सीव सिद्धांत: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Ways to estimate the size of sifted sets of integers}}
{{Short description|Ways to estimate the size of sifted sets of integers}}
'''चालनी सिद्धांत''' [[संख्या सिद्धांत]] में सामान्य तकनीकों का समुच्चय है, जिसे पूर्णांकों के छने हुए समुच्चयों की गणना करने, या अधिक यथार्थवादी रूप से आकार का अनुमान लगाने के लिए डिज़ाइन किया गया है। छने हुए समुच्चय का प्रोटोटाइपिक उदाहरण कुछ निर्धारित सीमा ''X'' तक [[अभाज्य संख्या]]ओं का समुच्चय है। इसके अनुरूप, चालनी का प्रोटोटाइपिक उदाहरण एराटोस्थनीज की चालनी या अधिक सामान्य [[पौराणिक छलनी|पौराणिक चालनी]] है। इन विधि का उपयोग करके अभाज्य संख्याओं पर सीधा हमला जल्द ही त्रुटि शब्दों के संचय के रास्ते में स्पष्ट रूप से दुर्गम बाधाओं तक पहुँच जाता है। बीसवीं शताब्दी में संख्या सिद्धांत के प्रमुख पहलुओं में से में, चालनी क्या होनी चाहिए, इसके अनुभवहीन विचार के साथ सामने वाले हमले की कुछ कठिनाइयों से बचने के विधि खोजे गए थे।
'''सीव सिद्धांत''' [[संख्या सिद्धांत]] में सामान्य तकनीकों का समुच्चय होता है, जिसे पूर्णांकों के छने हुए समुच्चयों की गणना करने, या अधिक यथार्थवादी रूप से आकार का अनुमान लगाने के लिए डिज़ाइन किया गया है। यह छने हुए समुच्चय का प्रोटोटाइपिक उदाहरण कुछ निर्धारित सीमा ''X'' तक [[अभाज्य संख्या]]ओं का समुच्चय होता है। इसके अनुरूप, सीव का प्रोटोटाइपिक उदाहरण एराटोस्थनीज की सीव या अधिक सामान्य [[पौराणिक छलनी|पौराणिक सीव]] होती है। इन विधि का उपयोग करके अभाज्य संख्याओं पर सीधा ​आक्रमण शीघ्र ही त्रुटि शब्दों के संचय के रास्ते में स्पष्ट रूप से दुर्गम बाधाओं तक पहुँच जाता है। बीसवीं शताब्दी में संख्या सिद्धांत के प्रमुख पहलुओं में से इसमें, सीव क्या होनी चाहिए, इसके अनुभवहीन विचार के साथ सामने वाले आक्रमण की कुछ कठिनाइयों से बचने के विधि खोजे गए थे।


सफल दृष्टिकोण संख्याओं के विशिष्ट छने हुए समुच्चय (उदाहरण के लिए अभाज्य संख्याओं का समुच्चय ) को दूसरे, सरल समुच्चय (उदाहरण के लिए लगभग अभाज्य संख्याओं का समुच्चय ) द्वारा अनुमानित करना है, जो सामान्यतः मूल समुच्चय से कुछ बड़ा होता है और विश्लेषण करना आसान होता है। अधिक परिष्कृत चालनी भी सीधे समुच्चय ों के साथ काम नहीं करती हैं, किंतु इन समुच्चय ों पर सावधानीपूर्वक चुने गए वजन कार्यों के अनुसार उनकी गिनती करती हैं (इन समुच्चय ों के कुछ तत्वों को दूसरों की तुलना में अधिक "वजन" देने के विकल्प)इसके अतिरिक्त, कुछ आधुनिक अनुप्रयोगों में, चालनी का उपयोग छने हुए समुच्चय के आकार का अनुमान लगाने के लिए नहीं किया जाता है, किंतु ऐसे फलन का उत्पादन करने के लिए किया जाता है जो समुच्चय पर बड़ा होता है और अधिकत्तर इसके बाहर छोटा होता है, जबकि समुच्चय के विशिष्ट फलन की तुलना में विश्लेषण करना आसान होता है।
सफल दृष्टिकोण संख्याओं के विशिष्ट छने हुए समुच्चय (उदाहरण के लिए अभाज्य संख्याओं का समुच्चय ) को दूसरे, सरल समुच्चय (उदाहरण के लिए लगभग अभाज्य संख्याओं का समुच्चय ) द्वारा अनुमानित करना है, जो सामान्यतः मूल समुच्चय से कुछ बड़ा होता है और इसका विश्लेषण करना आसान होता है। अधिक परिष्कृत सीव भी सीधे समुच्चयों के साथ काम नहीं करती हैं, किंतु इन समुच्चयों पर सावधानीपूर्वक चुने गए वजन कार्यों के अनुसार उनकी गिनती करती हैं (इन समुच्चयों के कुछ अवयवों को दूसरों की तुलना में अधिक "भार" देने के विकल्प) हैं। इसके अतिरिक्त, कुछ आधुनिक अनुप्रयोगों में, सीव का उपयोग छने हुए समुच्चय के आकार का अनुमान लगाने के लिए नहीं किया जाता है, किंतु यह ऐसे फलन का उत्पादन करने के लिए किया जाता है जो समुच्चय पर बड़ा होता है और अधिकत्तर इसके बाहर छोटा होता है, जबकि समुच्चय के विशिष्ट फलन की तुलना में विश्लेषण करना आसान होता है।


== मूल चालनी सिद्धांत                                                                                                                   ==
== मूल सीव सिद्धांत                                                                                                                                                       ==
अंकन की जानकारी के लिए अंत में देखें।
अंकन की जानकारी के लिए अंत में देखें।


हम गैर-ऋणात्मक संख्याओं <math>\mathcal{A}=(a_n)</math> के कुछ गणनीय अनुक्रम से प्रारंभ करते हैं। सबसे मूलभूत स्थिति में यह क्रम किसी समुच्चय <math>a_n=1_{A}(n)</math> का केवल संकेतक फलन <math>A=\{s:s\leq x\}</math> है जिसे हम छानना चाहते हैं। चूँकि यह अमूर्तन अधिक सामान्य स्थितियों की अनुमति देता है। इसके बाद हम अभाज्य संख्याओं का सामान्य समुच्चय प्रस्तुत करते हैं जिसे सिफ्टिंग सीमा <math>\mathcal{P}\subseteq \mathbb{P}</math> कहा जाता है और फलन के रूप में <math>z</math> तक उनका उत्पाद होता है
हम गैर-ऋणात्मक संख्याओं <math>\mathcal{A}=(a_n)</math> के कुछ गणनीय अनुक्रम से प्रारंभ करते हैं। सबसे मूलभूत स्थिति में यह क्रम किसी समुच्चय <math>a_n=1_{A}(n)</math> का केवल संकेतक फलन <math>A=\{s:s\leq x\}</math> है जिसे हम छानना चाहते हैं। चूँकि यह अमूर्तन अधिक सामान्य स्थितियों की अनुमति देता है। इसके पश्चात् हम अभाज्य संख्याओं का सामान्य समुच्चय प्रस्तुत करते हैं जिसे सिफ्टिंग सीमा <math>\mathcal{P}\subseteq \mathbb{P}</math> कहा जाता है और फलन के रूप में <math>z</math> तक उनका उत्पाद होता है


<math>P(z)=\prod\limits_{p\in\mathcal{P}, p<z}p</math>.
<math>P(z)=\prod\limits_{p\in\mathcal{P}, p<z}p</math>.


चालनी सिद्धांत का लक्ष्य छानने के कार्य का अनुमान लगाना है
सीव सिद्धांत का लक्ष्य छानने के कार्य का अनुमान लगाना है
:<math>S(\mathcal{A},\mathcal{P},z)=\sum\limits_{n\leq x, (n,P(z))=1}a_n.</math>
:<math>S(\mathcal{A},\mathcal{P},z)=\sum\limits_{n\leq x, (n,P(z))=1}a_n.</math>
<math>a_n=1_{A}(n)</math> के स्थिति में यह केवल संख्याओं के उपसमूह <math>A_{\operatorname{sift}}\subseteq A</math> की कार्डिनैलिटी की गणना करता है, जो कि <math>P(z)</math> के अभाज्य कारकों के सहअभाज्य हैं।
<math>a_n=1_{A}(n)</math> के स्थिति में यह केवल संख्याओं के उपसमूह <math>A_{\operatorname{sift}}\subseteq A</math> की कार्डिनैलिटी की गणना करता है, जो कि <math>P(z)</math> के अभाज्य कारकों के सहअभाज्य हैं।
Line 19: Line 19:
:<math>S(\mathcal{A},\mathcal{P},z)=\sum\limits_{d\mid P(z)}\mu(d)A_d(x)</math>
:<math>S(\mathcal{A},\mathcal{P},z)=\sum\limits_{d\mid P(z)}\mu(d)A_d(x)</math>


 
मोबियस फलन और <math>\mathcal{P}</math> के अवयवों से प्रेरित कुछ फलन <math>A_d(x)</math> का उपयोग करते है ।
मोबियस फलन और <math>\mathcal{P}</math> के तत्वों से प्रेरित कुछ फलन <math>A_d(x)</math> का उपयोग करते है ।
:<math>A_d(x)=\sum\limits_{n\leq x, n\equiv 0\pmod{d}}a_n.</math>
:<math>A_d(x)=\sum\limits_{n\leq x, n\equiv 0\pmod{d}}a_n.</math>




==== उदाहरण ====
==== उदाहरण ====
मान लीजिए कि <math>z=7</math> और <math>\mathcal{P}=\mathbb{P}</math> मोबियस फलन प्रत्येक प्राइम के लिए नकारात्मक है, इसलिए हमें मिलता है
मान लीजिए कि <math>z=7</math> और <math>\mathcal{P}=\mathbb{P}</math> मोबियस फलन प्रत्येक प्राइम के लिए ऋणात्मक है, इसलिए हमें मिलता है
:<math>\begin{align}
:<math>\begin{align}
S(\mathcal{A},\mathbb{P},7)&=A_1(x)-A_2(x)-A_3(x)-A_5(x)+A_6+A_{10}+A_{15}-A_{30}.
S(\mathcal{A},\mathbb{P},7)&=A_1(x)-A_2(x)-A_3(x)-A_5(x)+A_6+A_{10}+A_{15}-A_{30}.
Line 34: Line 33:
तब कोई यह मान लेता है कि <math>A_d(x)</math> को इस प्रकार लिखा जा सकता है
तब कोई यह मान लेता है कि <math>A_d(x)</math> को इस प्रकार लिखा जा सकता है
:<math>A_d(x)=g(d)X+r_d(x)</math>
:<math>A_d(x)=g(d)X+r_d(x)</math>
जहाँ <math>g(d)</math> घनत्व है, जिसका अर्थ है गुणात्मक कार्य
जहाँ <math>g(d)</math> घनत्व होता है, जिसका अर्थ है गुणात्मक कार्य
:<math>g(1)=1,\qquad 0\leq g(p)<1 \qquad p\in \mathbb{P}</math>
:<math>g(1)=1,\qquad 0\leq g(p)<1 \qquad p\in \mathbb{P}</math>
और X, <math>A_1(x)</math> का सन्निकटन है और <math>r_d(x)</math> कुछ शेष पद है। छानने का कार्य बन जाता है
और यह X, <math>A_1(x)</math> का सन्निकटन होता है और <math>r_d(x)</math> कुछ शेष पद है। इससे छानने का कार्य बन जाता है
:<math>S(\mathcal{A},\mathcal{P},z)=X\sum\limits_{d\mid P(z)}\mu(d)g(d)+\sum\limits_{d\mid P(z)}\mu(d)r_d(x)</math>
:<math>S(\mathcal{A},\mathcal{P},z)=X\sum\limits_{d\mid P(z)}\mu(d)g(d)+\sum\limits_{d\mid P(z)}\mu(d)r_d(x)</math>
या संक्षेप में
यह संक्षेप में
:<math>S(\mathcal{A},\mathcal{P},z)=XG(x,z)+R(x,z).</math>
:<math>S(\mathcal{A},\mathcal{P},z)=XG(x,z)+R(x,z).</math>
फिर कोई <math>S</math> के लिए क्रमशः <math>G</math> और <math>R</math> की ऊपरी और निचली सीमाएं खोजकर सिफ्टिंग फ़ंक्शन का अनुमान लगाने का प्रयास करता है।
फिर कोई <math>S</math> के लिए क्रमशः <math>G</math> और <math>R</math> की ऊपरी और निचली सीमाएं खोजकर सिफ्टिंग फलन का अनुमान लगाने का प्रयास करता है।
 


छानने के कार्य का आंशिक योग बारी-बारी से अधिक और कम होता है, इसलिए शेष अवधि बहुत बड़ी होगी। इसे सुधारने के लिए ब्रून का विचार यह था कि सिफ्टिंग फ़ंक्शन में '''<math>\mu(d)</math>''' को वजन अनुक्रम <math>(\lambda_d)</math>के साथ प्रतिस्थापित किया जाए, जिसमें प्रतिबंधित मोबियस फ़ंक्शन सम्मिलित हों। दो उपयुक्त अनुक्रमों <math>(\lambda_d^{-})</math> और <math>(\lambda_d^{+})</math> को चुनना और सिफ्टिंग कार्यों को <math>S^{-}</math> से निरूपित करना और <math>S^{+}</math>, कोई भी मूल स्थानांतरण कार्यों के लिए निचली और ऊपरी सीमाएं प्राप्त कर सकता है
छानने के कार्य का आंशिक योग बारी-बारी से अधिक और कम होता है, इसलिए शेष अवधि बहुत बड़ी होती हैं। इसे सुधारने के लिए ब्रून का विचार यह था कि सिफ्टिंग फलन में '''<math>\mu(d)</math>''' को वजन अनुक्रम <math>(\lambda_d)</math>के साथ प्रतिस्थापित किया जाता हैं, जिसमें प्रतिबंधित मोबियस फलन सम्मिलित हों सकता हैं। इसमें दो उपयुक्त अनुक्रमों <math>(\lambda_d^{-})</math> और <math>(\lambda_d^{+})</math> को चुनना और सिफ्टिंग कार्यों को <math>S^{-}</math> से निरूपित करना आवश्यक हैं और <math>S^{+}</math>, कोई भी मूल स्थानांतरण कार्यों के लिए निचली और ऊपरी सीमाएं प्राप्त कर सकता है
:<math>S^{-}\leq S\leq S^{+}.</math><ref>{{harv|Iwaniec|Friedlander|2010}}</ref>
:<math>S^{-}\leq S\leq S^{+}.</math><ref>{{harv|Iwaniec|Friedlander|2010}}</ref>
तब से <math>g</math> गुणनात्मक है, कोई पहचान के साथ भी काम कर सकता है
तब से <math>g</math> गुणनात्मक होता है, कोई पहचान के साथ भी काम कर सकता है |
:<math>\sum\limits_{d\mid n}\mu(d)g(d)=\prod\limits_{\begin{array}{c} p|n ;\; p\in\mathbb{P}\end{array}}(1-g(p)),\quad\forall\; n\in\mathbb{N}.</math>
:<math>\sum\limits_{d\mid n}\mu(d)g(d)=\prod\limits_{\begin{array}{c} p|n ;\; p\in\mathbb{P}\end{array}}(1-g(p)),\quad\forall\; n\in\mathbb{N}.</math>
नोटेशन: नोटेशन के संबंध में सावधानी का शब्द, साहित्य में व्यक्ति अतिरिक्त समुच्चय <math>\mathcal{A}</math> के साथ अनुक्रमों के समुच्चय <math>A</math> की पहचान करता है। इसका अर्थ यह है कि कोई अनुक्रम <math>\mathcal{A}=\{s:s\leq x\}</math> को परिभाषित करने के लिए <math>\mathcal{A}=(a_n)</math> लिखता है। इसके अतिरिक्त साहित्य में योग <math>A_d(x)</math> को कभी-कभी किसी समुच्चय <math>|A_d(x)|</math> की कार्डिनैलिटी <math>A_d(x)</math> के रूप में नोट किया जाता है, जबकि हमने <math>A_d(x)</math> को पहले से ही इस समुच्चय की कार्डिनैलिटी के रूप में परिभाषित किया है। हमने <math>a</math> और <math>b</math>. के सबसे बड़े सामान्य भाजक के लिए अभाज्य संख्याओं और<math>(a,b)</math> के समुच्चय को दर्शाने के लिए <math>\mathbb{P}</math> का उपयोग किया जाता है।
नोटेशन: नोटेशन के संबंध में सावधानी का शब्द, साहित्य में व्यक्ति अतिरिक्त समुच्चय <math>\mathcal{A}</math> के साथ अनुक्रमों के समुच्चय <math>A</math> की पहचान करता है। इसका अर्थ यह है कि कोई अनुक्रम <math>\mathcal{A}=\{s:s\leq x\}</math> को परिभाषित करने के लिए <math>\mathcal{A}=(a_n)</math> लिखता है। इसके अतिरिक्त साहित्य में योग <math>A_d(x)</math> को कभी-कभी किसी समुच्चय <math>|A_d(x)|</math> की कार्डिनैलिटी <math>A_d(x)</math> के रूप में नोट किया जाता है, जबकि हमने <math>A_d(x)</math> को पहले से ही इस समुच्चय की कार्डिनैलिटी के रूप में परिभाषित किया है। हमने <math>a</math> और <math>b</math>. के सबसे बड़े सामान्य भाजक के लिए अभाज्य संख्याओं और<math>(a,b)</math> के समुच्चय को दर्शाने के लिए <math>\mathbb{P}</math> का उपयोग किया जाता है।
Line 51: Line 49:
== छानने के प्रकार ==
== छानने के प्रकार ==


आधुनिक चालनी में [[ब्रून छलनी|ब्रून चालनी]], [[सेलबर्ग चलनी]], तुरान चालनी, [[बड़ी छलनी|बड़ी चालनी]] , और गोल्डस्टन-पिंटज़-येल्ड्रिम चालनी सम्मिलित हैं। चालनी सिद्धांत का मूल उद्देश्य संख्या सिद्धांत में जुड़वां अभाज्य अनुमान जैसे अनुमानों को सिद्ध करने का प्रयास करना था। जबकि चालनी सिद्धांत के मूल व्यापक उद्देश्य अभी भी अधिक सीमा तक अप्राप्त हैं, कुछ आंशिक सफलताएँ मिली हैं, विशेष रूप से अन्य संख्या सैद्धांतिक उपकरणों के संयोजन में मुख्य आकर्षण में सम्मिलित हैं:
आधुनिक सीव में [[ब्रून छलनी|ब्रून सीव]], [[सेलबर्ग चलनी|सेलबर्ग सीव]], तुरान सीव, [[बड़ी छलनी|बड़ी सीव]] , और गोल्डस्टन-पिंटज़-येल्ड्रिम सीव सम्मिलित हैं। सीव सिद्धांत का मूल उद्देश्य संख्या सिद्धांत में जुड़वां अभाज्य अनुमान जैसे अनुमानों को सिद्ध करने का प्रयास करना था। जबकि सीव सिद्धांत के मूल व्यापक उद्देश्य अभी भी अधिक सीमा तक अप्राप्त हैं, इसमें कुछ आंशिक सफलताएँ मिली हैं, विशेष रूप से अन्य संख्या सैद्धांतिक उपकरणों के संयोजन में मुख्य आकर्षण में सम्मिलित हैं |


# ब्रून का प्रमेय, जो दर्शाता है कि जुड़वां अभाज्य संख्याओं के व्युत्क्रमों का योग अभिसरण करता है (जबकि सभी अभाज्य अभाज्य संख्याओं के व्युत्क्रमों का योग भिन्न होता है);
# ब्रून का प्रमेय, जो दर्शाता है कि जुड़वां अभाज्य संख्याओं के व्युत्क्रमों का योग अभिसरण करता है (जबकि सभी अभाज्य अभाज्य संख्याओं के व्युत्क्रमों का योग भिन्न होता है) |
#चेन का प्रमेय, जो दिखाता है कि अनंत रूप से कई अभाज्य संख्याएँ हैं जैसे कि p + 2 या तो अभाज्य है या अर्ध अभाज्य (दो अभाज्य संख्याओं का गुणनफल); चेन जिंगरुन का समीप से संबंधित प्रमेय यह प्रमाणित करता है कि प्रत्येक पर्याप्त बड़ी सम संख्या अभाज्य और दूसरी संख्या का योग है जो या तो अभाज्य या अर्धभाज्य है। इन्हें क्रमशः जुड़वां प्राइम अनुमान और गोल्डबैक अनुमान से लगभग चूक माना जा सकता है।
#चेन का प्रमेय, जो दिखाता है कि अनंत रूप से अनेक अभाज्य संख्याएँ होती हैं जैसे कि p + 2 या तो अभाज्य है या अर्ध अभाज्य (दो अभाज्य संख्याओं का गुणनफल) हैं | चेन जिंगरुन का समीप से संबंधित प्रमेय यह प्रमाणित करता है कि प्रत्येक पर्याप्त बड़ी सम संख्या अभाज्य और दूसरी संख्या का योग है जो या तो अभाज्य या अर्धभाज्य है। इन्हें क्रमशः जुड़वां प्राइम अनुमान और गोल्डबैक अनुमान से लगभग चूक माना जा सकता है।
#चालनी सिद्धांत की मौलिक प्रमेयिका, जो प्रमाणित करती है कि यदि कोई एन संख्याओं के समुच्चय को छान रहा है, तो वह <math>N^\varepsilon</math> पुनरावृत्तियों के बाद चालनी में बचे तत्वों की संख्या का स्पष्ट अनुमान लगा सकता है, परन्तु कि <math>\varepsilon</math> है पर्याप्त रूप से छोटे (1/10 जैसे अंश यहां अधिक विशिष्ट हैं)। यह लेम्मा सामान्यतः अभाज्य संख्याओं को छानने के लिए बहुत अशक्त है (जिसके लिए सामान्यतः <math>N^{1/2}</math>पुनरावृत्तियों जैसी किसी चीज की आवश्यकता होती है), किंतु लगभग अभाज्य संख्याओं के संबंध में परिणाम प्राप्त करने के लिए यह पर्याप्त हो सकती है।
#सीव सिद्धांत की मौलिक प्रमेयिका, जो प्रमाणित करती है कि यदि कोई ''N'' संख्याओं के समुच्चय को छान रहा है, तो वह <math>N^\varepsilon</math> पुनरावृत्तियों के पश्चात् सीव में बचे अवयवों की संख्या का स्पष्ट अनुमान लगा सकता है, परन्तु कि <math>\varepsilon</math> है पर्याप्त रूप से लघु (1/10 जैसे अंश यहां अधिक विशिष्ट हैं)। यह लेम्मा सामान्यतः अभाज्य संख्याओं को छानने के लिए बहुत अशक्त है (जिसके लिए सामान्यतः <math>N^{1/2}</math>पुनरावृत्तियों जैसी किसी चीज की आवश्यकता होती है), किंतु लगभग अभाज्य संख्याओं के संबंध में परिणाम प्राप्त करने के लिए यह पर्याप्त हो सकती है।
#फ्रीडलैंडर-इवानीक प्रमेय, जो प्रमाणित करता है कि <math>a^2 + b^4</math> के रूप के अनंत रूप से कई अभाज्य हैं।
#फ्रीडलैंडर-इवानीक प्रमेय, जो प्रमाणित करता है कि <math>a^2 + b^4</math> के रूप के अनंत रूप से अनेक अभाज्य होते हैं।
#झांग का प्रमेय {{harv|Zhang|2014}}, जो दर्शाता है कि सीमित दूरी के अंदर अभाज्य संख्याओं के अनंत जोड़े हैं। मेनार्ड-ताओ प्रमेय ({{harv|मेनार्ड|2015}}) झांग के प्रमेय को अभाज्य संख्याओं के इच्छानुसार से लंबे अनुक्रमों के लिए सामान्यीकृत करता है।
#झांग का प्रमेय {{harv|Zhang|2014}}, जो दर्शाता है कि सीमित दूरी के अंदर अभाज्य संख्याओं के अनंत जोड़े हैं। मेनार्ड-ताओ प्रमेय ({{harv|मेनार्ड|2015}}) झांग के प्रमेय को अभाज्य संख्याओं के इच्छानुसार से लंबे अनुक्रमों के लिए सामान्यीकृत करता है।


== चालनी सिद्धांत की तकनीक ==
== सीव सिद्धांत की तकनीक                                                                                                                                               ==


चालनी सिद्धांत की तकनीकें अधिक शक्तिशाली हो सकती हैं, किंतु वे [[समता समस्या (छलनी सिद्धांत)|समता समस्या (चालनी सिद्धांत)]] नामक बाधा से सीमित प्रतीत होती हैं, जो सामान्यतः यह प्रमाणित करती है कि चालनी सिद्धांत विधियों में विषम संख्या में अभाज्य कारकों के साथ संख्याओं के बीच अंतर करने में अत्यधिक कठिनाई होती है। और अभाज्य गुणनखंडों की सम संख्या वाली संख्याएँ का यह समता समस्या अभी भी बहुत अच्छी तरह से समझी नहीं गई है।
सीव सिद्धांत की तकनीकें अधिक शक्तिशाली हो सकती हैं, किंतु वह [[समता समस्या (छलनी सिद्धांत)|समता समस्या (सीव सिद्धांत)]] नामक बाधा से सीमित प्रतीत होती हैं, जो सामान्यतः यह प्रमाणित करती है कि सीव सिद्धांत विधियों में विषम संख्या में अभाज्य कारकों के साथ संख्याओं के मध्य अंतर करने में अत्यधिक कठिनाई होती है। और अभाज्य गुणनखंडों की सम संख्या वाली संख्या की यह समता समस्या अभी भी बहुत अच्छी तरह से समझी नहीं गई है।


संख्या सिद्धांत में अन्य विधि की तुलना में चालनी सिद्धांत तुलनात्मक रूप से प्राथमिक है इस अर्थ में कि इसे [[बीजगणितीय संख्या सिद्धांत]] या [[विश्लेषणात्मक संख्या सिद्धांत]] से परिष्कृत अवधारणाओं की आवश्यकता नहीं है। फिर भी अधिक उन्नत चालनी अभी भी बहुत जटिल और आलोचनावादी हो सकती हैं (विशेषकर जब संख्या सिद्धांत में अन्य गहरी तकनीकों के साथ संयुक्त) और संपूर्ण पाठ्यपुस्तकें संख्या सिद्धांत के इस उपक्षेत्र के लिए समर्पित की गई हैं; उत्कृष्ट संदर्भ है {{harv|Halberstam|Richert|1974}} और अधिक आधुनिक पाठ है {{harv|Iwaniec|Friedlander|2010}}.
संख्या सिद्धांत में अन्य विधि की तुलना में सीव सिद्धांत तुलनात्मक रूप से प्राथमिक होता है इस अर्थ में कि इसे [[बीजगणितीय संख्या सिद्धांत]] या [[विश्लेषणात्मक संख्या सिद्धांत]] से परिष्कृत अवधारणाओं की आवश्यकता नहीं होती है। फिर भी अधिक उन्नत सीव अभी भी बहुत सम्मिश्र और आलोचनावादी हो सकती हैं (विशेषकर जब संख्या सिद्धांत में अन्य गहरी तकनीकों के साथ संयुक्त) और संपूर्ण पाठ्यपुस्तकें संख्या सिद्धांत के इस एकल उपक्षेत्र के लिए समर्पित की गई हैं | यह उत्कृष्ट संदर्भ है {{harv|हैलबर्स्टम|रिचर्ट |1974}} और अधिक आधुनिक पाठ {{harv|(इवानीएक |फ्रीडलैंडर|2010}} है |


इस लेख में चर्चा की गई चालनी विधियाँ [[पूर्णांक गुणनखंडन]] चालनी विधियों जैसे कि [[द्विघात छलनी|द्विघात चालनी]] और सामान्य संख्या क्षेत्र चलनी से निकटता से संबंधित नहीं हैं। वे गुणनखंडन विधियाँ एराटोस्थनीज की चालनी के विचार का उपयोग कुशलतापूर्वक यह निर्धारित करने के लिए करती हैं कि संख्याओं की सूची के किन सदस्यों को पूरी तरह से छोटे अभाज्य संख्याओं में विभाजित किया जा सकता है।
इस लेख में चर्चा की गई सीव विधियाँ [[पूर्णांक गुणनखंडन]] सीव विधियों जैसे कि [[द्विघात छलनी|द्विघात सीव]] और सामान्य संख्या क्षेत्र सीव से निकटता से संबंधित नहीं हैं। वह गुणनखंडन विधियाँ एराटोस्थनीज की सीव के विचार का उपयोग कुशलतापूर्वक यह निर्धारित करने के लिए करती हैं कि संख्याओं की सूची के किन सदस्यों को पूर्ण तरह से लघु अभाज्य संख्याओं में विभाजित किया जा सकता है।


==साहित्य                                                                                                                                                            ==
==साहित्य                                                                                                                                                            ==

Revision as of 20:44, 30 July 2023

सीव सिद्धांत संख्या सिद्धांत में सामान्य तकनीकों का समुच्चय होता है, जिसे पूर्णांकों के छने हुए समुच्चयों की गणना करने, या अधिक यथार्थवादी रूप से आकार का अनुमान लगाने के लिए डिज़ाइन किया गया है। यह छने हुए समुच्चय का प्रोटोटाइपिक उदाहरण कुछ निर्धारित सीमा X तक अभाज्य संख्याओं का समुच्चय होता है। इसके अनुरूप, सीव का प्रोटोटाइपिक उदाहरण एराटोस्थनीज की सीव या अधिक सामान्य पौराणिक सीव होती है। इन विधि का उपयोग करके अभाज्य संख्याओं पर सीधा ​आक्रमण शीघ्र ही त्रुटि शब्दों के संचय के रास्ते में स्पष्ट रूप से दुर्गम बाधाओं तक पहुँच जाता है। बीसवीं शताब्दी में संख्या सिद्धांत के प्रमुख पहलुओं में से इसमें, सीव क्या होनी चाहिए, इसके अनुभवहीन विचार के साथ सामने वाले आक्रमण की कुछ कठिनाइयों से बचने के विधि खोजे गए थे।

सफल दृष्टिकोण संख्याओं के विशिष्ट छने हुए समुच्चय (उदाहरण के लिए अभाज्य संख्याओं का समुच्चय ) को दूसरे, सरल समुच्चय (उदाहरण के लिए लगभग अभाज्य संख्याओं का समुच्चय ) द्वारा अनुमानित करना है, जो सामान्यतः मूल समुच्चय से कुछ बड़ा होता है और इसका विश्लेषण करना आसान होता है। अधिक परिष्कृत सीव भी सीधे समुच्चयों के साथ काम नहीं करती हैं, किंतु इन समुच्चयों पर सावधानीपूर्वक चुने गए वजन कार्यों के अनुसार उनकी गिनती करती हैं (इन समुच्चयों के कुछ अवयवों को दूसरों की तुलना में अधिक "भार" देने के विकल्प) हैं। इसके अतिरिक्त, कुछ आधुनिक अनुप्रयोगों में, सीव का उपयोग छने हुए समुच्चय के आकार का अनुमान लगाने के लिए नहीं किया जाता है, किंतु यह ऐसे फलन का उत्पादन करने के लिए किया जाता है जो समुच्चय पर बड़ा होता है और अधिकत्तर इसके बाहर छोटा होता है, जबकि समुच्चय के विशिष्ट फलन की तुलना में विश्लेषण करना आसान होता है।

मूल सीव सिद्धांत

अंकन की जानकारी के लिए अंत में देखें।

हम गैर-ऋणात्मक संख्याओं के कुछ गणनीय अनुक्रम से प्रारंभ करते हैं। सबसे मूलभूत स्थिति में यह क्रम किसी समुच्चय का केवल संकेतक फलन है जिसे हम छानना चाहते हैं। चूँकि यह अमूर्तन अधिक सामान्य स्थितियों की अनुमति देता है। इसके पश्चात् हम अभाज्य संख्याओं का सामान्य समुच्चय प्रस्तुत करते हैं जिसे सिफ्टिंग सीमा कहा जाता है और फलन के रूप में तक उनका उत्पाद होता है

.

सीव सिद्धांत का लक्ष्य छानने के कार्य का अनुमान लगाना है

के स्थिति में यह केवल संख्याओं के उपसमूह की कार्डिनैलिटी की गणना करता है, जो कि के अभाज्य कारकों के सहअभाज्य हैं।

लीजेंड्रे की पहचान

हम लिजेंड्रे की पहचान के साथ छानने के कार्य को फिर से लिख सकते हैं

मोबियस फलन और के अवयवों से प्रेरित कुछ फलन का उपयोग करते है ।


उदाहरण

मान लीजिए कि और मोबियस फलन प्रत्येक प्राइम के लिए ऋणात्मक है, इसलिए हमें मिलता है


सर्वांगसमता योग का अनुमान

तब कोई यह मान लेता है कि को इस प्रकार लिखा जा सकता है

जहाँ घनत्व होता है, जिसका अर्थ है गुणात्मक कार्य

और यह X, का सन्निकटन होता है और कुछ शेष पद है। इससे छानने का कार्य बन जाता है

यह संक्षेप में

फिर कोई के लिए क्रमशः और की ऊपरी और निचली सीमाएं खोजकर सिफ्टिंग फलन का अनुमान लगाने का प्रयास करता है।

छानने के कार्य का आंशिक योग बारी-बारी से अधिक और कम होता है, इसलिए शेष अवधि बहुत बड़ी होती हैं। इसे सुधारने के लिए ब्रून का विचार यह था कि सिफ्टिंग फलन में को वजन अनुक्रम के साथ प्रतिस्थापित किया जाता हैं, जिसमें प्रतिबंधित मोबियस फलन सम्मिलित हों सकता हैं। इसमें दो उपयुक्त अनुक्रमों और को चुनना और सिफ्टिंग कार्यों को से निरूपित करना आवश्यक हैं और , कोई भी मूल स्थानांतरण कार्यों के लिए निचली और ऊपरी सीमाएं प्राप्त कर सकता है

[1]

तब से गुणनात्मक होता है, कोई पहचान के साथ भी काम कर सकता है |

नोटेशन: नोटेशन के संबंध में सावधानी का शब्द, साहित्य में व्यक्ति अतिरिक्त समुच्चय के साथ अनुक्रमों के समुच्चय की पहचान करता है। इसका अर्थ यह है कि कोई अनुक्रम को परिभाषित करने के लिए लिखता है। इसके अतिरिक्त साहित्य में योग को कभी-कभी किसी समुच्चय की कार्डिनैलिटी के रूप में नोट किया जाता है, जबकि हमने को पहले से ही इस समुच्चय की कार्डिनैलिटी के रूप में परिभाषित किया है। हमने और . के सबसे बड़े सामान्य भाजक के लिए अभाज्य संख्याओं और के समुच्चय को दर्शाने के लिए का उपयोग किया जाता है।

छानने के प्रकार

आधुनिक सीव में ब्रून सीव, सेलबर्ग सीव, तुरान सीव, बड़ी सीव , और गोल्डस्टन-पिंटज़-येल्ड्रिम सीव सम्मिलित हैं। सीव सिद्धांत का मूल उद्देश्य संख्या सिद्धांत में जुड़वां अभाज्य अनुमान जैसे अनुमानों को सिद्ध करने का प्रयास करना था। जबकि सीव सिद्धांत के मूल व्यापक उद्देश्य अभी भी अधिक सीमा तक अप्राप्त हैं, इसमें कुछ आंशिक सफलताएँ मिली हैं, विशेष रूप से अन्य संख्या सैद्धांतिक उपकरणों के संयोजन में मुख्य आकर्षण में सम्मिलित हैं |

  1. ब्रून का प्रमेय, जो दर्शाता है कि जुड़वां अभाज्य संख्याओं के व्युत्क्रमों का योग अभिसरण करता है (जबकि सभी अभाज्य अभाज्य संख्याओं के व्युत्क्रमों का योग भिन्न होता है) |
  2. चेन का प्रमेय, जो दिखाता है कि अनंत रूप से अनेक अभाज्य संख्याएँ होती हैं जैसे कि p + 2 या तो अभाज्य है या अर्ध अभाज्य (दो अभाज्य संख्याओं का गुणनफल) हैं | चेन जिंगरुन का समीप से संबंधित प्रमेय यह प्रमाणित करता है कि प्रत्येक पर्याप्त बड़ी सम संख्या अभाज्य और दूसरी संख्या का योग है जो या तो अभाज्य या अर्धभाज्य है। इन्हें क्रमशः जुड़वां प्राइम अनुमान और गोल्डबैक अनुमान से लगभग चूक माना जा सकता है।
  3. सीव सिद्धांत की मौलिक प्रमेयिका, जो प्रमाणित करती है कि यदि कोई N संख्याओं के समुच्चय को छान रहा है, तो वह पुनरावृत्तियों के पश्चात् सीव में बचे अवयवों की संख्या का स्पष्ट अनुमान लगा सकता है, परन्तु कि है पर्याप्त रूप से लघु (1/10 जैसे अंश यहां अधिक विशिष्ट हैं)। यह लेम्मा सामान्यतः अभाज्य संख्याओं को छानने के लिए बहुत अशक्त है (जिसके लिए सामान्यतः पुनरावृत्तियों जैसी किसी चीज की आवश्यकता होती है), किंतु लगभग अभाज्य संख्याओं के संबंध में परिणाम प्राप्त करने के लिए यह पर्याप्त हो सकती है।
  4. फ्रीडलैंडर-इवानीक प्रमेय, जो प्रमाणित करता है कि के रूप के अनंत रूप से अनेक अभाज्य होते हैं।
  5. झांग का प्रमेय (Zhang 2014), जो दर्शाता है कि सीमित दूरी के अंदर अभाज्य संख्याओं के अनंत जोड़े हैं। मेनार्ड-ताओ प्रमेय ((मेनार्ड 2015)) झांग के प्रमेय को अभाज्य संख्याओं के इच्छानुसार से लंबे अनुक्रमों के लिए सामान्यीकृत करता है।

सीव सिद्धांत की तकनीक

सीव सिद्धांत की तकनीकें अधिक शक्तिशाली हो सकती हैं, किंतु वह समता समस्या (सीव सिद्धांत) नामक बाधा से सीमित प्रतीत होती हैं, जो सामान्यतः यह प्रमाणित करती है कि सीव सिद्धांत विधियों में विषम संख्या में अभाज्य कारकों के साथ संख्याओं के मध्य अंतर करने में अत्यधिक कठिनाई होती है। और अभाज्य गुणनखंडों की सम संख्या वाली संख्या की यह समता समस्या अभी भी बहुत अच्छी तरह से समझी नहीं गई है।

संख्या सिद्धांत में अन्य विधि की तुलना में सीव सिद्धांत तुलनात्मक रूप से प्राथमिक होता है इस अर्थ में कि इसे बीजगणितीय संख्या सिद्धांत या विश्लेषणात्मक संख्या सिद्धांत से परिष्कृत अवधारणाओं की आवश्यकता नहीं होती है। फिर भी अधिक उन्नत सीव अभी भी बहुत सम्मिश्र और आलोचनावादी हो सकती हैं (विशेषकर जब संख्या सिद्धांत में अन्य गहरी तकनीकों के साथ संयुक्त) और संपूर्ण पाठ्यपुस्तकें संख्या सिद्धांत के इस एकल उपक्षेत्र के लिए समर्पित की गई हैं | यह उत्कृष्ट संदर्भ है (हैलबर्स्टम & रिचर्ट 1974) और अधिक आधुनिक पाठ ((इवानीएक & फ्रीडलैंडर 2010) है |

इस लेख में चर्चा की गई सीव विधियाँ पूर्णांक गुणनखंडन सीव विधियों जैसे कि द्विघात सीव और सामान्य संख्या क्षेत्र सीव से निकटता से संबंधित नहीं हैं। वह गुणनखंडन विधियाँ एराटोस्थनीज की सीव के विचार का उपयोग कुशलतापूर्वक यह निर्धारित करने के लिए करती हैं कि संख्याओं की सूची के किन सदस्यों को पूर्ण तरह से लघु अभाज्य संख्याओं में विभाजित किया जा सकता है।

साहित्य

बाहरी संबंध


संदर्भ