कैंटर बीजगणित: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
'''ह बोरेल उपसमुच्चय | '''ह बोरेल उपसमुच्चय है, जो की शू''' | ||
==संदर्भ == | ==संदर्भ == |
Revision as of 16:04, 6 July 2023
गणित में, एक कैंटर बीजगणित, जिसका नाम जॉर्ज कैंटर के नाम पर रखा गया है, दो निकट से संबंधित बूलियन बीजगणित (संरचना), एक गणनीय और एक पूर्ण बूलियन बीजगणित में से एक है।
गणनीय कैंटर बीजगणित कैंटर सेट के सभी क्लोपेन उपसमुच्चय का बूलियन बीजगणित है। यह जनरेटरों की गणनीय संख्या पर निःशुल्क बूलियन बीजगणित है। इस प्रकार समरूपता तक यह एकमात्र गैर-तुच्छ बूलियन बीजगणित है जो गणनीय और परमाणु रहित दोनों है।
संपूर्ण कैंटोर बीजगणित वास्तविक मॉड्यूलो अल्प सेट के बोरेल उपसमुच्चय का पूर्ण बूलियन बीजगणित है (Balcar & Jech 2006). यह गणनीय कैंटर बीजगणित को पूरा करने के लिए समरूपी है। (संपूर्ण कैंटर बीजगणित को कभी-कभी कोहेन बीजगणित कहा जाता है, चूँकि कोहेन बीजगणित सामान्यतः एक अलग प्रकार के बूलियन बीजगणित को संदर्भित करता है।) संपूर्ण कैंटर बीजगणित का अध्ययन वॉन न्यूमैन द्वारा 1935 में किया गया था (बाद में इसे प्रकाशित किया गया था) (von Neumann 1998)), जिन्होंने दिखाया कि यह बोरेल उपसमुच्चय मॉड्यूलो के यादृच्छिक बीजगणित के लिए आइसोमॉर्फिक नहीं है, जो की शून्य सेट मापता है।
ह बोरेल उपसमुच्चय है, जो की शू
संदर्भ
- Balcar, Bohuslav; Jech, Thomas (2006), "Weak distributivity, a problem of von Neumann and the mystery of measurability", Bulletin of Symbolic Logic, 12 (2): 241–266, MR 2223923
- von Neumann, John (1998) [1960], Continuous geometry, Princeton Landmarks in Mathematics, Princeton University Press, ISBN 978-0-691-05893-1, MR 0120174