबिक केंद्रीय चैनल के माध्यम से स्थानांतरित करने के लिए बातचीत करते हैं।[3] कैरियोफेरिन Crm1 दोनों राइबोसोमल सबयूनिट्स के लिए रिसेप्टर है और रैन (जीन) रैन-जीटीपी निर्भर फैशन में मध्यस्थ निर्यात करता है। यह उन अणुओं को पहचानता है जिनमें ल्यूसीन युक्त परमाणु निर्यात संकेत होते हैं। Nmd3 नामक एडेप्टर प्रोटीन की सहायता से Crm1 को बड़े 60S सबयूनिट में खींचा जाता है। इस प्रकार 40S यूनिट के लिए एडेप्टर प्रोटीन अज्ञात है। Crm1 के अतिरिक्त, अन्य कारक प्री-राइबोसोम के परमाणु निर्यात में भूमिका निभाते हैं। इस प्रकार सामान्य एमआरएनए निर्यात रिसेप्टर, जिसे मेक्स67 कहा जाता है, साथ ही हीट-रिपीटिंग-युक्त प्रोटीन, आरआरपी12, दोनों उपइकाइयों के निर्यात की सुविधा प्रदान करता है। यह कारक गैर-आवश्यक प्रोटीन हैं और प्री-राइबोसोम के निर्यात को अनुकूलित करने में सहायता करते हैं क्योंकि वह बड़े अणु होते हैं।[3]
गुणवत्ता नियंत्रण
क्योंकि राइबोसोम इतने समष्टि होते हैं, राइबोसोम की निश्चित संख्या को गलत तरीके से इकट्ठा किया जाता है और गैर-कार्यात्मक प्रोटीन को संश्लेषित करते समय संभावित रूप से सेलुलर ऊर्जा और संसाधनों को बर्बाद कर सकता है। इस प्रकार इसे रोकने के लिए, क्षतिग्रस्त या दोषपूर्ण रिबोसोम को पहचानने और उन्हें गिरावट के लिए लक्षित करने के लिए कोशिकाओं में सक्रिय निगरानी प्रणाली होती है। गैर-कार्यात्मक पूर्व-राइबोसोम के साथ-साथ गैर-कार्यात्मक परिपक्व राइबोसोम का पता लगाने के लिए निगरानी तंत्र उपस्तिथ है। इसके अतिरिक्त, निगरानी प्रणाली आवश्यक गिरावट उपकरण लाती है और वास्तव में गैर-कार्यात्मक राइबोसोम को नीचा दिखाती है।[1] इस प्रकार प्री-राइबोसोम जो न्यूक्लियस में बनते हैं, एक्सोसोम कॉम्प्लेक्स द्वारा नष्ट हो जाते हैं, जो एक्सोन्यूक्लिज़ गतिविधि के साथ मल्टीसबयूनिट कॉम्प्लेक्स है। यदि दोषपूर्ण राइबोसोमल सबयूनिट्स इसे न्यूक्लियोलस से बाहर और साइटोप्लाज्म में बनाने के लिए होते हैं, तब साइटोप्लाज्म में खराब राइबोसोम को गिरावट के लिए लक्षित करने के लिए वहां दूसरी निगरानी प्रणाली होती है। बड़े राइबोसोम सबयूनिट के अवशेषों में कुछ उत्परिवर्तन वास्तव में आरएनए क्षय और इस प्रकार इकाई के क्षरण का परिणाम होगा। इस प्रकार क्योंकि रिबोसोम असेंबली में संभावित दोषों की मात्रा इतनी व्यापक है, यह अभी भी अज्ञात है कि कैसे निगरानी प्रणाली सभी दोषों का पता लगाती है, किन्तु यह माना गया है कि विशिष्ट दोषों को लक्षित करने के अतिरिक्त, निगरानी प्रणाली उन दोषों के परिणामों को पहचानती है - जैसे असेंबली में देरी। मतलब, यदि परिपक्व राइबोसोम की असेंबली या परिपक्वता में कोई व्यवधान होता है, तब निगरानी प्रणाली कार्य करेगी जैसे कि सबयूनिट दोषपूर्ण है।[3]
मानव रोग
राइबोसोम बायोजेनेसिस में उत्परिवर्तन अनेक मानव राइबोसोमोपैथी आनुवंशिक रोगों से जुड़े होते हैं, जिनमें वंशानुगत अस्थि मज्जा विफलता सिंड्रोम भी सम्मिलित हैं, जो कि कैंसर की प्रवृत्ति और रक्त कोशिकाओं की कम संख्या की विशेषता है। इस प्रकार राइबोसोमल डिसग्रुलेशन भी मांसपेशियों की बर्बादी में भूमिका निभा सकता है।[13]
यह भी देखें
- आरएनए पोलीमरेज़
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Kressler, Dieter; Hurt, Ed; Babler, Jochen (2009). "ड्राइविंग राइबोसोम असेंबली" (PDF). Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1803 (6): 673–683. doi:10.1016/j.bbamcr.2009.10.009. PMID 19879902.
- ↑ Krista Conger (June 26, 2017). "शोधकर्ताओं का कहना है कि जीन नियमन की नई पहचान की प्रक्रिया ने विज्ञान को स्वीकार कर लिया है". Inside Stanford Medicine. Vol. 9, no. 12. Stanford University.
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Thomson, Emma; Ferreira-Cerca, Sebastien; Hurt, Ed (2013). "यूकेरियोटिक राइबोसोम बायोजेनेसिस एक नज़र में". Journal of Cell Science. 126 (21): 4815–4821. doi:10.1242/jcs.111948. PMID 24172536.
- ↑ Lu T, Stroot PG, Oerther DB (2009). "Reverse transcription of 16S rRNA to monitor ribosome-synthesizing bacterial populations in the environment". Applied and Environmental Microbiology. 75 (13): 4589–4598. Bibcode:2009ApEnM..75.4589L. doi:10.1128/AEM.02970-08. PMC 2704851. PMID 19395563.
- ↑ Root-Bernstein, Meredith; Root-Bernstein, Robert (21 February 2015). "जीवन के विकास में एक लापता कड़ी के रूप में राइबोसोम". Journal of Theoretical Biology. 367: 130–158. doi:10.1016/j.jtbi.2014.11.025. PMID 25500179.
- ↑ Thomson, E.; Ferreira-Cerca, S.; Hurt, E. (2013). "यूकेरियोटिक राइबोसोम बायोजेनेसिस एक नज़र में". Journal of Cell Science. 126 (21): 4815–4821. doi:10.1242/jcs.111948. PMID 24172536.
- ↑ "Homo sapiens 5S ribosomal RNA". 2018-05-24.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ "Homo sapiens 5.8S ribosomal RNA". 2017-02-10.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ "Homo sapiens 28S ribosomal RNA". 2017-02-04.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ "Homo sapiens 18S ribosomal RNA". 2017-02-04.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Lafontaine, Denis L.J. (2010). "A 'garbage can' for ribosomes: how eukaryotes degrade their ribosomes". Trends Biochem Sci. 35 (5): 267–77. doi:10.1016/j.tibs.2009.12.006. PMID 20097077.
- ↑ Sardana, R; Liu, X; Granneman, S; Zhu, J; Gill, M; Papoulas, O; Marcotte, EM; Tollervey, D; Correll, CC; Johnson, AW (February 2015). "The DEAH-box helicase Dhr1 dissociates U3 from the pre-rRNA to promote formation of the central pseudoknot". PLOS Biology. 13 (2): e1002083. doi:10.1371/journal.pbio.1002083. PMC 4340053. PMID 25710520.
- ↑ Connolly, Martin (2017). "miR-424-5p reduces ribosomal RNA and protein synthesis in muscle wasting". Journal of Cachexia, Sarcopenia and Muscle. 9 (2): 400–416. doi:10.1002/jcsm.12266. PMC 5879973. PMID 29215200.