जैक्सन इंटीग्रल: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
क्यू-एनालॉग सिद्धांत में, [[विशेष कार्य|विशेष फलनों]] के सिद्धांत में '''जैक्सन इंटीग्रल''' [[श्रृंखला (गणित)]] जो क्यू-अवकल के विपरीत ऑपरेशन को व्यक्त करती है। | |||
जैक्सन इंटीग्रल को फ्रैंक हिल्टन जैक्सन द्वारा प्रस्तुत किया गया था। संख्यात्मक मूल्यांकन के विधि के लिए,<ref>{{Cite journal|last1=Exton|first1=H|title=बेसिक फूरियर श्रृंखला|journal=Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences|volume=369|issue=1736|pages=115–136|year=1979|doi=10.1098/rspa.1979.0155|s2cid=120587254}}</ref> {{harvtxt|एक्सटन|1983}} देखें। | जैक्सन इंटीग्रल को फ्रैंक हिल्टन जैक्सन द्वारा प्रस्तुत किया गया था। संख्यात्मक मूल्यांकन के विधि के लिए,<ref>{{Cite journal|last1=Exton|first1=H|title=बेसिक फूरियर श्रृंखला|journal=Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences|volume=369|issue=1736|pages=115–136|year=1979|doi=10.1098/rspa.1979.0155|s2cid=120587254}}</ref> {{harvtxt|एक्सटन|1983}} देखें। | ||
== परिभाषा == | == परिभाषा == | ||
मान लीजिए f(x) एक वास्तविक | मान लीजिए f(x) एक वास्तविक चर x का एक फलन है। वास्तविक चर के लिए, f के जैक्सन इंटीग्रल को निम्नलिखित श्रृंखला विस्तार द्वारा परिभाषित किया गया है: | ||
: <math> \int_0^a f(x)\,{\rm d}_q x = (1-q)\,a\sum_{k=0}^{\infty}q^k f(q^k a). </math> | : <math> \int_0^a f(x)\,{\rm d}_q x = (1-q)\,a\sum_{k=0}^{\infty}q^k f(q^k a). </math> | ||
Line 18: | Line 18: | ||
रीमैन-स्टिल्टजेस इंटीग्रल का एक क्यू-एनालॉग दे रहा है। | रीमैन-स्टिल्टजेस इंटीग्रल का एक क्यू-एनालॉग दे रहा है। | ||
== क्यू- | == क्यू- प्रतिव्युत्पन्न के रूप में जैक्सन इंटीग्रल == | ||
जिस तरह एक निरंतर फलन के सामान्य एंटीडेरिवेटिव को उसके | जिस तरह एक निरंतर फलन के सामान्य एंटीडेरिवेटिव को उसके रीमैन अभिन्न द्वारा दर्शाया जा सकता है, यह दिखाना संभव है कि जैक्सन इंटीग्रल एक अद्वितीय क्यू-एंटीडेरिवेटिव देता है | ||
फलनों के एक निश्चित वर्ग के अंदर (देखें <ref>{{Cite journal|last1=Kempf|first1=A|title=बीजगणितीय ''q''-क्वांटम और ब्रेडेड स्पेस पर एकीकरण और फूरियर सिद्धांत|journal=[[Journal of Mathematical Physics]]|volume=35|issue=12|pages=6802–6837|last2=Majid|first2=Shahn|year=1994|arxiv=hep-th/9402037|bibcode=1994JMP....35.6802K|doi=10.1063/1.530644|s2cid=16930694}}</ref>). | |||
=== प्रमेय === | === प्रमेय === | ||
मान लीजिए कि <math>0<q<1.</math> यदि <math>|f(x)x^\alpha|</math> कुछ <math>0\leq\alpha<1, </math> के लिए अंतराल <math>[0,A)</math> पर घिरा है, तो जैक्सन इंटीग्रल<math>[0,A)</math> पर एक फलन <math>F(x)</math>में परिवर्तित हो जाता है जो कि <math>f(x).</math> का एक q-एंटीडेरिवेटिव है। इसके अतिरिक्त , <math>F(x)</math> <math>F(0)=0</math> के साथ <math>x=0</math>पर निरंतर है और | मान लीजिए कि <math>0<q<1.</math> यदि <math>|f(x)x^\alpha|</math> कुछ <math>0\leq\alpha<1, </math> के लिए अंतराल <math>[0,A)</math> पर घिरा है, तो जैक्सन इंटीग्रल<math>[0,A)</math> पर एक फलन <math>F(x)</math>में परिवर्तित हो जाता है जो कि <math>f(x).</math> का एक q-एंटीडेरिवेटिव है। इसके अतिरिक्त , <math>F(x)</math> <math>F(0)=0</math> के साथ <math>x=0</math>पर निरंतर है और फलनों के इस वर्ग में <math>f(x) | ||
</math> का एक अद्वितीय प्रतिअवकलन है।<ref>Kac-Cheung, Theorem 19.1.</ref> | </math> का एक अद्वितीय प्रतिअवकलन है।<ref>Kac-Cheung, Theorem 19.1.</ref> | ||
Line 39: | Line 39: | ||
[[Category:All stub articles]] | [[Category:All stub articles]] |
Revision as of 16:01, 30 August 2023
क्यू-एनालॉग सिद्धांत में, विशेष फलनों के सिद्धांत में जैक्सन इंटीग्रल श्रृंखला (गणित) जो क्यू-अवकल के विपरीत ऑपरेशन को व्यक्त करती है।
जैक्सन इंटीग्रल को फ्रैंक हिल्टन जैक्सन द्वारा प्रस्तुत किया गया था। संख्यात्मक मूल्यांकन के विधि के लिए,[1] एक्सटन (1983) देखें।
परिभाषा
मान लीजिए f(x) एक वास्तविक चर x का एक फलन है। वास्तविक चर के लिए, f के जैक्सन इंटीग्रल को निम्नलिखित श्रृंखला विस्तार द्वारा परिभाषित किया गया है:
इसके अनुरूप इसकी परिभाषा है
अधिक सामान्यतः, यदि g(x) एक अन्य फलन है और Dqg इसके q-व्युत्पन्न को दर्शाता है, हम औपचारिक रूप से लिख सकते हैं
- या
रीमैन-स्टिल्टजेस इंटीग्रल का एक क्यू-एनालॉग दे रहा है।
क्यू- प्रतिव्युत्पन्न के रूप में जैक्सन इंटीग्रल
जिस तरह एक निरंतर फलन के सामान्य एंटीडेरिवेटिव को उसके रीमैन अभिन्न द्वारा दर्शाया जा सकता है, यह दिखाना संभव है कि जैक्सन इंटीग्रल एक अद्वितीय क्यू-एंटीडेरिवेटिव देता है
फलनों के एक निश्चित वर्ग के अंदर (देखें [2]).
प्रमेय
मान लीजिए कि यदि कुछ के लिए अंतराल पर घिरा है, तो जैक्सन इंटीग्रल पर एक फलन में परिवर्तित हो जाता है जो कि का एक q-एंटीडेरिवेटिव है। इसके अतिरिक्त , के साथ पर निरंतर है और फलनों के इस वर्ग में का एक अद्वितीय प्रतिअवकलन है।[3]
टिप्पणियाँ
- ↑ Exton, H (1979). "बेसिक फूरियर श्रृंखला". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 369 (1736): 115–136. doi:10.1098/rspa.1979.0155. S2CID 120587254.
- ↑ Kempf, A; Majid, Shahn (1994). "बीजगणितीय q-क्वांटम और ब्रेडेड स्पेस पर एकीकरण और फूरियर सिद्धांत". Journal of Mathematical Physics. 35 (12): 6802–6837. arXiv:hep-th/9402037. Bibcode:1994JMP....35.6802K. doi:10.1063/1.530644. S2CID 16930694.
- ↑ Kac-Cheung, Theorem 19.1.
संदर्भ
- Victor Kac, Pokman Cheung, Quantum Calculus, Universitext, Springer-Verlag, 2002. ISBN 0-387-95341-8
- Jackson F H (1904), "A generalization of the functions Γ(n) and xn", Proc. R. Soc. 74 64–72.
- Jackson F H (1910), "On q-definite integrals", Q. J. Pure Appl. Math. 41 193–203.
- Exton, Harold (1983). Q-hypergeometric functions and applications. Chichester [West Sussex]: E. Horwood. ISBN 978-0470274538.