कोहेन संरचना प्रमेय: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
*कोई भी पूर्ण नियमित स्थानीय वलय समविशेषता नोथेरियन स्थानीय वलय एक क्षेत्र के ऊपर औपचारिक शक्ति श्रृंखला का एक वलय है। (इक्विकैरेक्टरिस्टिक का अर्थ है कि स्थानीय वलय और उसके [[अवशेष क्षेत्र]] की [[विशेषता (बीजगणित)]] समान है, और यह क्षेत्र वाले स्थानीय वलय के समान है।) | *कोई भी पूर्ण नियमित स्थानीय वलय समविशेषता नोथेरियन स्थानीय वलय एक क्षेत्र के ऊपर औपचारिक शक्ति श्रृंखला का एक वलय है। (इक्विकैरेक्टरिस्टिक का अर्थ है कि स्थानीय वलय और उसके [[अवशेष क्षेत्र]] की [[विशेषता (बीजगणित)]] समान है, और यह क्षेत्र वाले स्थानीय वलय के समान है।) | ||
*कोई भी पूर्ण नियमित नोथेरियन स्थानीय वलय जो समान विशेषता नहीं है, किंतु असंबद्ध है, उसके अवशेष क्षेत्र और उसके आयाम द्वारा विशिष्ट रूप से निर्धारित की जाती है। | *कोई भी पूर्ण नियमित नोथेरियन स्थानीय वलय जो समान विशेषता नहीं है, किंतु असंबद्ध है, उसके अवशेष क्षेत्र और उसके आयाम द्वारा विशिष्ट रूप से निर्धारित की जाती है। | ||
*कोई भी पूर्ण नोथेरियन स्थानीय वलय पूर्ण नियमित नोथेरियन स्थानीय वलय की छवि है। | *कोई भी पूर्ण नोथेरियन स्थानीय वलय पूर्ण नियमित नोथेरियन स्थानीय वलय की छवि है। | ||
==कथन== | ==कथन == | ||
कोहेन के प्रमेय का सबसे अधिक उपयोग किया जाने वाला स्थिति तब होता है जब संपूर्ण नोथेरियन स्थानीय वलय में कुछ क्षेत्र होते हैं। इस स्थिति में कोहेन की संरचना प्रमेय में कहा गया है कि वलय कुछ आदर्श I के लिए ''k''[[''x''<sub>1</sub>,...,''x<sub>n</sub>'']]/(''I'') के रूप का है, जहां k इसका अवशेष वर्ग क्षेत्र है। | कोहेन के प्रमेय का सबसे अधिक उपयोग किया जाने वाला स्थिति तब होता है जब संपूर्ण नोथेरियन स्थानीय वलय में कुछ क्षेत्र होते हैं। इस स्थिति में कोहेन की संरचना प्रमेय में कहा गया है कि वलय कुछ आदर्श I के लिए ''k''[[''x''<sub>1</sub>,...,''x<sub>n</sub>'']]/(''I'') के रूप का है, जहां k इसका अवशेष वर्ग क्षेत्र है। | ||
असमान विशेषता वाले स्थिति में जब पूर्ण नोथेरियन स्थानीय वलय में कोई क्षेत्र नहीं होता है, तो कोहेन की संरचना प्रमेय में कहा गया है कि स्थानीय वलय एक औपचारिक शक्ति श्रृंखला वलय का एक भागफल है जो [[ कोहेन की अंगूठी | कोहेन वलय]] पर समान अवशेष क्षेत्र के साथ एक सीमित संख्या के वेरिएबल में होता है। स्थानीय वलय कोहेन वलय एक क्षेत्र या पूर्ण विशेषता शून्य [[असतत मूल्यांकन रिंग|असतत मूल्यांकन]] वलय है जिसका अधिकतम आदर्श एक अभाज्य संख्या p (अवशेष क्षेत्र की विशेषता के समान) द्वारा उत्पन्न होता है। | असमान विशेषता वाले स्थिति में जब पूर्ण नोथेरियन स्थानीय वलय में कोई क्षेत्र नहीं होता है, तो कोहेन की संरचना प्रमेय में कहा गया है कि स्थानीय वलय एक औपचारिक शक्ति श्रृंखला वलय का एक भागफल है जो [[ कोहेन की अंगूठी | कोहेन वलय]] पर समान अवशेष क्षेत्र के साथ एक सीमित संख्या के वेरिएबल में होता है। स्थानीय वलय कोहेन वलय एक क्षेत्र या पूर्ण विशेषता शून्य [[असतत मूल्यांकन रिंग|असतत मूल्यांकन]] वलय है जिसका अधिकतम आदर्श एक अभाज्य संख्या p (अवशेष क्षेत्र की विशेषता के समान) द्वारा उत्पन्न होता है। | ||
दोनों स्थितियों में, कोहेन के प्रमाण का सबसे कठिन भाग यह दिखाना है कि पूर्ण नोथेरियन स्थानीय वलय में एक गुणांक वलय (या गुणांक क्षेत्र) होता है, जिसका अर्थ स्थानीय वलय के समान अवशेष क्षेत्र के साथ एक पूर्ण असतत मूल्यांकन वलय (या क्षेत्र) होता है। | दोनों स्थितियों में, कोहेन के प्रमाण का सबसे कठिन भाग यह दिखाना है कि पूर्ण नोथेरियन स्थानीय वलय में एक गुणांक वलय (या गुणांक क्षेत्र) होता है, जिसका अर्थ स्थानीय वलय के समान अवशेष क्षेत्र के साथ एक पूर्ण असतत मूल्यांकन वलय (या क्षेत्र) होता है। | ||
यह सारी सामग्री स्टैक प्रोजेक्ट में सावधानीपूर्वक विकसित की गई है {{Cite web|url=http://stacks.math.columbia.edu/tag/0323 |title=स्टैक प्रोजेक्ट - टैग 0323|website=stacks.math.columbia.edu|access-date=2018-08-13}}. | यह सारी सामग्री स्टैक प्रोजेक्ट में सावधानीपूर्वक विकसित की गई है {{Cite web|url=http://stacks.math.columbia.edu/tag/0323 |title=स्टैक प्रोजेक्ट - टैग 0323|website=stacks.math.columbia.edu|access-date=2018-08-13}}. | ||
==संदर्भ | ==संदर्भ == | ||
*{{Citation | last1=Cohen | first1=Irvin Sol | title=On the structure and ideal theory of complete local rings | jstor= 1990313 |mr=0016094 | year=1946 | journal=[[Transactions of the American Mathematical Society]] | issn=0002-9947 | volume=59 | pages=54–106 | doi=10.2307/1990313| doi-access=free }} Cohen's paper was written when "local ring" meant what is now called a "Noetherian local ring". | *{{Citation | last1=Cohen | first1=Irvin Sol | title=On the structure and ideal theory of complete local rings | jstor= 1990313 |mr=0016094 | year=1946 | journal=[[Transactions of the American Mathematical Society]] | issn=0002-9947 | volume=59 | pages=54–106 | doi=10.2307/1990313| doi-access=free }} Cohen's paper was written when "local ring" meant what is now called a "Noetherian local ring". | ||
*{{Citation | last1=Samuel | first1=Pierre | author1-link=Pierre Samuel | title=Algèbre locale | url=https://books.google.com/books?id=enNFAAAAYAAJ | publisher=Gauthier-Villars | series=Mémor. Sci. Math. |mr=0054995 | year=1953 | volume=123}} | *{{Citation | last1=Samuel | first1=Pierre | author1-link=Pierre Samuel | title=Algèbre locale | url=https://books.google.com/books?id=enNFAAAAYAAJ | publisher=Gauthier-Villars | series=Mémor. Sci. Math. |mr=0054995 | year=1953 | volume=123}} |
Revision as of 09:38, 26 July 2023
गणित में, कोहेन (1946) द्वारा प्रस्तुत कोहेन संरचना प्रमेय, पूर्ण नोथेरियन स्थानीय वलयों की संरचना का वर्णन करता है।
कोहेन की संरचना प्रमेय के कुछ परिणामों में वोल्फगैंग क्रुल के तीन अनुमान सम्मिलित हैं:
- कोई भी पूर्ण नियमित स्थानीय वलय समविशेषता नोथेरियन स्थानीय वलय एक क्षेत्र के ऊपर औपचारिक शक्ति श्रृंखला का एक वलय है। (इक्विकैरेक्टरिस्टिक का अर्थ है कि स्थानीय वलय और उसके अवशेष क्षेत्र की विशेषता (बीजगणित) समान है, और यह क्षेत्र वाले स्थानीय वलय के समान है।)
- कोई भी पूर्ण नियमित नोथेरियन स्थानीय वलय जो समान विशेषता नहीं है, किंतु असंबद्ध है, उसके अवशेष क्षेत्र और उसके आयाम द्वारा विशिष्ट रूप से निर्धारित की जाती है।
- कोई भी पूर्ण नोथेरियन स्थानीय वलय पूर्ण नियमित नोथेरियन स्थानीय वलय की छवि है।
कथन
कोहेन के प्रमेय का सबसे अधिक उपयोग किया जाने वाला स्थिति तब होता है जब संपूर्ण नोथेरियन स्थानीय वलय में कुछ क्षेत्र होते हैं। इस स्थिति में कोहेन की संरचना प्रमेय में कहा गया है कि वलय कुछ आदर्श I के लिए k[[x1,...,xn]]/(I) के रूप का है, जहां k इसका अवशेष वर्ग क्षेत्र है।
असमान विशेषता वाले स्थिति में जब पूर्ण नोथेरियन स्थानीय वलय में कोई क्षेत्र नहीं होता है, तो कोहेन की संरचना प्रमेय में कहा गया है कि स्थानीय वलय एक औपचारिक शक्ति श्रृंखला वलय का एक भागफल है जो कोहेन वलय पर समान अवशेष क्षेत्र के साथ एक सीमित संख्या के वेरिएबल में होता है। स्थानीय वलय कोहेन वलय एक क्षेत्र या पूर्ण विशेषता शून्य असतत मूल्यांकन वलय है जिसका अधिकतम आदर्श एक अभाज्य संख्या p (अवशेष क्षेत्र की विशेषता के समान) द्वारा उत्पन्न होता है।
दोनों स्थितियों में, कोहेन के प्रमाण का सबसे कठिन भाग यह दिखाना है कि पूर्ण नोथेरियन स्थानीय वलय में एक गुणांक वलय (या गुणांक क्षेत्र) होता है, जिसका अर्थ स्थानीय वलय के समान अवशेष क्षेत्र के साथ एक पूर्ण असतत मूल्यांकन वलय (या क्षेत्र) होता है।
यह सारी सामग्री स्टैक प्रोजेक्ट में सावधानीपूर्वक विकसित की गई है "स्टैक प्रोजेक्ट - टैग 0323". stacks.math.columbia.edu. Retrieved 2018-08-13..
संदर्भ
- Cohen, Irvin Sol (1946), "On the structure and ideal theory of complete local rings", Transactions of the American Mathematical Society, 59: 54–106, doi:10.2307/1990313, ISSN 0002-9947, JSTOR 1990313, MR 0016094 Cohen's paper was written when "local ring" meant what is now called a "Noetherian local ring".
- Samuel, Pierre (1953), Algèbre locale, Mémor. Sci. Math., vol. 123, Gauthier-Villars, MR 0054995