मैट्रिक्स तुल्यता: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 41: Line 41:
श्रेणी:समतुल्यता (गणित)
श्रेणी:समतुल्यता (गणित)


 
[[Category:Collapse templates]]
[[Category: Machine Translated Page]]
[[Category:Created On 19/07/2023]]
[[Category:Created On 19/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]

Latest revision as of 13:03, 4 August 2023

रैखिक बीजगणित में, दो आयताकार m-से-n आव्यूह (गणित) A और B को 'समतुल्य' कहा जाता है यदि

कुछ विपरीत आव्यूह n -से -n आव्यूह P और कुछ विपरीत m-से -m आव्यूह Q के लिए समतुल्य आव्यूह V और W के बेसिस (रैखिक बीजगणित) की एक जोड़ी के दो अलग-अलग विकल्पों के अनुसार एक ही रैखिक मानचित्र VW का प्रतिनिधित्व करते हैं, P और Q के साथ क्रमशः V और W में आधार आव्यूह का परिवर्तन होता है।

समतुल्यता की धारणा को समान आव्यूह के साथ अस्पष्ट नहीं किया जाना चाहिए, जो केवल विपरीत आव्यूह के लिए परिभाषित है, और बहुत अधिक प्रतिबंधात्मक है (समान आव्यूह निश्चित रूप से समतुल्य हैं, किंतु समकक्ष वर्ग आव्यूह को समान होने की आवश्यकता नहीं है)। यह धारणा V के एकल आधार के दो अलग-अलग विकल्पों के अनुसार एक ही एंडोमोर्फिज्म VV का प्रतिनिधित्व करने वाले आव्यूह से मेल खाती है, जिसका उपयोग प्रारंभिक सदिश और उनकी छवियों दोनों के लिए किया जाता है।

गुण

आव्यूह तुल्यता आयताकार आव्यूह के स्थान पर एक तुल्यता संबंध है।

एक ही आकार के दो आयताकार आव्यूहों के लिए, उनकी तुल्यता को निम्नलिखित स्थितियों द्वारा भी दर्शाया जा सकता है

  • प्रारंभिक पंक्ति संचालन के संयोजन से आव्यूह को एक दूसरे में परिवर्तन किया जा सकता है।
  • दो आव्यूह समतुल्य हैं यदि और केवल तभी जब उनकी आव्यूह की रैंक समान होती है ।

विहित रूप

रैंक गुण रैंक के समतुल्य वर्ग के आव्यूहों के लिए एक सहज विहित रूप उत्पन्न करती है

,

जहां विकर्ण पर , s की संख्या के समान है। यह स्मिथ सामान्य रूप का एक विशेष स्थिति है, जो प्रमुख आदर्श डोमेन पर मुक्त मॉड्यूल के लिए सदिश रिक्त स्थान पर इस अवधारणा को सामान्यीकृत करता है।

यह भी देखें

श्रेणी:मैट्रिसेस श्रेणी:समतुल्यता (गणित)