एडजुगेट मैट्रिक्स: Difference between revisions
No edit summary |
No edit summary |
||
Line 232: | Line 232: | ||
यदि {{math|1=''V'' = '''R'''<sup>''n''</sup>}} अपने [[विहित आधार]] {{math|'''e'''<sub>1</sub>, …, '''e'''<sub>''n''</sub>}} से संपन्न है, और यदि इस [[आधार (रैखिक बीजगणित)|आधार (रैखिक बीजगणित]]) पर {{math|''T''}} का मैट्रिक्स {{math|'''A'''}} है, तो {{math|''T''}} का सहायक {{math|'''A'''}} है, यह देखने के लिए कि क्यों, दें <math>\wedge^{n-1} \mathbf{R}^n</math> आधार | यदि {{math|1=''V'' = '''R'''<sup>''n''</sup>}} अपने [[विहित आधार]] {{math|'''e'''<sub>1</sub>, …, '''e'''<sub>''n''</sub>}} से संपन्न है, और यदि इस [[आधार (रैखिक बीजगणित)|आधार (रैखिक बीजगणित]]) पर {{math|''T''}} का मैट्रिक्स {{math|'''A'''}} है, तो {{math|''T''}} का सहायक {{math|'''A'''}} है, यह देखने के लिए कि क्यों, दें <math>\wedge^{n-1} \mathbf{R}^n</math> आधार | ||
:<math>\{\mathbf{e}_1 \wedge \dots \wedge \hat\mathbf{e}_k \wedge \dots \wedge \mathbf{e}_n\}_{k=1}^n.</math> | :<math>\{\mathbf{e}_1 \wedge \dots \wedge \hat\mathbf{e}_k \wedge \dots \wedge \mathbf{e}_n\}_{k=1}^n.</math> | ||
आधार सदिश | आधार सदिश {{math|'''e'''<sub>''i''</sub>}} का {{math|'''R'''<sup>''n''</sup>}} ठीक करें, {{math|'''e'''<sub>''i''</sub>}} की छवि <math>\phi</math> के अंतर्गत इस आधार पर निर्धारित होता है कि यह आधार सदिश जहाँभेजता है: | ||
:<math>\phi_{\mathbf{e}_i}(\mathbf{e}_1 \wedge \dots \wedge \hat\mathbf{e}_k \wedge \dots \wedge \mathbf{e}_n) | :<math>\phi_{\mathbf{e}_i}(\mathbf{e}_1 \wedge \dots \wedge \hat\mathbf{e}_k \wedge \dots \wedge \mathbf{e}_n) | ||
= \begin{cases} (-1)^{i-1} \mathbf{e}_1 \wedge \dots \wedge \mathbf{e}_n, &\text{if}\ k = i, \\ 0 &\text{otherwise.} \end{cases}</math> | = \begin{cases} (-1)^{i-1} \mathbf{e}_1 \wedge \dots \wedge \mathbf{e}_n, &\text{if}\ k = i, \\ 0 &\text{otherwise.} \end{cases}</math> | ||
सदिश के आधार पर, {{math|(''n'' − 1)}} | सदिश के आधार पर, {{math|(''n'' − 1)}}, {{math|''T''}} की बाहरी शक्ति है, | ||
:<math>\mathbf{e}_1 \wedge \dots \wedge \hat\mathbf{e}_j \wedge \dots \wedge \mathbf{e}_n \mapsto \sum_{k=1}^n (\det A_{jk}) \mathbf{e}_1 \wedge \dots \wedge \hat\mathbf{e}_k \wedge \dots \wedge \mathbf{e}_n.</math> | :<math>\mathbf{e}_1 \wedge \dots \wedge \hat\mathbf{e}_j \wedge \dots \wedge \mathbf{e}_n \mapsto \sum_{k=1}^n (\det A_{jk}) \mathbf{e}_1 \wedge \dots \wedge \hat\mathbf{e}_k \wedge \dots \wedge \mathbf{e}_n.</math> | ||
इनमें से प्रत्येक पद | इनमें से प्रत्येक पद <math>\phi_{\mathbf{e}_i}</math>के अंतर्गत शून्य मैप करता है, अतिरिक्त {{math|1=''k'' = ''i''}} अवधि है। इसलिए, <math>\phi_{\mathbf{e}_i}</math>की वापसी जिसके लिए रैखिक परिवर्तन है, | ||
:<math>\mathbf{e}_1 \wedge \dots \wedge \hat\mathbf{e}_j \wedge \dots \wedge \mathbf{e}_n \mapsto (-1)^{i-1} (\det A_{ji}) \mathbf{e}_1 \wedge \dots \wedge \mathbf{e}_n,</math> | :<math>\mathbf{e}_1 \wedge \dots \wedge \hat\mathbf{e}_j \wedge \dots \wedge \mathbf{e}_n \mapsto (-1)^{i-1} (\det A_{ji}) \mathbf{e}_1 \wedge \dots \wedge \mathbf{e}_n,</math> | ||
अर्थात् यह | अर्थात् यह समान है | ||
:<math>\sum_{j=1}^n (-1)^{i+j} (\det A_{ji})\phi_{\mathbf{e}_j}.</math> | :<math>\sum_{j=1}^n (-1)^{i+j} (\det A_{ji})\phi_{\mathbf{e}_j}.</math> | ||
व्युत्क्रमणीय <math>\phi</math> दर्शाता है कि {{math|''T''}} का adjugate जिसके लिए रैखिक परिवर्तन है, | |||
:<math>\mathbf{e}_i \mapsto \sum_{j=1}^n (-1)^{i+j}(\det A_{ji})\mathbf{e}_j.</math> | :<math>\mathbf{e}_i \mapsto \sum_{j=1}^n (-1)^{i+j}(\det A_{ji})\mathbf{e}_j.</math> | ||
परिणामस्वरूप, इसका मैट्रिक्स प्रतिनिधित्व का सहायक | परिणामस्वरूप, इसका मैट्रिक्स प्रतिनिधित्व का सहायक {{math|'''A'''}} है। | ||
यदि {{math|''V''}} आंतरिक उत्पाद और | यदि {{math|''V''}} आंतरिक उत्पाद और वॉल्यूम फॉर्म से संपन्न है, फिर मानचित्र {{math|''φ''}} को और अधिक विघटित किया जा सकता है। इस विषय में, {{math|''φ''}} को [[हॉज स्टार ऑपरेटर]] और दोहरीकरण के संयोजन के रूप में समझा जा सकता है। विशेष रूप से, यदि {{math|ω}} आयतन रूप है, तो यह, आंतरिक उत्पाद के साथ मिलकर, समरूपता निर्धारित करता है, | ||
:<math>\omega^\vee \colon \wedge^n V \to \mathbf{R}.</math> | :<math>\omega^\vee \colon \wedge^n V \to \mathbf{R}.</math> | ||
यह | यह समरूपता को प्रेरित करता है | ||
:<math>\operatorname{Hom}(\wedge^{n-1} \mathbf{R}^n, \wedge^n \mathbf{R}^n) \cong \wedge^{n-1} (\mathbf{R}^n)^\vee.</math> | :<math>\operatorname{Hom}(\wedge^{n-1} \mathbf{R}^n, \wedge^n \mathbf{R}^n) \cong \wedge^{n-1} (\mathbf{R}^n)^\vee.</math> | ||
सदिश {{math|'''v'''}} में {{math|'''R'''<sup>''n''</sup>}} रैखिक कार्यात्मकता से | सदिश {{math|'''v'''}} में {{math|'''R'''<sup>''n''</sup>}} रैखिक कार्यात्मकता से के समान है | ||
:<math>(\alpha \mapsto \omega^\vee(\mathbf{v} \wedge \alpha)) \in \wedge^{n-1} (\mathbf{R}^n)^\vee.</math> | :<math>(\alpha \mapsto \omega^\vee(\mathbf{v} \wedge \alpha)) \in \wedge^{n-1} (\mathbf{R}^n)^\vee.</math> | ||
हॉज स्टार ऑपरेटर की परिभाषा के अनुसार, यह रैखिक कार्यात्मकता | हॉज स्टार ऑपरेटर की परिभाषा के अनुसार, यह रैखिक कार्यात्मकता *v से दोहरी है। अर्थात्, ω∨∘ φ समान v ↦ *v∨ है। | ||
== उच्च adjugates == | == उच्च adjugates == | ||
{{math|'''A'''}} सेम {{math|''n'' × ''n''}} मैट्रिक्स, और {{math|''r'' ≥ 0}}.{{math|''r''}} तय करता है। {{math|'''A'''}} <math display="inline">\binom{n}{r} \!\times\! \binom{n}{r}</math> मैट्रिक्स, निरूपित {{math|adj<sub>''r''</sub> '''A'''}}, जिनकी प्रविष्टियाँ{{math|{1, ..., ''m''<nowiki>}</nowiki>}} के आकार {{math|''r''}} उपसमुच्चय {{math|''I''}} और {{math|''J''}} के आधार पर अनुक्रमित की जाती हैं। {{math|''I''{{i sup|c}}}} और {{math|''J''{{i sup|c}}}},{{math|''I''}} और {{math|''J''}}, क्रमश के [[पूरक (सेट सिद्धांत)]] को र्शाते हैं । <math>\mathbf{A}_{I^c, J^c}</math>, {{math|'''A'''}} के सबमैट्रिक्स को दर्शाता है जिसमें वे पंक्तियाँ और स्तंभ सम्मिलित हैं जिनके सूचकांक क्रमश {{math|''I''{{i sup|c}}}} और {{math|''J''{{i sup|c}}}}, हैं। फिर {{math|adj<sub>''r''</sub> '''A'''}} की {{math|(''I'', ''J'')}} प्रविष्टि है, | |||
:<math>(-1)^{\sigma(I) + \sigma(J)}\det \mathbf{A}_{J^c, I^c},</math> | :<math>(-1)^{\sigma(I) + \sigma(J)}\det \mathbf{A}_{J^c, I^c},</math> | ||
जहाँ {{math|σ(''I'')}} और {{math|σ(''J'')}} {{math|''I''}} और {{math|''J''}}, के तत्वों का योग है। | |||
उच्च adjugates के मूल गुणों में | उच्च adjugates के मूल गुणों में सम्मिलित हैं: | ||
* {{math|1=adj<sub>0</sub>('''A''') = det '''A'''}}. | * {{math|1=adj<sub>0</sub>('''A''') = det '''A'''}}. | ||
* {{math|1=adj<sub>1</sub>('''A''') = adj '''A'''}}. | * {{math|1=adj<sub>1</sub>('''A''') = adj '''A'''}}. | ||
* {{math|1=adj<sub>''n''</sub>('''A''') = 1}}. | * {{math|1=adj<sub>''n''</sub>('''A''') = 1}}. | ||
* {{math|1=adj<sub>''r''</sub>('''BA''') = adj<sub>''r''</sub>('''A''') adj<sub>''r''</sub>('''B''')}}. | * {{math|1=adj<sub>''r''</sub>('''BA''') = adj<sub>''r''</sub>('''A''') adj<sub>''r''</sub>('''B''')}}. | ||
* <math>\operatorname{adj}_r(\mathbf{A})C_r(\mathbf{A}) = C_r(\mathbf{A})\operatorname{adj}_r(\mathbf{A}) = (\det \mathbf{A})I_{\binom{n}{r}}</math>, | * <math>\operatorname{adj}_r(\mathbf{A})C_r(\mathbf{A}) = C_r(\mathbf{A})\operatorname{adj}_r(\mathbf{A}) = (\det \mathbf{A})I_{\binom{n}{r}}</math>, जहाँ{{math|''C''<sub>''r''</sub>('''A''')}} दर्शाता है {{math|''r''}}&हेयरस्प;[[यौगिक मैट्रिक्स]]। | ||
उच्चतर एडजुगेट को सामान्य एडजुगेट, प्रतिस्थापन के समान ही अमूर्त बीजीय शब्दों में परिभाषित किया जा सकता है <math>\wedge^r V</math> और <math>\wedge^{n-r} V</math> के लिए <math>V</math> और <math>\wedge^{n-1} V</math>, क्रमश। | उच्चतर एडजुगेट को सामान्य एडजुगेट, प्रतिस्थापन के समान ही अमूर्त बीजीय शब्दों में परिभाषित किया जा सकता है <math>\wedge^r V</math> और <math>\wedge^{n-r} V</math> के लिए <math>V</math> और <math>\wedge^{n-1} V</math>, क्रमश। | ||
Revision as of 09:37, 23 July 2023
रैखिक बीजगणित में, वर्ग मैट्रिक्स A का सहायक या शास्त्रीय सहायक इसके सहकारक मैट्रिक्स का स्थानान्तरण है और इसे adj(A) दर्शाया जाता है।[1][2] इसे कभी-कभी सहायक मैट्रिक्स [3][4] या "एडजॉइंट" के रूप में भी जाना जाता है,[5] चूंकि पश्चात वाला शब्द आज सामान्यतः भिन्न अवधारणा को संदर्भित करता है, हर्मिटियन सहायक जो मैट्रिक्स के लिए संयुग्म स्थानान्तरण है।
इसके सहायक के साथ मैट्रिक्स का उत्पाद विकर्ण मैट्रिक्स देता है (मुख्य विकर्ण पर प्रविष्टियाँ शून्य नहीं हैं) जिनकी विकर्ण प्रविष्टियाँ मूल मैट्रिक्स के निर्धारक हैं:
जहाँ I A के समान आकार का पहचान मैट्रिक्स है। परिणाम स्वरूप, व्युत्क्रमणीय मैट्रिक्स का गुणक व्युत्क्रम उसके सहायक को उसके निर्धारक द्वारा विभाजित करके पाया जा सकता है।
परिभाषा
A का निर्णायक A के सहकारक मैट्रिक्स C का स्थानान्तरण है ,
अधिक विस्तार से, मान लीजिए R इकाई क्रमविनिमेय रिंग है और A R प्रविष्टियों के साथ n × n मैट्रिक्स है। A का (i, j) -लघु जिसे Mij दर्शाया गया है, मैट्रिक्स का निर्धारक है, जो A की पंक्ति i और स्तंभ j को विस्थापित करने से परिणामस्वरूप होता है। A का सहकारक मैट्रिक्स n × n मैट्रिक्स C है, जिसका (i, j) प्रविष्टि A का (i, j) सहकारक (रैखिक बीजगणित) है, जो कि (i, j) साधारण गुणा संकेत कारक है:
A का स्थानांतरण C है, अर्थात n × n मैट्रिक्स जिसकी (i, j) प्रविष्टि A का (j, i) सहकारक है,
महत्वपूर्ण परिणाम
एडजुगेट को इस प्रकार परिभाषित किया गया है कि A का उत्पाद विकर्ण मैट्रिक्स उत्पन्न करता है, जिसकी विकर्ण प्रविष्टियाँ निर्धारक det(A) होती हैं। वह है,
जहाँ I n × n पहचान मैट्रिक्स है। यह निर्धारक के लाप्लास विस्तार का परिणाम है।
उपरोक्त सूत्र मैट्रिक्स बीजगणित में मूलभूत परिणामों में से एक का तात्पर्य है, A व्युत्क्रमणीय मैट्रिक्स है यदि और केवल तभी जब det(A) R का व्युत्क्रमणीय तत्व है। जब यह प्रारम्भ होता है, तो उपरोक्त समीकरण प्राप्त होता है।
उदाहरण
1 × 1 सामान्य मैट्रिक्स
चूँकि 0 x 0 मैट्रिक्स का निर्धारक 1 है, किसी भी 1 × 1 मैट्रिक्स (सम्मिश्र संख्या अदिश) का सहायक है . उसका अवलोकन करो:
2 × 2 सामान्य मैट्रिक्स
2 × 2 मैट्रिक्स का एडजुगेट
है
प्रत्यक्ष गणना द्वारा,
ऐसे में ये कथन भी सच है, कि det(adj(A))= det(A) और इसलिए adj(adj(A)) = A.
3 × 3 सामान्य मैट्रिक्स
3 × 3 मैट्रिक्स पर विचार करें
इसका सहकारक मैट्रिक्स है
जहाँ
इसका सहायक इसके सहकारक मैट्रिक्स का स्थानान्तरण है,
3 × 3 संख्यात्मक मैट्रिक्स
विशिष्ट उदाहरण के रूप में, हमारे पास है,
यह परिक्षण करना सरल है कि एडजुगेट निर्धारक का व्युत्क्रम मैट्रिक्स गुणा है, −6, वह −1 दूसरी पंक्ति में, एडजुगेट के तीसरे स्तंभ की गणना निम्नानुसार की गई थी। एडजुगेट की (2,3) प्रविष्टि A का (3,2) सहकारक है। इस सहकारक की गणना मूल मैट्रिक्स A की तीसरी पंक्ति और दूसरे स्तंभ को विस्थापित कर प्राप्त सबमैट्रिक्स का उपयोग करके की जाती है।
(3,2) सहकारक इस सबमैट्रिक्स के निर्धारक का संकेत गुना है:
और यह सहायक की (2,3) प्रविष्टि है।
गुण
किसी भी n × n मैट्रिक्स A के लिए, प्रारंभिक गणना से ज्ञात होता है कि एडजुगेट में निम्नलिखित गुण हैं:
- , जहाँ पहचान मैट्रिक्स है.
- , जहाँ शून्य मैट्रिक्स है, अतिरिक्त इसके कि यदि तब .
- किसी भी अदिश c के लिए .
- .
- .
- यदि A तो व्युत्क्रमणीय है, तो . यह इस प्रकार है कि:
- adj(A) व्युत्क्रम (det A)−1A के साथ व्युत्क्रमणीय है .
- adj(A−1) = adj(A)−1.
- adj(A) A प्रवेशवार बहुपद है। विशेष रूप से, वास्तविक संख्या या सम्मिश्र संख्याओं पर, एडजुगेट A की प्रविष्टियों का सुचारू कार्य है।
सम्मिश्र संख्याओं पर,
- , जहां बार सम्मिश्र संयुग्मन को दर्शाता है।
- , जहां तारांकन संयुग्म स्थानांतरण को दर्शाता है।
मान लीजिए कि B अन्य n × n मैट्रिक्स है, तब
इसे तीन प्रकार से सिद्ध किया जा सकता है। विधि, जो किसी भी क्रमविनिमेय वलय के लिए मान्य है, कॉची-बिनेट सूत्र का उपयोग करके सीधी गणना है। दूसरा विधि, जो वास्तविक या सम्मिश्र संख्याओं के लिए मान्य है, सर्वप्रथम निरीक्षण करना है व्युत्क्रमणीय मैट्रिक्स A और B के लिए,
चूँकि प्रत्येक गैर-व्युत्क्रमणीय मैट्रिक्स व्युत्क्रमणीय मैट्रिक्सों की सीमा है, इसलिए सहायक की निरंतरता का तात्पर्य यह है कि जब A या B इनमें से कोई व्युत्क्रमणीय नहीं होता है तो सूत्र सत्य रहता है।
पूर्व सूत्र का परिणाम यह है कि, किसी भी गैर-नकारात्मक पूर्णांक k के लिए ,
यदि A व्युत्क्रमणीय है, तो उपरोक्त सूत्र ऋणात्मक k के लिए भी मान्य है .
पहचान से
हम निष्कर्ष निकालते हैं
मान लीजिए कि A, B के साथ यात्रा करता है। बायीं और दायीं ओर पहचान AB = BA को adj(A) से गुणा करने से सिद्ध होता है, कि
यदि A व्युत्क्रमणीय है, इसका तात्पर्य यह है, कि adj(A)भी B के साथ संचलन करता है। वास्तविक या सम्मिश्र संख्याओं पर, निरंतरता का तात्पर्य है, कि adj(A) B के साथ संचलन करता है, संभवता ही A व्युत्क्रमणीय नहीं है।
अंत में, दूसरे प्रमाण की तुलना में अधिक सामान्य प्रमाण है, जिसके लिए केवल यह आवश्यक है कि n × n मैट्रिक्स में कम से कम 2n + 1 तत्वों (उदाहरण के लिए पूर्णांक मॉड्यूलर अंकगणित 11 पर 5 × 5 मैट्रिक्स) वाले क्षेत्र में पर प्रविष्टियाँ हों)। det(A+t I) t में बहुपद है जिसमें डिग्री अधिकतम n है, इसलिए इसकी अधिकतम n जड़ें हैं। ध्यान दें कि adj((A+t I)(B)) ij वीं प्रविष्टि अधिकतम क्रम n का बहुपद है, और इसी प्रकार adj(A+t I) adj(B) के लिए भी है। Ij वीं प्रविष्टि पर ये दो बहुपद कम से कम n+ 1 अंक पर सहमत हैं, क्योंकि हमारे पास क्षेत्र के कम से कम n+ 1 तत्व हैं जहां A+t I व्युत्क्रमणीय है, और हमने व्युत्क्रमणीय मैट्रिक्सों के लिए पहचान सिद्ध कर दी है। डिग्री n के बहुपद जो n+ 1 बिंदुओं पर सहमत होते हैं, समान होने चाहिए (उन्हें दूसरे से घटाएं और आपके पास अधिकतम n डिग्री वाले बहुपद के लिए n+ 1 मूल होंगे, विरोधाभास जब तक कि उनका अंतर समान रूप से शून्य न हो)। चूँकि दोनों बहुपद समान हैं, वे t के प्रत्येक मान के लिए समान मान लेते हैं। इस प्रकार, जब t = 0 होता है तो वे समान मान लेते हैं।
उपरोक्त गुणों और अन्य प्राथमिक गणनाओं का उपयोग करके, यह दिखाना सरल है कि यदि A में निम्नलिखित गुणों में से है adj A भी ऐसा ही करता है:
- ऊपरी त्रिकोणीय,
- निचला त्रिकोणीय,
- विकर्ण मैट्रिक्स,
- ऑर्थोगोनल मैट्रिक्स,
- एकात्मक मैट्रिक्स,
- सममित मैट्रिक्स,
- हर्मिटियन मैट्रिक्स,
- स्क्यू-सममित,
- स्क्यू-हर्मिटियन,
- सामान्य मैट्रिक्स,
यदि A व्युत्क्रमणीय है, तो, जैसा कि ऊपर बताया गया है, A के निर्धारक और व्युत्क्रम के संदर्भ में adj(A) के लिए एक सूत्र है। जब A व्युत्क्रमणीय नहीं है, तो एडजुगेट भिन्न-भिन्न किन्तु निकट से संबंधित सूत्रों को संतुष्ट करता है।
- यदि rk(A) ≤ n − 2, तब adj(A) = 0.
- यदि rk(A) = n − 1, तब rk(adj(A)) = 1. (कुछ माइनर गैर-शून्य है, इसलिए adj(A) गैर-शून्य है और इसलिए इसकी रैंक (रैखिक बीजगणित) कम से कम है; पहचान adj(A) A = 0 का तात्पर्य यह है, कि adj(A) के शून्य स्थान का आयाम कम से कम n − 1 है, इसलिए इसकी रैंक अधिकतम है।) यह यह इस प्रकार है कि adj(A) = αxyT, जहाँ α अदिश राशि है और x और y इस प्रकार सदिश हैं कि Ax = 0 और AT y = 0 है।
स्तंभ प्रतिस्थापन और क्रैमर नियम
स्तंभ सदिश में विभाजन A:
मान लीजिए b आकार n का स्तंभ सदिश है। 1 ≤ i ≤ n को ठीक करें और A के स्तंभ i को b से प्रतिस्थापित करके बनने वाले मैट्रिक्स पर विचार करें:
लाप्लास इस मैट्रिक्स के निर्धारक को कॉलम i के साथ विस्तारित करता है। परिणाम उत्पाद adj(A)bकी प्रविष्टि i है। विभिन्न संभावित i के लिए इन निर्धारकों को एकत्रित करने से स्तंभ सदिशों की समानता प्राप्त होती है।
इस सूत्र के निम्नलिखित ठोस परिणाम हैं। समीकरणों की रैखिक प्रणाली पर विचार करें,
मान लें कि A गैर-वचन है। बाईं ओर इस प्रणाली को adj(A) से गुणा करना और निर्धारक पाशविक से विभाजित करना:
इस स्थिति में पूर्व सूत्र को प्रारम्भ करने से क्रैमर का नियम प्राप्त होता है,
जहां xi, x की iवीं प्रविष्टि है।
अभिलक्षणिक बहुपद
माना A का अभिलक्षणिक बहुपद है
p का प्रथम विभाजित अंतर घात n − 1 सममित बहुपद है ,
sI − A को इसके एडजुगेट से गुणा करें। चूँकि केली-हैमिल्टन प्रमेय के अनुसार p(A) = 0 कुछ प्राथमिक जोड़-तोड़ से ज्ञात होता है
विशेष रूप से, A के संकल्पात्मक औपचारिकता को परिभाषित किया गया है
और उपरोक्त सूत्र के अनुसार, यह समान है
जैकोबी का सूत्र
निर्धारक के व्युत्पन्न के लिए एडजुगेट जैकोबी के सूत्र में भी दिखाई देता है। यदि A(t) निरंतर अवकलनीय-भिन्न है,
यह इस प्रकार है कि निर्धारक का कुल व्युत्पन्न सहायक का स्थानान्तरण है:
केली-हैमिल्टन सूत्र
मान लीजिए pA(t) A का अभिलक्षणिक बहुपद है। केली-हैमिल्टन प्रमेय कहता है कि
स्थिर पद को भिन्न करने और समीकरण को adj(A) से गुणा करने पर एडजुगेट के लिए एक अभिव्यक्ति मिलती है जो केवल A और pA(t) के गुणांक पर निर्भर करती है। इन गुणांकों को पूर्ण घातीय बेल बहुपदों का उपयोग करके A की शक्तियों के चिन्ह के रूप में स्पष्ट रूप से दर्शाया जा सकता है। परिणामी सूत्र है
जहां n, A का आयाम है, और योग को s से ऊपर ले लिया गया है और kl ≥ 0 के सभी अनुक्रम रैखिक डायोफैंटाइन समीकरण को संतुष्ट करते हैं
2 × 2 विषय के लिए, यह देता है
3 × 3 विषय के लिए, यह देता है
4 × 4 विषय के लिए, यह देता है
वही सूत्र सीधे फद्दीव-लेवेरियर एल्गोरिथ्म के अंतिम चरण का अनुसरण करता है, जो A की विशेषता बहुपद को कुशलतापूर्वक निर्धारित करता है।
बाह्य बीजगणित से संबंध
बाहरी बीजगणित का उपयोग करके सहायक को अमूर्त शब्दों में देखा जा सकता है। मान लीजिए V एक n-आयामी सदिश समष्टि है, बाहरी उत्पाद द्विरेखीय युग्मन को परिभाषित करता है।
संक्षेप में, , R का समरूपी है, और ऐसी किसी भी समरूपता के अनुसार बाहरी उत्पाद आदर्श युग्मन है। इसलिए, यह समरूपता उत्पन्न करता है।
स्पष्ट रूप से, यह युग्म v ∈ V को भेजता है , जहाँ
मान लीजिए कि T : V → V रैखिक परिवर्तन है। T की (n − 1)st बाहरी शक्ति द्वारा पुलबैक Hom स्पेस के आकारवाद को प्रेरित करता है। T का समायोजक सम्मिश्र है।
यदि V = Rn अपने विहित आधार e1, …, en से संपन्न है, और यदि इस आधार (रैखिक बीजगणित) पर T का मैट्रिक्स A है, तो T का सहायक A है, यह देखने के लिए कि क्यों, दें आधार
आधार सदिश ei का Rn ठीक करें, ei की छवि के अंतर्गत इस आधार पर निर्धारित होता है कि यह आधार सदिश जहाँभेजता है:
सदिश के आधार पर, (n − 1), T की बाहरी शक्ति है,
इनमें से प्रत्येक पद के अंतर्गत शून्य मैप करता है, अतिरिक्त k = i अवधि है। इसलिए, की वापसी जिसके लिए रैखिक परिवर्तन है,
अर्थात् यह समान है
व्युत्क्रमणीय दर्शाता है कि T का adjugate जिसके लिए रैखिक परिवर्तन है,
परिणामस्वरूप, इसका मैट्रिक्स प्रतिनिधित्व का सहायक A है।
यदि V आंतरिक उत्पाद और वॉल्यूम फॉर्म से संपन्न है, फिर मानचित्र φ को और अधिक विघटित किया जा सकता है। इस विषय में, φ को हॉज स्टार ऑपरेटर और दोहरीकरण के संयोजन के रूप में समझा जा सकता है। विशेष रूप से, यदि ω आयतन रूप है, तो यह, आंतरिक उत्पाद के साथ मिलकर, समरूपता निर्धारित करता है,
यह समरूपता को प्रेरित करता है
सदिश v में Rn रैखिक कार्यात्मकता से के समान है
हॉज स्टार ऑपरेटर की परिभाषा के अनुसार, यह रैखिक कार्यात्मकता *v से दोहरी है। अर्थात्, ω∨∘ φ समान v ↦ *v∨ है।
उच्च adjugates
A सेम n × n मैट्रिक्स, और r ≥ 0.r तय करता है। A मैट्रिक्स, निरूपित adjr A, जिनकी प्रविष्टियाँ{1, ..., m} के आकार r उपसमुच्चय I और J के आधार पर अनुक्रमित की जाती हैं। Ic और Jc,I और J, क्रमश के पूरक (सेट सिद्धांत) को र्शाते हैं । , A के सबमैट्रिक्स को दर्शाता है जिसमें वे पंक्तियाँ और स्तंभ सम्मिलित हैं जिनके सूचकांक क्रमश Ic और Jc, हैं। फिर adjr A की (I, J) प्रविष्टि है,
जहाँ σ(I) और σ(J) I और J, के तत्वों का योग है।
उच्च adjugates के मूल गुणों में सम्मिलित हैं:
- adj0(A) = det A.
- adj1(A) = adj A.
- adjn(A) = 1.
- adjr(BA) = adjr(A) adjr(B).
- , जहाँCr(A) दर्शाता है r&हेयरस्प;यौगिक मैट्रिक्स।
उच्चतर एडजुगेट को सामान्य एडजुगेट, प्रतिस्थापन के समान ही अमूर्त बीजीय शब्दों में परिभाषित किया जा सकता है और के लिए और , क्रमश।
पुनरावृत्त adjugates
व्युत्क्रमणीय मैट्रिक्स ए का एडजुगेट लेते हुए पुनरावृत्त फ़ंक्शन k गुना पैदावार होती है
उदाहरण के लिए,
यह भी देखें
- केली-हैमिल्टन प्रमेय
- क्रैमर का नियम
- ट्रेस आरेख
- जैकोबी का सूत्र
- फद्दीव-लेवेरियर एल्गोरिदम
- यौगिक मैट्रिक्स
संदर्भ
- ↑ Gantmacher, F. R. (1960). मैट्रिक्स का सिद्धांत. Vol. 1. New York: Chelsea. pp. 76–89. ISBN 0-8218-1376-5.
- ↑ Strang, Gilbert (1988). "Section 4.4: Applications of determinants". रेखीय बीजगणित और इसके अनुप्रयोग (3rd ed.). Harcourt Brace Jovanovich. pp. 231–232. ISBN 0-15-551005-3.
- ↑ Claeyssen, J.C.R. (1990). "गतिशील मैट्रिक्स समाधानों का उपयोग करके गैर-रूढ़िवादी रैखिक कंपन प्रणालियों की प्रतिक्रिया की भविष्यवाणी करने पर". Journal of Sound and Vibration. 140 (1): 73–84. doi:10.1016/0022-460X(90)90907-H.
- ↑ Chen, W.; Chen, W.; Chen, Y.J. (2004). "गुंजयमान रिंग जाली उपकरणों के विश्लेषण के लिए एक विशेषता मैट्रिक्स दृष्टिकोण". IEEE Photonics Technology Letters. 16 (2): 458–460. doi:10.1109/LPT.2003.823104.
- ↑ Householder, Alston S. (2006). संख्यात्मक विश्लेषण में मैट्रिक्स का सिद्धांत. Dover Books on Mathematics. pp. 166–168. ISBN 0-486-44972-6.
ग्रन्थसूची
- Roger A. Horn and Charles R. Johnson (2013), Matrix Analysis, Second Edition. Cambridge University Press, ISBN 978-0-521-54823-6
- Roger A. Horn and Charles R. Johnson (1991), Topics in Matrix Analysis. Cambridge University Press, ISBN 978-0-521-46713-1
बाहरी संबंध
- Matrix Reference Manual
- Online matrix calculator (determinant, track, inverse, adjoint, transpose) Compute Adjugate matrix up to order 8
- "Adjugate of { { a, b, c }, { d, e, f }, { g, h, i } }". Wolfram Alpha.
{{cite web}}
: CS1 maint: url-status (link)