चरघातांकी प्रतिचित्र (लाई सिद्धांत): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 18: Line 18:
आव्यूह लाई समूह की स्थिति में हमारे पास अधिक ठोस परिभाषा है। घातीय मानचित्र [[मैट्रिक्स घातांक|आव्यूह घातांक]] के साथ युग्मित होता है और सामान्य श्रृंखला विस्तार द्वारा दिया जाता है:
आव्यूह लाई समूह की स्थिति में हमारे पास अधिक ठोस परिभाषा है। घातीय मानचित्र [[मैट्रिक्स घातांक|आव्यूह घातांक]] के साथ युग्मित होता है और सामान्य श्रृंखला विस्तार द्वारा दिया जाता है:
: <math>\exp (X) = \sum_{k=0}^\infty\frac{X^k}{k!} = I + X + \frac{1}{2}X^2 + \frac{1}{6}X^3 + \cdots</math>,
: <math>\exp (X) = \sum_{k=0}^\infty\frac{X^k}{k!} = I + X + \frac{1}{2}X^2 + \frac{1}{6}X^3 + \cdots</math>,
जहां <math>I</math> आइडेंटिटी आव्यूह है। इस प्रकार, आव्यूह लाई समूहों की सेटिंग में, घातांकीय मानचित्र, लाई बीजगणित के लिए आव्यूह घातांक <math>\mathfrak g</math> का प्रतिबंध <math>G</math> है।  
जहां <math>I</math> आइडेंटिटी आव्यूह है। इस प्रकार, आव्यूह लाई समूहों की व्यवस्था में, घातांकीय मानचित्र, लाई बीजगणित के लिए आव्यूह घातांक <math>\mathfrak g</math> का प्रतिबंध <math>G</math> है।  


===रीमैनियन घातीय मानचित्र के साथ तुलना===
===रीमैनियन घातीय मानचित्र के साथ तुलना===
यदि जी कॉम्पैक्ट है, तो इसमें बाएं और दाएं अनुवाद के तहत रीमैनियन मीट्रिक अपरिवर्तनीय है, और जी के लिए लाई-सैद्धांतिक घातीय मानचित्र घातीय मानचित्र (रिमैनियन ज्यामिति) के साथ मेल खाता है।
यदि G कॉम्पैक्ट है, तो इसमें बाएं और दाएं अनुवाद के अंतर्गत रीमैनियन मीट्रिक अपरिवर्तनीय है, और G के लिए लाई-सैद्धांतिक घातीय मानचित्र घातीय मानचित्र (रिमैनियन ज्यामिति) के साथ मेल खाता है।


सामान्य जी के लिए, बाएँ और दाएँ दोनों अनुवादों के अंतर्गत रीमैनियन मीट्रिक अपरिवर्तनीय उपस्थितनहीं होगा। चूँकि , बाएं अनुवाद के तहत हमेशा रीमैनियन मीट्रिक अपरिवर्तनीय होता है, बाएं-अपरिवर्तनीय मीट्रिक के लिए रीमैनियन ज्यामिति के अर्थ में घातीय मानचित्र सामान्य रूप से लाई समूह अर्थ में घातीय मानचित्र से सहमत नहीं होगा। कहने का तात्पर्य यह है कि, यदि G लेफ्ट समूह है जो बाएं-लेकिन दाएं-अपरिवर्तनीय मीट्रिक से सुसज्जित नहीं है, तो पहचान के माध्यम से जियोडेसिक्स G के एक-पैरामीटर उपसमूह नहीं होंगे। {{Citation needed|date=March 2019}}.
सामान्य G के लिए, बाएँ और दाएँ दोनों अनुवादों के अंतर्गत रीमैनियन मीट्रिक अपरिवर्तनीय उपस्थित नहीं होता है। चूँकि, बाएं अनुवाद के अंतर्गत हमेशा रीमैनियन मीट्रिक अपरिवर्तनीय होता है, बाएं-अपरिवर्तनीय मीट्रिक के लिए रीमैनियन ज्यामिति के अर्थ में घातीय मानचित्र सामान्य रूप से लाई समूह अर्थ में घातीय मानचित्र से सहमत नहीं होगा। कहने का तात्पर्य यह है कि, यदि G लेफ्ट समूह है जो बाएं-लेकिन दाएं-अपरिवर्तनीय मीट्रिक से सुसज्जित नहीं है, तो पहचान के माध्यम से जियोडेसिक्स G के एक-पैरामीटर उपसमूह नहीं होंगे। {{Citation needed|date=March 2019}}.


===अन्य परिभाषाएँ===
===अन्य परिभाषाएँ===
लाई-ग्रुप एक्सपोनेंशियल की अन्य समकक्ष परिभाषाएँ इस प्रकार हैं:
लाई-ग्रुप एक्सपोनेंशियल की अन्य समकक्ष परिभाषाएँ इस प्रकार हैं:
* यह जी पर विहित बाएं-अपरिवर्तनीय [[एफ़िन कनेक्शन]] का घातीय मानचित्र है, जैसे कि [[समानांतर परिवहन]] बाएं अनुवाद द्वारा दिया जाता है। वह है, <math>\exp(X) = \gamma(1)</math> कहाँ <math>\gamma</math> पहचान तत्व पर प्रारंभिक बिंदु और प्रारंभिक वेग एक्स (स्पर्शरेखा सदिश के रूप में माना जाता है) के साथ अद्वितीय [[जियोडेसिक]] है।
* यह G पर विहित बाएं-अपरिवर्तनीय [[एफ़िन कनेक्शन]] का घातीय मानचित्र है, जैसे कि [[समानांतर परिवहन]] बाएं अनुवाद द्वारा दिया जाता है। वह है, <math>\exp(X) = \gamma(1)</math> कहाँ <math>\gamma</math> पहचान तत्व पर प्रारंभिक बिंदु और प्रारंभिक वेग एक्स (स्पर्शरेखा सदिश के रूप में माना जाता है) के साथ अद्वितीय [[जियोडेसिक]] है।
* यह जी पर कैनोनिकल राइट-इनवेरिएंट एफ़िन कनेक्शन का घातीय मानचित्र है। यह सामान्यतःकैनोनिकल लेफ्ट-इनवेरिएंट कनेक्शन से अलग होता है, लेकिन दोनों कनेक्शनों में ही जियोडेसिक्स होता है (बाएं या दाएं गुणन द्वारा कार्य करने वाले 1-पैरामीटर उपसमूहों की कक्षाएं) तो वही घातीय मानचित्र दीजिए।
* यह G पर कैनोनिकल राइट-इनवेरिएंट एफ़िन कनेक्शन का घातीय मानचित्र है। यह सामान्यतःकैनोनिकल लेफ्ट-इनवेरिएंट कनेक्शन से अलग होता है, लेकिन दोनों कनेक्शनों में ही जियोडेसिक्स होता है (बाएं या दाएं गुणन द्वारा कार्य करने वाले 1-पैरामीटर उपसमूहों की कक्षाएं) तो वही घातीय मानचित्र दीजिए।
* लाई समूह-लाई बीजगणित पत्राचार भी परिभाषा देता है: एक्स इन के लिए <math>\mathfrak g</math>, <math>t \mapsto \exp(tX)</math> लाई बीजगणित समरूपता के अनुरूप अद्वितीय लाई समूह समरूपता है <math>t \mapsto tX.</math> (टिप्पणी: <math>\operatorname{Lie}(\mathbb{R}) = \mathbb{R}</math>.)
* लाई समूह-लाई बीजगणित पत्राचार भी परिभाषा देता है: एक्स इन के लिए <math>\mathfrak g</math>, <math>t \mapsto \exp(tX)</math> लाई बीजगणित समरूपता के अनुरूप अद्वितीय लाई समूह समरूपता है <math>t \mapsto tX.</math> (टिप्पणी: <math>\operatorname{Lie}(\mathbb{R}) = \mathbb{R}</math>.)


Line 42: Line 42:
:: <math>\mathbf{w} := (it+ju+kv) \mapsto \exp(it+ju+kv) = \cos(|\mathbf{w}|)1 + \sin(|\mathbf{w}|)\frac{\mathbf{w}}{|\mathbf{w}|}.\,</math>
:: <math>\mathbf{w} := (it+ju+kv) \mapsto \exp(it+ju+kv) = \cos(|\mathbf{w}|)1 + \sin(|\mathbf{w}|)\frac{\mathbf{w}}{|\mathbf{w}|}.\,</math>
: यह मानचित्र त्रिज्या के 2-गोले लेता है {{mvar|R}} विशुद्ध रूप से काल्पनिक चतुर्भुज के अंदर <math>\{s\in S^3 \subset \mathbf{H}: \operatorname{Re}(s) = \cos(R)\} </math>, त्रिज्या का 2-गोला <math>\sin(R)</math> (सीएफ. पाउलाई मैट्रिसेस#पाउलाई सदिश का घातांक)। इसकी तुलना ऊपर दिए गए पहले उदाहरण से करें।
: यह मानचित्र त्रिज्या के 2-गोले लेता है {{mvar|R}} विशुद्ध रूप से काल्पनिक चतुर्भुज के अंदर <math>\{s\in S^3 \subset \mathbf{H}: \operatorname{Re}(s) = \cos(R)\} </math>, त्रिज्या का 2-गोला <math>\sin(R)</math> (सीएफ. पाउलाई मैट्रिसेस#पाउलाई सदिश का घातांक)। इसकी तुलना ऊपर दिए गए पहले उदाहरण से करें।
* मान लाईजिए V परिमित आयामी वास्तविक सदिश समष्टि है और इसे सदिश जोड़ के संचालन के तहत लाई समूह के रूप में देखें। तब <math>\operatorname{Lie}(V) = V</math> 0 पर इसके स्पर्शरेखा स्थान और घातीय मानचित्र के साथ V की पहचान के माध्यम से
* मान लाईजिए V परिमित आयामी वास्तविक सदिश समष्टि है और इसे सदिश जोड़ के संचालन के अंतर्गत लाई समूह के रूप में देखें। तब <math>\operatorname{Lie}(V) = V</math> 0 पर इसके स्पर्शरेखा स्थान और घातीय मानचित्र के साथ V की पहचान के माध्यम से
::<math>\operatorname{exp}: \operatorname{Lie}(V) = V \to V</math>
::<math>\operatorname{exp}: \operatorname{Lie}(V) = V \to V</math>
:पहचान मानचित्र है, अर्थात, <math>\exp(v)=v</math>.
:पहचान मानचित्र है, अर्थात, <math>\exp(v)=v</math>.
Line 71: Line 71:
===घातांक की प्रत्यक्षता===
===घातांक की प्रत्यक्षता===
इन महत्वपूर्ण विशेष मामलों में, घातीय मानचित्र हमेशा विशेषण के रूप में जाना जाता है:
इन महत्वपूर्ण विशेष मामलों में, घातीय मानचित्र हमेशा विशेषण के रूप में जाना जाता है:
* जी जुड़ा हुआ है और कॉम्पैक्ट है,<ref>{{harvnb|Hall|2015}} Corollary 11.10</ref>
* G जुड़ा हुआ है और कॉम्पैक्ट है,<ref>{{harvnb|Hall|2015}} Corollary 11.10</ref>
* जी कनेक्टेड और निलपोटेंट है (उदाहरण के लिए, जी कनेक्टेड और एबेलियन), और
* G कनेक्टेड और निलपोटेंट है (उदाहरण के लिए, G कनेक्टेड और एबेलियन), और
* <math>G = GL_n(\mathbb{C})</math>.<ref>{{harvnb|Hall|2015}} Exercises 2.9 and 2.10</ref>
* <math>G = GL_n(\mathbb{C})</math>.<ref>{{harvnb|Hall|2015}} Exercises 2.9 and 2.10</ref>
उपरोक्त किसी भी शर्त को पूरा नहीं करने वाले समूहों के लिए, घातीय मानचित्र विशेषणात्मक हो भी सकता है और नहीं भी।
उपरोक्त किसी भी शर्त को पूरा नहीं करने वाले समूहों के लिए, घातीय मानचित्र विशेषणात्मक हो भी सकता है और नहीं भी।
Line 87: Line 87:
फिर यू पर समन्वय प्रणालाई है। इसे विभिन्न नामों से बुलाया जाता है जैसे लघुगणक निर्देशांक, घातीय निर्देशांक या सामान्य निर्देशांक। अनुप्रयोगों में उनका उपयोग कैसे किया जाता है, इसके उदाहरण के लिए क्लोज्ड-सबग्रुप प्रमेय#अवलोकन|क्लोज्ड-सबग्रुप प्रमेय देखें।
फिर यू पर समन्वय प्रणालाई है। इसे विभिन्न नामों से बुलाया जाता है जैसे लघुगणक निर्देशांक, घातीय निर्देशांक या सामान्य निर्देशांक। अनुप्रयोगों में उनका उपयोग कैसे किया जाता है, इसके उदाहरण के लिए क्लोज्ड-सबग्रुप प्रमेय#अवलोकन|क्लोज्ड-सबग्रुप प्रमेय देखें।


'टिप्पणी': खुला आवरण <math>\{ U g | g \in G \}</math> जी को वास्तविक-विश्लेषणात्मक मैनिफोल्ड की संरचना देता है जैसे कि समूह संचालन <math>(g, h) \mapsto gh^{-1}</math> वास्तविक-विश्लेषणात्मक है.{{sfn|Kobayashi|Nomizu|1996|p=43}}
'टिप्पणी': खुला आवरण <math>\{ U g | g \in G \}</math> G को वास्तविक-विश्लेषणात्मक मैनिफोल्ड की संरचना देता है जैसे कि समूह संचालन <math>(g, h) \mapsto gh^{-1}</math> वास्तविक-विश्लेषणात्मक है.{{sfn|Kobayashi|Nomizu|1996|p=43}}


==यह भी देखें==
==यह भी देखें==

Revision as of 19:11, 8 July 2023

लाई समूहों के सिद्धांत में, घातीय मानचित्र लाई बीजगणित से लाई समूह का समूह के लिए मानचित्र है, जो किसी को लाई बीजगणित से स्थानीय समूह संरचना को पुनः प्राप्त करने की अनुमति देता है। घातीय मानचित्र का अस्तित्व प्राथमिक कारणों में से है कि लाई बीजगणित लाई समूहों का अध्ययन करने के लिए उपयोगी उपकरण है।

गणितीय विश्लेषण का सामान्य घातांकीय फलन घातांकीय मानचित्र की विशेष स्थिति है सकारात्मक वास्तविक संख्याओं का गुणनात्मक समूह है (जिसका लाई बीजगणित सभी वास्तविक संख्याओं का योगात्मक समूह है)। लाई समूह का घातीय मानचित्र सामान्य घातीय फलन के अनुरूप कई गुणों को संतुष्ट करता है, चूँकि, यह कई महत्वपूर्ण स्थितियों में भिन्न भी है।

परिभाषाएँ

मान लीजिये लाई समूह बनें और इसका लाई बीजगणित हो ( पहचान तत्व के स्पर्शरेखा स्थान के रूप में माना जाता है।) घातीय मानचित्र है:

जिसे कई भिन्न-भिन्न विधियों से परिभाषित किया जा सकता है। विशिष्ट आधुनिक परिभाषा यह है:

परिभाषा: का घातांक द्वारा दिया गया है। जहां;
का अद्वितीय एक-पैरामीटर उपसमूह है जिसकी पहचान पर स्पर्शरेखा सदिश के समान है।

यह श्रृंखला नियम का सरलता से पालन करता है। वो मानचित्र का निर्माण दाएं या बाएं-अपरिवर्तनीय सदिश क्षेत्र के अभिन्न वक्र के रूप में किया जा सकता है। यह कि सभी वास्तविक मापदंडों के लिए अभिन्न वक्र उपस्थित है, समाधान को शून्य के निकट दाएं या बाएं-अनुवाद द्वारा अनुसरण किया जाता है।

आव्यूह लाई समूह की स्थिति में हमारे पास अधिक ठोस परिभाषा है। घातीय मानचित्र आव्यूह घातांक के साथ युग्मित होता है और सामान्य श्रृंखला विस्तार द्वारा दिया जाता है:

,

जहां आइडेंटिटी आव्यूह है। इस प्रकार, आव्यूह लाई समूहों की व्यवस्था में, घातांकीय मानचित्र, लाई बीजगणित के लिए आव्यूह घातांक का प्रतिबंध है।

रीमैनियन घातीय मानचित्र के साथ तुलना

यदि G कॉम्पैक्ट है, तो इसमें बाएं और दाएं अनुवाद के अंतर्गत रीमैनियन मीट्रिक अपरिवर्तनीय है, और G के लिए लाई-सैद्धांतिक घातीय मानचित्र घातीय मानचित्र (रिमैनियन ज्यामिति) के साथ मेल खाता है।

सामान्य G के लिए, बाएँ और दाएँ दोनों अनुवादों के अंतर्गत रीमैनियन मीट्रिक अपरिवर्तनीय उपस्थित नहीं होता है। चूँकि, बाएं अनुवाद के अंतर्गत हमेशा रीमैनियन मीट्रिक अपरिवर्तनीय होता है, बाएं-अपरिवर्तनीय मीट्रिक के लिए रीमैनियन ज्यामिति के अर्थ में घातीय मानचित्र सामान्य रूप से लाई समूह अर्थ में घातीय मानचित्र से सहमत नहीं होगा। कहने का तात्पर्य यह है कि, यदि G लेफ्ट समूह है जो बाएं-लेकिन दाएं-अपरिवर्तनीय मीट्रिक से सुसज्जित नहीं है, तो पहचान के माध्यम से जियोडेसिक्स G के एक-पैरामीटर उपसमूह नहीं होंगे।[citation needed].

अन्य परिभाषाएँ

लाई-ग्रुप एक्सपोनेंशियल की अन्य समकक्ष परिभाषाएँ इस प्रकार हैं:

  • यह G पर विहित बाएं-अपरिवर्तनीय एफ़िन कनेक्शन का घातीय मानचित्र है, जैसे कि समानांतर परिवहन बाएं अनुवाद द्वारा दिया जाता है। वह है, कहाँ पहचान तत्व पर प्रारंभिक बिंदु और प्रारंभिक वेग एक्स (स्पर्शरेखा सदिश के रूप में माना जाता है) के साथ अद्वितीय जियोडेसिक है।
  • यह G पर कैनोनिकल राइट-इनवेरिएंट एफ़िन कनेक्शन का घातीय मानचित्र है। यह सामान्यतःकैनोनिकल लेफ्ट-इनवेरिएंट कनेक्शन से अलग होता है, लेकिन दोनों कनेक्शनों में ही जियोडेसिक्स होता है (बाएं या दाएं गुणन द्वारा कार्य करने वाले 1-पैरामीटर उपसमूहों की कक्षाएं) तो वही घातीय मानचित्र दीजिए।
  • लाई समूह-लाई बीजगणित पत्राचार भी परिभाषा देता है: एक्स इन के लिए , लाई बीजगणित समरूपता के अनुरूप अद्वितीय लाई समूह समरूपता है (टिप्पणी: .)

उदाहरण

  • जटिल तल में 0 पर केन्द्रित इकाई वृत्त लाई समूह है (जिसे वृत्त समूह कहा जाता है) जिसके 1 पर स्पर्शरेखा स्थान को जटिल तल में काल्पनिक रेखा से पहचाना जा सकता है, इस लाई समूह के लिए घातीय मानचित्र द्वारा दिया गया है
अर्थात्, सामान्य सम्मिश्र घातांक के समान सूत्र।

<ब्लॉककोट>जालाई द्वारा भागफल से. तब से स्थानीय रूप से समरूपी है जटिल मैनिफोल्ड के रूप में, हम इसे स्पर्शरेखा स्थान से पहचान सकते हैं , और मानचित्र<ब्लॉककोट>कॉम्प्लेक्स लाई समूह के लिए घातीय मानचित्र से मेल खाता है .

  • चतुर्भुज में , मैं मुड़ा का सेट लाई समूह बनाता है (विशेष एकात्मक समूह के लिए समरूपी)। SU(2)) जिसका स्पर्शरेखा स्थान 1 पर विशुद्ध रूप से काल्पनिक चतुर्भुजों के स्थान से पहचाना जा सकता है, इस लाई समूह के लिए घातीय मानचित्र द्वारा दिया गया है
यह मानचित्र त्रिज्या के 2-गोले लेता है R विशुद्ध रूप से काल्पनिक चतुर्भुज के अंदर , त्रिज्या का 2-गोला (सीएफ. पाउलाई मैट्रिसेस#पाउलाई सदिश का घातांक)। इसकी तुलना ऊपर दिए गए पहले उदाहरण से करें।
  • मान लाईजिए V परिमित आयामी वास्तविक सदिश समष्टि है और इसे सदिश जोड़ के संचालन के अंतर्गत लाई समूह के रूप में देखें। तब 0 पर इसके स्पर्शरेखा स्थान और घातीय मानचित्र के साथ V की पहचान के माध्यम से
पहचान मानचित्र है, अर्थात, .
  • विभाजित-संमिश्र संख्या तल में काल्पनिक रेखा इकाई हाइपरबोला समूह का बीजगणित बनाता है चूँकि घातीय मानचित्र द्वारा दिया गया है

गुण

घातांक के प्राथमिक गुण

सभी के लिए , वो नक्शा का अद्वितीय एक-पैरामीटर उपसमूह है जिसकी पहचान पर स्पर्शरेखा सदिश है . यह इस प्रकार है कि:

सामान्यतः अधिक:

  • .

इस बात पर ज़ोर देना ज़रूरी है कि पिछलाई पहचान सामान्य रूप से कायम नहीं है; यह धारणा और आवागमन महत्वपूर्ण है.

घातीय मानचित्र की छवि हमेशा पहचान घटक में निहित होती है .

पहचान के निकट घातांक

घातीय मानचित्र सहज मानचित्र है. यह शून्य पर पुशफॉरवर्ड (अंतर) है, , पहचान मानचित्र है (सामान्य पहचान के साथ)।

व्युत्क्रम फ़ंक्शन प्रमेय से यह निष्कर्ष निकलता है कि घातांकीय मानचित्र, इसलिए, 0 के कुछ पड़ोस से भिन्नता तक सीमित है 1 इंच के पड़ोस में .[2] यह दर्शाना कठिन नहीं है कि यदि G जुड़ा हुआ है, तो G का प्रत्येक तत्व g, के तत्वों के घातांक का गुणनफल है। :[3].

विश्व स्तर पर, घातीय मानचित्र आवश्यक रूप से विशेषणात्मक नहीं है। इसके अतिरिक्त , घातीय मानचित्र सभी बिंदुओं पर स्थानीय भिन्नता नहीं हो सकता है। उदाहरण के लिए, से घातीय मानचित्र (3) घूर्णन समूह SO(3)|SO(3) स्थानीय भिन्नता नहीं है; इस विफलता पर कट लोकस (रीमैनियन मैनिफोल्ड) भी देखें। अधिक जानकारी के लिए घातीय मानचित्र का व्युत्पन्न देखें।

घातांक की प्रत्यक्षता

इन महत्वपूर्ण विशेष मामलों में, घातीय मानचित्र हमेशा विशेषण के रूप में जाना जाता है:

  • G जुड़ा हुआ है और कॉम्पैक्ट है,[4]
  • G कनेक्टेड और निलपोटेंट है (उदाहरण के लिए, G कनेक्टेड और एबेलियन), और
  • .[5]

उपरोक्त किसी भी शर्त को पूरा नहीं करने वाले समूहों के लिए, घातीय मानचित्र विशेषणात्मक हो भी सकता है और नहीं भी।

कनेक्टेड लेकिन गैर-कॉम्पैक्ट समूह SL2(R)|SL के घातीय मानचित्र की छवि2(आर) पूरा समूह नहीं है. इसकी छवि में या तो सकारात्मक या मापांक 1 के साथ eigenvalues ​​​​के साथ C-विकर्ण आव्यूहऔर दोहराए गए eigenvalue 1 के साथ गैर-विकर्ण आव्यूहऔर आव्यूहसम्मिलित हैं . (इस प्रकार, छवि वास्तविक, नकारात्मक eigenvalues ​​​​के अतिरिक्त अन्य आव्यूहको बाहर कर देती है .)[6]

घातांकीय मानचित्र और समरूपताएँ

होने देना लाई समूह समरूपता बनें और चलो पहचान पर इसका पुशफॉरवर्ड (अंतर) हो। फिर निम्नलिखित आरेख क्रमविनिमेय आरेख:[7]

ExponentialMap-01.png

विशेष रूप से, जब किसी लाई समूह के लाई समूह के आसन्न प्रतिनिधित्व पर लागू किया जाता है , तब से , हमारे पास उपयोगी पहचान है:[8]

.

लघुगणकीय निर्देशांक

लाई समूह दिया गया लाई बीजगणित के साथ , आधार की प्रत्येक पसंद का G के लिए पहचान तत्व e के निकट समन्वय प्रणालाई को निम्नानुसार निर्धारित करता है। व्युत्क्रम फलन प्रमेय द्वारा, घातीय मानचित्र किसी पड़ोस से भिन्नरूपता है पड़ोस की उत्पत्ति का . इसका उलटा:

फिर यू पर समन्वय प्रणालाई है। इसे विभिन्न नामों से बुलाया जाता है जैसे लघुगणक निर्देशांक, घातीय निर्देशांक या सामान्य निर्देशांक। अनुप्रयोगों में उनका उपयोग कैसे किया जाता है, इसके उदाहरण के लिए क्लोज्ड-सबग्रुप प्रमेय#अवलोकन|क्लोज्ड-सबग्रुप प्रमेय देखें।

'टिप्पणी': खुला आवरण G को वास्तविक-विश्लेषणात्मक मैनिफोल्ड की संरचना देता है जैसे कि समूह संचालन वास्तविक-विश्लेषणात्मक है.[9]

यह भी देखें

  • घातांकीय विषयों की सूची
  • घातांकीय मानचित्र का व्युत्पन्न
  • आव्यूह घातांक

उद्धरण

  1. Birkenhake, Christina (2004). जटिल एबेलियन किस्में. Herbert Lange (Second, augmented ed.). Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-662-06307-1. OCLC 851380558.
  2. Hall 2015 Corollary 3.44
  3. Hall 2015 Corollary 3.47
  4. Hall 2015 Corollary 11.10
  5. Hall 2015 Exercises 2.9 and 2.10
  6. Hall 2015 Exercise 3.22
  7. Hall 2015 Theorem 3.28
  8. Hall 2015 Proposition 3.35
  9. Kobayashi & Nomizu 1996, p. 43.

उद्धृत कार्य


श्रेणी:लाई बीजगणित श्रेणी:लाई बोलने वाले समूह