चरघातांकी प्रतिचित्र (लाई सिद्धांत): Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{Lie groups |Algebras}} | {{Lie groups |Algebras}} | ||
अवस्थित समूहों के सिद्धांत में, '''घातीय मानचित्र''' अवस्थित बीजगणित से <math>\mathfrak g</math> अवस्थित समूह का <math>G</math> समूह के लिए मानचित्र है, जो किसी को अवस्थित बीजगणित से स्थानीय समूह संरचना को पुनः प्राप्त करने की अनुमति देता है। '''घातीय मानचित्र''' का अस्तित्व प्राथमिक कारणों में से है कि अवस्थित बीजगणित अवस्थित समूहों का अध्ययन करने के लिए उपयोगी उपकरण है। | |||
गणितीय विश्लेषण का सामान्य घातांकीय फलन घातांकीय मानचित्र की विशेष स्थिति है <math>G</math> सकारात्मक वास्तविक संख्याओं का गुणनात्मक समूह है (जिसका | गणितीय विश्लेषण का सामान्य घातांकीय फलन घातांकीय मानचित्र की विशेष स्थिति है <math>G</math> सकारात्मक वास्तविक संख्याओं का गुणनात्मक समूह है (जिसका अवस्थित बीजगणित सभी वास्तविक संख्याओं का योगात्मक समूह है)। अवस्थित समूह का घातीय मानचित्र सामान्य घातीय फलन के अनुरूप कई गुणों को संतुष्ट करता है, चूँकि, यह कई महत्वपूर्ण स्थितियों में भिन्न भी है। | ||
==परिभाषाएँ== | ==परिभाषाएँ== | ||
मान लीजिये <math>G</math> | मान लीजिये <math>G</math> अवस्थित समूह बनें और <math>\mathfrak g</math> इसका अवस्थित बीजगणित हो (<math>G</math> [[पहचान तत्व]] के [[स्पर्शरेखा स्थान]] के रूप में माना जाता है।) घातीय मानचित्र है: | ||
:<math>\exp\colon \mathfrak g \to G</math> | :<math>\exp\colon \mathfrak g \to G</math> | ||
जिसे कई भिन्न-भिन्न विधियों से परिभाषित किया जा सकता है। विशिष्ट आधुनिक परिभाषा यह है: | जिसे कई भिन्न-भिन्न विधियों से परिभाषित किया जा सकता है। विशिष्ट आधुनिक परिभाषा यह है: | ||
Line 16: | Line 16: | ||
यह [[श्रृंखला नियम]] <math>\exp(tX) = \gamma(t)</math> का सरलता से पालन करता है। वो मानचित्र <math>\gamma</math> का निर्माण दाएं या बाएं-अपरिवर्तनीय [[वेक्टर फ़ील्ड|सदिश क्षेत्र]] के [[अभिन्न वक्र]] <math>X</math> के रूप में किया जा सकता है। यह कि सभी वास्तविक मापदंडों के लिए अभिन्न वक्र उपस्थित है, समाधान को शून्य के निकट दाएं या बाएं-अनुवाद द्वारा अनुसरण किया जाता है। | यह [[श्रृंखला नियम]] <math>\exp(tX) = \gamma(t)</math> का सरलता से पालन करता है। वो मानचित्र <math>\gamma</math> का निर्माण दाएं या बाएं-अपरिवर्तनीय [[वेक्टर फ़ील्ड|सदिश क्षेत्र]] के [[अभिन्न वक्र]] <math>X</math> के रूप में किया जा सकता है। यह कि सभी वास्तविक मापदंडों के लिए अभिन्न वक्र उपस्थित है, समाधान को शून्य के निकट दाएं या बाएं-अनुवाद द्वारा अनुसरण किया जाता है। | ||
आव्यूह | आव्यूह अवस्थित समूह की स्थिति में हमारे पास अधिक ठोस परिभाषा है। घातीय मानचित्र [[मैट्रिक्स घातांक|आव्यूह घातांक]] के साथ युग्मित होता है और सामान्य श्रृंखला विस्तार द्वारा दिया जाता है: | ||
: <math>\exp (X) = \sum_{k=0}^\infty\frac{X^k}{k!} = I + X + \frac{1}{2}X^2 + \frac{1}{6}X^3 + \cdots</math>, | : <math>\exp (X) = \sum_{k=0}^\infty\frac{X^k}{k!} = I + X + \frac{1}{2}X^2 + \frac{1}{6}X^3 + \cdots</math>, | ||
जहां <math>I</math> आइडेंटिटी आव्यूह है। इस प्रकार, आव्यूह | जहां <math>I</math> आइडेंटिटी आव्यूह है। इस प्रकार, आव्यूह अवस्थित समूहों की व्यवस्था में, घातांकीय मानचित्र, अवस्थित बीजगणित के लिए आव्यूह घातांक <math>\mathfrak g</math> का प्रतिबंध <math>G</math> है। | ||
===रीमैनियन घातीय मानचित्र के साथ तुलना=== | ===रीमैनियन घातीय मानचित्र के साथ तुलना=== | ||
यदि G कॉम्पैक्ट है, तो इसमें बाएं और दाएं अनुवाद के अंतर्गत रीमैनियन मीट्रिक अपरिवर्तनीय है, और G के लिए | यदि G कॉम्पैक्ट है, तो इसमें बाएं और दाएं अनुवाद के अंतर्गत रीमैनियन मीट्रिक अपरिवर्तनीय है, और G के लिए अवस्थित-सैद्धांतिक घातीय मानचित्र घातीय मानचित्र (रिमैनियन ज्यामिति) के साथ मेल खाता है। | ||
सामान्य G के लिए, बाएँ और दाएँ दोनों अनुवादों के अंतर्गत रीमैनियन मीट्रिक अपरिवर्तनीय उपस्थित नहीं होता है। चूँकि, बाएं अनुवाद के अंतर्गत | सामान्य G के लिए, बाएँ और दाएँ दोनों अनुवादों के अंतर्गत रीमैनियन मीट्रिक अपरिवर्तनीय उपस्थित नहीं होता है। चूँकि, बाएं अनुवाद के अंतर्गत सदैव रीमैनियन मीट्रिक अपरिवर्तनीय होता है, बाएं-अपरिवर्तनीय मीट्रिक के लिए रीमैनियन ज्यामिति के अर्थ में घातीय मानचित्र सामान्य रूप से अवस्थित समूह अर्थ में घातीय मानचित्र से सहमत नहीं होता है। कहने का तात्पर्य यह है कि, यदि G अवस्थित समूह है, जो बाएं-किन्तु दाएं-अपरिवर्तनीय मापीय से सुसज्जित नहीं है, तो पहचान के माध्यम से जियोडेसिक्स G के एक-पैरामीटर उपसमूह नहीं होंगे। {{Citation needed|date=March 2019}}. | ||
===अन्य परिभाषाएँ=== | ===अन्य परिभाषाएँ=== | ||
अवस्थित-समूह घातांक की अन्य समकक्ष परिभाषाएँ इस प्रकार हैं: | |||
* यह G पर विहित बाएं-अपरिवर्तनीय [[एफ़िन कनेक्शन]] का घातीय मानचित्र है, जैसे कि [[समानांतर परिवहन]] बाएं अनुवाद द्वारा दिया जाता है। वह है, <math>\exp(X) = \gamma(1)</math> कहाँ <math>\gamma</math> पहचान तत्व पर प्रारंभिक बिंदु और प्रारंभिक वेग एक्स (स्पर्शरेखा सदिश के रूप में माना जाता है) के साथ अद्वितीय [[जियोडेसिक]] है। | * यह G पर विहित बाएं-अपरिवर्तनीय [[एफ़िन कनेक्शन]] का घातीय मानचित्र है, जैसे कि [[समानांतर परिवहन]] बाएं अनुवाद द्वारा दिया जाता है। वह है, <math>\exp(X) = \gamma(1)</math> कहाँ <math>\gamma</math> पहचान तत्व पर प्रारंभिक बिंदु और प्रारंभिक वेग एक्स (स्पर्शरेखा सदिश के रूप में माना जाता है) के साथ अद्वितीय [[जियोडेसिक]] है। | ||
* यह G पर कैनोनिकल राइट-इनवेरिएंट एफ़िन कनेक्शन का घातीय मानचित्र है। यह सामान्यतःकैनोनिकल लेफ्ट-इनवेरिएंट कनेक्शन से अलग होता है, लेकिन दोनों कनेक्शनों में ही जियोडेसिक्स होता है (बाएं या दाएं गुणन द्वारा कार्य करने वाले 1-पैरामीटर उपसमूहों की कक्षाएं) तो वही घातीय मानचित्र दीजिए। | * यह G पर कैनोनिकल राइट-इनवेरिएंट एफ़िन कनेक्शन का घातीय मानचित्र है। यह सामान्यतःकैनोनिकल लेफ्ट-इनवेरिएंट कनेक्शन से अलग होता है, लेकिन दोनों कनेक्शनों में ही जियोडेसिक्स होता है (बाएं या दाएं गुणन द्वारा कार्य करने वाले 1-पैरामीटर उपसमूहों की कक्षाएं) तो वही घातीय मानचित्र दीजिए। | ||
* | * अवस्थित समूह-अवस्थित बीजगणित पत्राचार भी परिभाषा देता है: एक्स इन के लिए <math>\mathfrak g</math>, <math>t \mapsto \exp(tX)</math> अवस्थित बीजगणित समरूपता के अनुरूप अद्वितीय अवस्थित समूह समरूपता है <math>t \mapsto tX.</math> (टिप्पणी: <math>\operatorname{Lie}(\mathbb{R}) = \mathbb{R}</math>.) | ||
== उदाहरण == | == उदाहरण == | ||
* जटिल तल में 0 पर केन्द्रित इकाई वृत्त | * जटिल तल में 0 पर केन्द्रित इकाई वृत्त अवस्थित समूह है (जिसे [[वृत्त समूह]] कहा जाता है) जिसके 1 पर स्पर्शरेखा स्थान को जटिल तल में काल्पनिक रेखा से पहचाना जा सकता है, <math>\{it:t\in\mathbb R\}.</math> इस अवस्थित समूह के लिए घातीय मानचित्र द्वारा दिया गया है | ||
:: <math>it \mapsto \exp(it) = e^{it} = \cos(t) + i\sin(t),\,</math> | :: <math>it \mapsto \exp(it) = e^{it} = \cos(t) + i\sin(t),\,</math> | ||
:अर्थात्, सामान्य सम्मिश्र घातांक के समान सूत्र। | :अर्थात्, सामान्य सम्मिश्र घातांक के समान सूत्र। | ||
* अधिक सामान्यतः, [[जटिल टोरस]] के लिए<ref>{{Cite book|last=Birkenhake|first=Christina|url=https://www.worldcat.org/oclc/851380558|title=जटिल एबेलियन किस्में|date=2004|publisher=Springer Berlin Heidelberg|others=Herbert Lange|isbn=978-3-662-06307-1|edition=Second, augmented|location=Berlin, Heidelberg|oclc=851380558}}</ref><sup>पृष्ठ 8</sup> <math>X = \mathbb{C}^n/\Lambda</math> कुछ अभिन्न [[जाली (समूह)| | * अधिक सामान्यतः, [[जटिल टोरस]] के लिए<ref>{{Cite book|last=Birkenhake|first=Christina|url=https://www.worldcat.org/oclc/851380558|title=जटिल एबेलियन किस्में|date=2004|publisher=Springer Berlin Heidelberg|others=Herbert Lange|isbn=978-3-662-06307-1|edition=Second, augmented|location=Berlin, Heidelberg|oclc=851380558}}</ref><sup>पृष्ठ 8</sup> <math>X = \mathbb{C}^n/\Lambda</math> कुछ अभिन्न [[जाली (समूह)|जाअवस्थित (समूह)]] के लिए <math>\Lambda</math> रैंक का <math>n</math> (इतना समरूपी <math>\mathbb{Z}^n</math>) टोरस [[यूनिवर्सल कवर]] से सुसज्जित है | ||
<ब्लॉककोट><math>\pi: \mathbb{C}^n \to X</math> | <ब्लॉककोट><math>\pi: \mathbb{C}^n \to X</math>जाअवस्थित द्वारा भागफल से. तब से <math>X</math> स्थानीय रूप से समरूपी है <math>\mathbb{C}^n</math> जटिल मैनिफोल्ड के रूप में, हम इसे स्पर्शरेखा स्थान से पहचान सकते हैं <math>T_0X</math>, और मानचित्र<ब्लॉककोट><math>\pi:T_0X \to X</math>कॉम्प्लेक्स अवस्थित समूह के लिए घातीय मानचित्र से मेल खाता है <math>X</math>. | ||
* चतुर्भुज में <math>\mathbb H</math>, [[ मैं मुड़ा ]] का सेट | * चतुर्भुज में <math>\mathbb H</math>, [[ मैं मुड़ा ]] का सेट अवस्थित समूह बनाता है (विशेष एकात्मक समूह के लिए समरूपी)। {{math|''SU''(2)}}) जिसका स्पर्शरेखा स्थान 1 पर विशुद्ध रूप से काल्पनिक चतुर्भुजों के स्थान से पहचाना जा सकता है, <math>\{it+ju + kv :t, u, v\in\mathbb R\}.</math> इस अवस्थित समूह के लिए घातीय मानचित्र द्वारा दिया गया है | ||
:: <math>\mathbf{w} := (it+ju+kv) \mapsto \exp(it+ju+kv) = \cos(|\mathbf{w}|)1 + \sin(|\mathbf{w}|)\frac{\mathbf{w}}{|\mathbf{w}|}.\,</math> | :: <math>\mathbf{w} := (it+ju+kv) \mapsto \exp(it+ju+kv) = \cos(|\mathbf{w}|)1 + \sin(|\mathbf{w}|)\frac{\mathbf{w}}{|\mathbf{w}|}.\,</math> | ||
: यह मानचित्र त्रिज्या के 2-गोले लेता है {{mvar|R}} विशुद्ध रूप से काल्पनिक चतुर्भुज के अंदर <math>\{s\in S^3 \subset \mathbf{H}: \operatorname{Re}(s) = \cos(R)\} </math>, त्रिज्या का 2-गोला <math>\sin(R)</math> (सीएफ. | : यह मानचित्र त्रिज्या के 2-गोले लेता है {{mvar|R}} विशुद्ध रूप से काल्पनिक चतुर्भुज के अंदर <math>\{s\in S^3 \subset \mathbf{H}: \operatorname{Re}(s) = \cos(R)\} </math>, त्रिज्या का 2-गोला <math>\sin(R)</math> (सीएफ. पाउअवस्थित मैट्रिसेस#पाउअवस्थित सदिश का घातांक)। इसकी तुलना ऊपर दिए गए पहले उदाहरण से करें। | ||
* मान | * मान अवस्थितजिए V परिमित आयामी वास्तविक सदिश समष्टि है और इसे सदिश जोड़ के संचालन के अंतर्गत अवस्थित समूह के रूप में देखें। तब <math>\operatorname{Lie}(V) = V</math> 0 पर इसके स्पर्शरेखा स्थान और घातीय मानचित्र के साथ V की पहचान के माध्यम से | ||
::<math>\operatorname{exp}: \operatorname{Lie}(V) = V \to V</math> | ::<math>\operatorname{exp}: \operatorname{Lie}(V) = V \to V</math> | ||
:पहचान मानचित्र है, अर्थात, <math>\exp(v)=v</math>. | :पहचान मानचित्र है, अर्थात, <math>\exp(v)=v</math>. | ||
Line 57: | Line 57: | ||
* <math>\exp(X+Y)=\exp(X)\exp(Y),\quad\text{if }[X,Y]=0</math>. | * <math>\exp(X+Y)=\exp(X)\exp(Y),\quad\text{if }[X,Y]=0</math>. | ||
इस बात पर ज़ोर देना ज़रूरी है कि | इस बात पर ज़ोर देना ज़रूरी है कि पिछअवस्थित पहचान सामान्य रूप से कायम नहीं है; यह धारणा <math>X</math> और <math>Y</math> आवागमन महत्वपूर्ण है. | ||
घातीय मानचित्र की छवि हमेशा [[पहचान घटक]] में निहित होती है <math>G</math>. | घातीय मानचित्र की छवि हमेशा [[पहचान घटक]] में निहित होती है <math>G</math>. | ||
Line 78: | Line 78: | ||
कनेक्टेड लेकिन गैर-कॉम्पैक्ट समूह SL2(R)|SL के घातीय मानचित्र की छवि<sub>2</sub>(आर) पूरा समूह नहीं है. इसकी छवि में या तो सकारात्मक या मापांक 1 के साथ eigenvalues के साथ C-विकर्ण आव्यूहऔर दोहराए गए eigenvalue 1 के साथ गैर-विकर्ण आव्यूहऔर आव्यूहसम्मिलित हैं <math>-I</math>. (इस प्रकार, छवि वास्तविक, नकारात्मक eigenvalues के अतिरिक्त अन्य आव्यूहको बाहर कर देती है <math>-I</math>.)<ref>{{harvnb|Hall|2015}} Exercise 3.22</ref> | कनेक्टेड लेकिन गैर-कॉम्पैक्ट समूह SL2(R)|SL के घातीय मानचित्र की छवि<sub>2</sub>(आर) पूरा समूह नहीं है. इसकी छवि में या तो सकारात्मक या मापांक 1 के साथ eigenvalues के साथ C-विकर्ण आव्यूहऔर दोहराए गए eigenvalue 1 के साथ गैर-विकर्ण आव्यूहऔर आव्यूहसम्मिलित हैं <math>-I</math>. (इस प्रकार, छवि वास्तविक, नकारात्मक eigenvalues के अतिरिक्त अन्य आव्यूहको बाहर कर देती है <math>-I</math>.)<ref>{{harvnb|Hall|2015}} Exercise 3.22</ref> | ||
===घातांकीय मानचित्र और समरूपताएँ=== | ===घातांकीय मानचित्र और समरूपताएँ=== | ||
होने देना <math>\phi\colon G \to H</math> | होने देना <math>\phi\colon G \to H</math> अवस्थित समूह समरूपता बनें और चलो <math>\phi_{*}</math> पहचान पर इसका पुशफॉरवर्ड (अंतर) हो। फिर निम्नलिखित आरेख [[क्रमविनिमेय आरेख]]:<ref>{{harvnb|Hall|2015}} Theorem 3.28</ref> | ||
[[File:ExponentialMap-01.png|center]]विशेष रूप से, जब किसी | [[File:ExponentialMap-01.png|center]]विशेष रूप से, जब किसी अवस्थित समूह के अवस्थित समूह के आसन्न प्रतिनिधित्व पर लागू किया जाता है <math>G</math>, तब से <math>\operatorname{Ad}_* = \operatorname{ad}</math>, हमारे पास उपयोगी पहचान है:<ref>{{harvnb|Hall|2015}} Proposition 3.35</ref> | ||
: <math>\mathrm{Ad}_{\exp X}(Y)=\exp(\mathrm{ad}_X)(Y)=Y+[X,Y]+\frac{1}{2!}[X,[X,Y]]+\frac{1}{3!}[X,[X,[X,Y]]]+\cdots</math>. | : <math>\mathrm{Ad}_{\exp X}(Y)=\exp(\mathrm{ad}_X)(Y)=Y+[X,Y]+\frac{1}{2!}[X,[X,Y]]+\frac{1}{3!}[X,[X,[X,Y]]]+\cdots</math>. | ||
== लघुगणकीय निर्देशांक == | == लघुगणकीय निर्देशांक == | ||
अवस्थित समूह दिया गया <math>G</math> अवस्थित बीजगणित के साथ <math>\mathfrak{g}</math>, आधार की प्रत्येक पसंद <math>X_1, \dots, X_n</math> का <math>\mathfrak{g}</math> G के लिए पहचान तत्व e के निकट समन्वय प्रणाअवस्थित को निम्नानुसार निर्धारित करता है। [[व्युत्क्रम फलन प्रमेय]] द्वारा, घातीय मानचित्र <math>\operatorname{exp} : N \overset{\sim}\to U</math> किसी पड़ोस से भिन्नरूपता है <math>N \subset \mathfrak{g} \simeq \mathbb{R}^n</math> पड़ोस की उत्पत्ति <math>U</math> का <math>e \in G</math>. इसका उलटा: | |||
:<math>\log: U \overset{\sim}\to N \subset \mathbb{R}^n</math> | :<math>\log: U \overset{\sim}\to N \subset \mathbb{R}^n</math> | ||
फिर यू पर समन्वय | फिर यू पर समन्वय प्रणाअवस्थित है। इसे विभिन्न नामों से बुलाया जाता है जैसे लघुगणक निर्देशांक, घातीय निर्देशांक या सामान्य निर्देशांक। अनुप्रयोगों में उनका उपयोग कैसे किया जाता है, इसके उदाहरण के लिए क्लोज्ड-सबसमूह प्रमेय#अवलोकन|क्लोज्ड-सबसमूह प्रमेय देखें। | ||
'टिप्पणी': खुला आवरण <math>\{ U g | g \in G \}</math> G को वास्तविक-विश्लेषणात्मक मैनिफोल्ड की संरचना देता है जैसे कि समूह संचालन <math>(g, h) \mapsto gh^{-1}</math> वास्तविक-विश्लेषणात्मक है.{{sfn|Kobayashi|Nomizu|1996|p=43}} | 'टिप्पणी': खुला आवरण <math>\{ U g | g \in G \}</math> G को वास्तविक-विश्लेषणात्मक मैनिफोल्ड की संरचना देता है जैसे कि समूह संचालन <math>(g, h) \mapsto gh^{-1}</math> वास्तविक-विश्लेषणात्मक है.{{sfn|Kobayashi|Nomizu|1996|p=43}} | ||
Line 125: | Line 125: | ||
{{DEFAULTSORT:Exponential Map}} | {{DEFAULTSORT:Exponential Map}} | ||
श्रेणी: | श्रेणी:अवस्थित बीजगणित | ||
श्रेणी: | श्रेणी:अवस्थित बोलने वाले समूह | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 04/07/2023]] | [[Category:Created On 04/07/2023]] |
Revision as of 19:45, 8 July 2023
Lie groups |
---|
अवस्थित समूहों के सिद्धांत में, घातीय मानचित्र अवस्थित बीजगणित से अवस्थित समूह का समूह के लिए मानचित्र है, जो किसी को अवस्थित बीजगणित से स्थानीय समूह संरचना को पुनः प्राप्त करने की अनुमति देता है। घातीय मानचित्र का अस्तित्व प्राथमिक कारणों में से है कि अवस्थित बीजगणित अवस्थित समूहों का अध्ययन करने के लिए उपयोगी उपकरण है।
गणितीय विश्लेषण का सामान्य घातांकीय फलन घातांकीय मानचित्र की विशेष स्थिति है सकारात्मक वास्तविक संख्याओं का गुणनात्मक समूह है (जिसका अवस्थित बीजगणित सभी वास्तविक संख्याओं का योगात्मक समूह है)। अवस्थित समूह का घातीय मानचित्र सामान्य घातीय फलन के अनुरूप कई गुणों को संतुष्ट करता है, चूँकि, यह कई महत्वपूर्ण स्थितियों में भिन्न भी है।
परिभाषाएँ
मान लीजिये अवस्थित समूह बनें और इसका अवस्थित बीजगणित हो ( पहचान तत्व के स्पर्शरेखा स्थान के रूप में माना जाता है।) घातीय मानचित्र है:
जिसे कई भिन्न-भिन्न विधियों से परिभाषित किया जा सकता है। विशिष्ट आधुनिक परिभाषा यह है:
- परिभाषा: का घातांक द्वारा दिया गया है। जहां;
- का अद्वितीय एक-पैरामीटर उपसमूह है जिसकी पहचान पर स्पर्शरेखा सदिश के समान है।
यह श्रृंखला नियम का सरलता से पालन करता है। वो मानचित्र का निर्माण दाएं या बाएं-अपरिवर्तनीय सदिश क्षेत्र के अभिन्न वक्र के रूप में किया जा सकता है। यह कि सभी वास्तविक मापदंडों के लिए अभिन्न वक्र उपस्थित है, समाधान को शून्य के निकट दाएं या बाएं-अनुवाद द्वारा अनुसरण किया जाता है।
आव्यूह अवस्थित समूह की स्थिति में हमारे पास अधिक ठोस परिभाषा है। घातीय मानचित्र आव्यूह घातांक के साथ युग्मित होता है और सामान्य श्रृंखला विस्तार द्वारा दिया जाता है:
- ,
जहां आइडेंटिटी आव्यूह है। इस प्रकार, आव्यूह अवस्थित समूहों की व्यवस्था में, घातांकीय मानचित्र, अवस्थित बीजगणित के लिए आव्यूह घातांक का प्रतिबंध है।
रीमैनियन घातीय मानचित्र के साथ तुलना
यदि G कॉम्पैक्ट है, तो इसमें बाएं और दाएं अनुवाद के अंतर्गत रीमैनियन मीट्रिक अपरिवर्तनीय है, और G के लिए अवस्थित-सैद्धांतिक घातीय मानचित्र घातीय मानचित्र (रिमैनियन ज्यामिति) के साथ मेल खाता है।
सामान्य G के लिए, बाएँ और दाएँ दोनों अनुवादों के अंतर्गत रीमैनियन मीट्रिक अपरिवर्तनीय उपस्थित नहीं होता है। चूँकि, बाएं अनुवाद के अंतर्गत सदैव रीमैनियन मीट्रिक अपरिवर्तनीय होता है, बाएं-अपरिवर्तनीय मीट्रिक के लिए रीमैनियन ज्यामिति के अर्थ में घातीय मानचित्र सामान्य रूप से अवस्थित समूह अर्थ में घातीय मानचित्र से सहमत नहीं होता है। कहने का तात्पर्य यह है कि, यदि G अवस्थित समूह है, जो बाएं-किन्तु दाएं-अपरिवर्तनीय मापीय से सुसज्जित नहीं है, तो पहचान के माध्यम से जियोडेसिक्स G के एक-पैरामीटर उपसमूह नहीं होंगे।[citation needed].
अन्य परिभाषाएँ
अवस्थित-समूह घातांक की अन्य समकक्ष परिभाषाएँ इस प्रकार हैं:
- यह G पर विहित बाएं-अपरिवर्तनीय एफ़िन कनेक्शन का घातीय मानचित्र है, जैसे कि समानांतर परिवहन बाएं अनुवाद द्वारा दिया जाता है। वह है, कहाँ पहचान तत्व पर प्रारंभिक बिंदु और प्रारंभिक वेग एक्स (स्पर्शरेखा सदिश के रूप में माना जाता है) के साथ अद्वितीय जियोडेसिक है।
- यह G पर कैनोनिकल राइट-इनवेरिएंट एफ़िन कनेक्शन का घातीय मानचित्र है। यह सामान्यतःकैनोनिकल लेफ्ट-इनवेरिएंट कनेक्शन से अलग होता है, लेकिन दोनों कनेक्शनों में ही जियोडेसिक्स होता है (बाएं या दाएं गुणन द्वारा कार्य करने वाले 1-पैरामीटर उपसमूहों की कक्षाएं) तो वही घातीय मानचित्र दीजिए।
- अवस्थित समूह-अवस्थित बीजगणित पत्राचार भी परिभाषा देता है: एक्स इन के लिए , अवस्थित बीजगणित समरूपता के अनुरूप अद्वितीय अवस्थित समूह समरूपता है (टिप्पणी: .)
उदाहरण
- जटिल तल में 0 पर केन्द्रित इकाई वृत्त अवस्थित समूह है (जिसे वृत्त समूह कहा जाता है) जिसके 1 पर स्पर्शरेखा स्थान को जटिल तल में काल्पनिक रेखा से पहचाना जा सकता है, इस अवस्थित समूह के लिए घातीय मानचित्र द्वारा दिया गया है
- अर्थात्, सामान्य सम्मिश्र घातांक के समान सूत्र।
- अधिक सामान्यतः, जटिल टोरस के लिए[1]पृष्ठ 8 कुछ अभिन्न जाअवस्थित (समूह) के लिए रैंक का (इतना समरूपी ) टोरस यूनिवर्सल कवर से सुसज्जित है
<ब्लॉककोट>जाअवस्थित द्वारा भागफल से. तब से स्थानीय रूप से समरूपी है जटिल मैनिफोल्ड के रूप में, हम इसे स्पर्शरेखा स्थान से पहचान सकते हैं , और मानचित्र<ब्लॉककोट>कॉम्प्लेक्स अवस्थित समूह के लिए घातीय मानचित्र से मेल खाता है .
- चतुर्भुज में , मैं मुड़ा का सेट अवस्थित समूह बनाता है (विशेष एकात्मक समूह के लिए समरूपी)। SU(2)) जिसका स्पर्शरेखा स्थान 1 पर विशुद्ध रूप से काल्पनिक चतुर्भुजों के स्थान से पहचाना जा सकता है, इस अवस्थित समूह के लिए घातीय मानचित्र द्वारा दिया गया है
- यह मानचित्र त्रिज्या के 2-गोले लेता है R विशुद्ध रूप से काल्पनिक चतुर्भुज के अंदर , त्रिज्या का 2-गोला (सीएफ. पाउअवस्थित मैट्रिसेस#पाउअवस्थित सदिश का घातांक)। इसकी तुलना ऊपर दिए गए पहले उदाहरण से करें।
- मान अवस्थितजिए V परिमित आयामी वास्तविक सदिश समष्टि है और इसे सदिश जोड़ के संचालन के अंतर्गत अवस्थित समूह के रूप में देखें। तब 0 पर इसके स्पर्शरेखा स्थान और घातीय मानचित्र के साथ V की पहचान के माध्यम से
- पहचान मानचित्र है, अर्थात, .
- विभाजित-संमिश्र संख्या तल में काल्पनिक रेखा इकाई हाइपरबोला समूह का बीजगणित बनाता है चूँकि घातीय मानचित्र द्वारा दिया गया है
गुण
घातांक के प्राथमिक गुण
सभी के लिए , वो नक्शा का अद्वितीय एक-पैरामीटर उपसमूह है जिसकी पहचान पर स्पर्शरेखा सदिश है . यह इस प्रकार है कि:
सामान्यतः अधिक:
- .
इस बात पर ज़ोर देना ज़रूरी है कि पिछअवस्थित पहचान सामान्य रूप से कायम नहीं है; यह धारणा और आवागमन महत्वपूर्ण है.
घातीय मानचित्र की छवि हमेशा पहचान घटक में निहित होती है .
पहचान के निकट घातांक
घातीय मानचित्र सहज मानचित्र है. यह शून्य पर पुशफॉरवर्ड (अंतर) है, , पहचान मानचित्र है (सामान्य पहचान के साथ)।
व्युत्क्रम फ़ंक्शन प्रमेय से यह निष्कर्ष निकलता है कि घातांकीय मानचित्र, इसलिए, 0 के कुछ पड़ोस से भिन्नता तक सीमित है 1 इंच के पड़ोस में .[2] यह दर्शाना कठिन नहीं है कि यदि G जुड़ा हुआ है, तो G का प्रत्येक तत्व g, के तत्वों के घातांक का गुणनफल है। :[3].
विश्व स्तर पर, घातीय मानचित्र आवश्यक रूप से विशेषणात्मक नहीं है। इसके अतिरिक्त , घातीय मानचित्र सभी बिंदुओं पर स्थानीय भिन्नता नहीं हो सकता है। उदाहरण के लिए, से घातीय मानचित्र (3) घूर्णन समूह SO(3)|SO(3) स्थानीय भिन्नता नहीं है; इस विफलता पर कट लोकस (रीमैनियन मैनिफोल्ड) भी देखें। अधिक जानकारी के लिए घातीय मानचित्र का व्युत्पन्न देखें।
घातांक की प्रत्यक्षता
इन महत्वपूर्ण विशेष मामलों में, घातीय मानचित्र हमेशा विशेषण के रूप में जाना जाता है:
- G जुड़ा हुआ है और कॉम्पैक्ट है,[4]
- G कनेक्टेड और निलपोटेंट है (उदाहरण के लिए, G कनेक्टेड और एबेलियन), और
- .[5]
उपरोक्त किसी भी शर्त को पूरा नहीं करने वाले समूहों के लिए, घातीय मानचित्र विशेषणात्मक हो भी सकता है और नहीं भी।
कनेक्टेड लेकिन गैर-कॉम्पैक्ट समूह SL2(R)|SL के घातीय मानचित्र की छवि2(आर) पूरा समूह नहीं है. इसकी छवि में या तो सकारात्मक या मापांक 1 के साथ eigenvalues के साथ C-विकर्ण आव्यूहऔर दोहराए गए eigenvalue 1 के साथ गैर-विकर्ण आव्यूहऔर आव्यूहसम्मिलित हैं . (इस प्रकार, छवि वास्तविक, नकारात्मक eigenvalues के अतिरिक्त अन्य आव्यूहको बाहर कर देती है .)[6]
घातांकीय मानचित्र और समरूपताएँ
होने देना अवस्थित समूह समरूपता बनें और चलो पहचान पर इसका पुशफॉरवर्ड (अंतर) हो। फिर निम्नलिखित आरेख क्रमविनिमेय आरेख:[7]
विशेष रूप से, जब किसी अवस्थित समूह के अवस्थित समूह के आसन्न प्रतिनिधित्व पर लागू किया जाता है , तब से , हमारे पास उपयोगी पहचान है:[8]
- .
लघुगणकीय निर्देशांक
अवस्थित समूह दिया गया अवस्थित बीजगणित के साथ , आधार की प्रत्येक पसंद का G के लिए पहचान तत्व e के निकट समन्वय प्रणाअवस्थित को निम्नानुसार निर्धारित करता है। व्युत्क्रम फलन प्रमेय द्वारा, घातीय मानचित्र किसी पड़ोस से भिन्नरूपता है पड़ोस की उत्पत्ति का . इसका उलटा:
फिर यू पर समन्वय प्रणाअवस्थित है। इसे विभिन्न नामों से बुलाया जाता है जैसे लघुगणक निर्देशांक, घातीय निर्देशांक या सामान्य निर्देशांक। अनुप्रयोगों में उनका उपयोग कैसे किया जाता है, इसके उदाहरण के लिए क्लोज्ड-सबसमूह प्रमेय#अवलोकन|क्लोज्ड-सबसमूह प्रमेय देखें।
'टिप्पणी': खुला आवरण G को वास्तविक-विश्लेषणात्मक मैनिफोल्ड की संरचना देता है जैसे कि समूह संचालन वास्तविक-विश्लेषणात्मक है.[9]
यह भी देखें
- घातांकीय विषयों की सूची
- घातांकीय मानचित्र का व्युत्पन्न
- आव्यूह घातांक
उद्धरण
- ↑ Birkenhake, Christina (2004). जटिल एबेलियन किस्में. Herbert Lange (Second, augmented ed.). Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-662-06307-1. OCLC 851380558.
- ↑ Hall 2015 Corollary 3.44
- ↑ Hall 2015 Corollary 3.47
- ↑ Hall 2015 Corollary 11.10
- ↑ Hall 2015 Exercises 2.9 and 2.10
- ↑ Hall 2015 Exercise 3.22
- ↑ Hall 2015 Theorem 3.28
- ↑ Hall 2015 Proposition 3.35
- ↑ Kobayashi & Nomizu 1996, p. 43.
उद्धृत कार्य
- Hall, Brian C. (2015), Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, ISBN 978-3319134666.
- Helgason, Sigurdur (2001), Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-2848-9, MR 1834454.
- Kobayashi, Shoshichi; Nomizu, Katsumi (1996), Foundations of Differential Geometry, vol. 1 (New ed.), Wiley-Interscience, ISBN 0-471-15733-3.
- "Exponential mapping", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
श्रेणी:अवस्थित बीजगणित श्रेणी:अवस्थित बोलने वाले समूह