घातीय मानचित्र (रिमानियन ज्यामिति): Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
[[File:Azimuthal Equidistant N90.jpg|thumb|right|उत्तरी ध्रुव से देखा गया पृथ्वी का घातीय मानचित्र मानचित्रण में ध्रुवीय [[अज़ीमुथल समदूरस्थ प्रक्षेपण]] है।]] | [[File:Azimuthal Equidistant N90.jpg|thumb|right|उत्तरी ध्रुव से देखा गया पृथ्वी का घातीय मानचित्र मानचित्रण में ध्रुवीय [[अज़ीमुथल समदूरस्थ प्रक्षेपण]] है।]] | ||
रीमैनियन ज्यामिति में, एक घातांकीय मानचित्र एक रीमैनियन मैनिफोल्ड (या छद्म-रिमैनियन मैनिफोल्ड) ''M'' से ''M'' के स्पर्शरेखा स्थान टीपीएम के सबसेट से एक मानचित्र है। (छद्म) रीमैनियन मीट्रिक एक कैनोनिकल एफ़िन कनेक्शन निर्धारित करता है, और (छद्म) रीमैनियन मैनिफोल्ड का घातांक मानचित्र इस कनेक्शन के घातीय मानचित्र द्वारा दिया जाता है। | रीमैनियन ज्यामिति में, एक घातांकीय मानचित्र एक रीमैनियन मैनिफोल्ड (या छद्म-रिमैनियन मैनिफोल्ड) ''M'' से ''M'' के स्पर्शरेखा स्थान टीपीएम के सबसेट से एक मानचित्र है। (छद्म) रीमैनियन मीट्रिक एक कैनोनिकल एफ़िन कनेक्शन निर्धारित करता है, और (छद्म) रीमैनियन मैनिफोल्ड का घातांक मानचित्र इस कनेक्शन के घातीय मानचित्र द्वारा दिया जाता है। | ||
Line 13: | Line 12: | ||
}} पर मूल के एक छोटे से | }} पर मूल के एक छोटे से नेबरहुड को मैनिफोल्ड में {{math|''p''}} के निकट तक ले जाता है। ऐसा इसलिए है क्योंकि यह सामान्य अंतर समीकरणों के लिए अस्तित्व और विशिष्टता के प्रमेय पर निर्भर करता है जो प्रकृति में स्थानीय है। यदि स्पर्शरेखा बंडल के प्रत्येक बिंदु पर घातीय मानचित्र सही प्रकार से परिभाषित है तो एक एफ़िन कनेक्शन को पूर्ण कहा जाता है। | ||
== गुण == | == गुण == | ||
सहज रूप से कहें तो, घातीय मानचित्र किसी दिए गए स्पर्शरेखा सदिश को | सहज रूप से कहें तो, घातीय मानचित्र किसी दिए गए स्पर्शरेखा सदिश को अनेक गुना तक ले जाता है, उस बिंदु से प्रारंभ होने वाले जियोडेसिक के साथ चलता है और एक इकाई समय के लिए उस दिशा में जाता है। चूँकि v जियोडेसिक के वेग सदिश से मेल खाता है, यात्रा की गई वास्तविक (रीमैनियन) दूरी उस पर निर्भर होगी। हम जियोडेसिक्स को इकाई गति के रूप में पुन: पैरामीट्रिज भी कर सकते हैं, इसलिए समकक्ष रूप से हम exp<sub>''p''</sub>(''v'') = β(|''v''|) को परिभाषित कर सकते हैं जहां β यूनिट-स्पीड जियोडेसिक (आर्क लंबाई द्वारा पैरामीटरयुक्त जियोडेसिक) है जो v की दिशा में जा रहा है। जैसे ही हम स्पर्शरेखा सदिश v को परिवर्तित करते हैं, हम exp<sub>''p''</sub> प्रयुक्त करते समय प्राप्त करेंगे एम पर अलग-अलग बिंदु जो आधार बिंदु ''p'' से कुछ दूरी के अंदर हैं - यह संभवतः यह प्रदर्शित करने के अधिक ठोस विधि में से एक है कि मैनिफोल्ड के लिए स्पर्शरेखा स्थान मैनिफोल्ड का एक प्रकार का रैखिककरण है। | ||
हॉपफ-रिनो प्रमेय का प्रमाण | हॉपफ-रिनो प्रमेय का प्रमाण है कि पूरे स्पर्शरेखा स्थान पर घातीय मानचित्र को परिभाषित करना संभव है यदि और केवल तभी जब मैनिफोल्ड एक [[मीट्रिक स्थान]] के रूप में पूरा हो (जो इस गुण के साथ एक घातीय मानचित्र वाले मैनिफोल्ड के लिए सामान्य शब्द 'जियोडेसिकली पूर्ण' को उचित ठहराता है)। विशेष रूप से, [[ सघन स्थान |सघन स्थान]] मैनिफ़ोल्ड्स भूगणितीय रूप से पूर्ण हैं। चूँकि तथापि exp<sub>''p''</sub> संपूर्ण स्पर्शरेखा स्थान पर परिभाषित किया गया है, यह सामान्य रूप से वैश्विक [[भिन्नता]] नहीं होगी। चूँकि स्पर्शरेखा स्थान के मूल में इसका अंतर पहचान फलन है और इसलिए, व्युत्क्रम फलन प्रमेय द्वारा हम T<sub>''p''</sub>''M'' की उत्पत्ति का पड़ोस पा सकते हैं जिस पर घातीय मानचित्र एक एम्बेडिंग है (अथार्त , घातांक मानचित्र एक स्थानीय भिन्नता है)। T<sub>''p''</sub>''M'' में मूल बिंदु के बारे में सबसे बड़ी गेंद की त्रिज्या जिसे exp<sub>''p''</sub> के माध्यम से अलग-अलग रूप से मैप किया जा सकता है ''p'' पर ''M'' की [[इंजेक्शन त्रिज्या]] कहलाती है। घातीय मानचित्र का कट लोकस (रीमानियन मैनिफोल्ड), समान्य रूप से, उन सभी बिंदुओं का समूह है जहां घातीय मानचित्र एक अद्वितीय न्यूनतम रखने में विफल रहता है। | ||
घातीय मानचित्र की एक महत्वपूर्ण संपत्ति गॉस की निम्नलिखित लेम्मा (एक और गॉस की लेम्मा) है: exp<sub>''p''</sub> की परिभाषा के क्षेत्र में किसी भी स्पर्शरेखा सदिश ''v'' को देखते हुए, और ''v'' की नोक पर आधारित एक और सदिश ''w'' (इसलिए ''w'' वास्तव में डबल-टेंजेंट स्पेस T<sub>''v''</sub>(T<sub>''p''</sub>''M'')) में है और ''v'' | घातीय मानचित्र की एक महत्वपूर्ण संपत्ति गॉस की निम्नलिखित लेम्मा (एक और गॉस की लेम्मा) है: exp<sub>''p''</sub> की परिभाषा के क्षेत्र में किसी भी स्पर्शरेखा सदिश ''v'' को देखते हुए, और ''v'' की नोक पर आधारित एक और सदिश ''w'' (इसलिए ''w'' वास्तव में डबल-टेंजेंट स्पेस T<sub>''v''</sub>(T<sub>''p''</sub>''M'')) में है और ''v'' के लिए ऑर्थोगोनल, घातीय मानचित्र के माध्यम से आगे बढ़ने पर ''v'', ''w'' के लिए ऑर्थोगोनल रहता है। इसका अर्थ है, विशेष रूप से, कि T<sub>''p''</sub>''M'' में मूल के बारे में एक छोटी सी गेंद का सीमा क्षेत्र उन सदिश द्वारा निर्धारित एम में जियोडेसिक्स के लिए ऑर्थोगोनल है (अथार्त , जियोडेसिक्स रेडियल हैं)। यह रीमैनियन मैनिफोल्ड पर जियोडेसिक सामान्य निर्देशांक की परिभाषा को प्रेरित करता है। | ||
घातीय मानचित्र वक्रता की अमूर्त परिभाषा को इसके अधिक ठोस अनुभव से जोड़ने में भी उपयोगी है, जिसकी कल्पना मूल रूप से खुद रीमैन ने की थी - अनुभागीय वक्रता को सहज रूप से विचाराधीन बिंदु ''p'' के माध्यम से कुछ सतह के गॉसियन वक्रता (अथार्त , 2-आयामी सबमैनिफोल्ड द्वारा मैनिफोल्ड का एक टुकड़ा) के रूप में परिभाषित किया गया है। घातीय मानचित्र के माध्यम से, इसे अब टीपीएम के 2-आयामी उप-स्थान के exp<sub>''p''</sub> के तहत छवि द्वारा निर्धारित ''p'' के माध्यम से सतह के गॉसियन वक्रता के रूप में स्पष्ट रूप से परिभाषित किया जा सकता है। | घातीय मानचित्र वक्रता की अमूर्त परिभाषा को इसके अधिक ठोस अनुभव से जोड़ने में भी उपयोगी है, जिसकी कल्पना मूल रूप से खुद रीमैन ने की थी - अनुभागीय वक्रता को सहज रूप से विचाराधीन बिंदु ''p'' के माध्यम से कुछ सतह के गॉसियन वक्रता (अथार्त , 2-आयामी सबमैनिफोल्ड द्वारा मैनिफोल्ड का एक टुकड़ा) के रूप में परिभाषित किया गया है। घातीय मानचित्र के माध्यम से, इसे अब टीपीएम के 2-आयामी उप-स्थान के exp<sub>''p''</sub> के तहत छवि द्वारा निर्धारित ''p'' के माध्यम से सतह के गॉसियन वक्रता के रूप में स्पष्ट रूप से परिभाषित किया जा सकता है। | ||
== लाई | == लाई सिद्धांत में घातीय मानचित्रों से संबंध == | ||
द्वि-अपरिवर्तनीय मीट्रिक वाले लाई समूहों के स्थिति में - बाएं और दाएं दोनों अनुवादों के अनुसार एक छद्म-रिमानियन मीट्रिक अपरिवर्तनीय - छद्म-रिमानियन संरचना के घातांक मानचित्र [[घातीय मानचित्र (झूठ सिद्धांत)|घातीय मानचित्र (लाई सिद्धांत)]] के समान हैं। सामान्य रूप से | द्वि-अपरिवर्तनीय मीट्रिक वाले लाई समूहों के स्थिति में - बाएं और दाएं दोनों अनुवादों के अनुसार एक छद्म-रिमानियन मीट्रिक अपरिवर्तनीय - छद्म-रिमानियन संरचना के घातांक मानचित्र [[घातीय मानचित्र (झूठ सिद्धांत)|घातीय मानचित्र (लाई सिद्धांत)]] के समान हैं। सामान्य रूप से लाई समूहों में द्वि-अपरिवर्तनीय मीट्रिक नहीं होती है, चूँकि सभी जुड़े हुए अर्ध-सरल (या रिडक्टिव) लाई समूहों में होती है। एक द्वि-अपरिवर्तनीय ''रीमानियन'' मीट्रिक का अस्तित्व छद्म-रीमैनियन मीट्रिक की तुलना में अधिक शक्तिशाली है, और इसका तात्पर्य है कि लाई बीजगणित एक कॉम्पैक्ट लाई समूह का लाई बीजगणित है; इसके विपरीत, किसी भी कॉम्पैक्ट (या एबेलियन) लाई समूह में ऐसी रीमैनियन मीट्रिक होती है। | ||
वह उदाहरण लें जो " | वह उदाहरण लें जो "निष्कपट" घातीय मानचित्र देता है। धनात्मक वास्तविक संख्याओं '''R'''<sup>+</sup> पर विचार करें, जो सामान्य गुणन के अंतर्गत एक लाई समूह है। फिर प्रत्येक स्पर्शरेखा स्थान केवल R है। बिंदु y पर R की प्रत्येक प्रतिलिपि पर, हम संशोधित आंतरिक उत्पाद प्रस्तुत करते हैं | ||
<math display="block">\langle u,v\rangle_y = \frac{uv}{y^2}</math> | <math display="block">\langle u,v\rangle_y = \frac{uv}{y^2}</math> | ||
उन्हें सामान्य वास्तविक संख्याओं की तरह गुणा करना किंतु ''y''<sup>2</sup> से स्केल करना (यही वह है जो मीट्रिक को बाएँ-अपरिवर्तनीय बनाता है, क्योंकि किसी गुणनखंड द्वारा बायाँ गुणा केवल आंतरिक उत्पाद को बाहर निकाल देगा, दो बार - हर में वर्ग को समाप्त कर देगा)। | उन्हें सामान्य वास्तविक संख्याओं की तरह गुणा करना किंतु ''y''<sup>2</sup> से स्केल करना (यही वह है जो मीट्रिक को बाएँ-अपरिवर्तनीय बनाता है, क्योंकि किसी गुणनखंड द्वारा बायाँ गुणा केवल आंतरिक उत्पाद को बाहर निकाल देगा, दो बार - हर में वर्ग को समाप्त कर देगा)। | ||
बिंदु 1 ∈ '''R'''<sup>+</sup> पर विचार करें और x ∈ 'R' 1 पर स्पर्शरेखा स्थान का एक तत्व है। 1 से निकलने वाली सामान्य सीधी रेखा, अर्थात् y(t) = 1 + xt, जियोडेसिक के समान पथ को कवर करती है, अतिरिक्त इसके कि हमें निरंतर गति (निरंतर गति, याद रखें, सामान्य स्थिर गति नहीं होने वाली है, क्योंकि हम इस विचित्र मीट्रिक का उपयोग कर रहे हैं) के साथ एक वक्र प्राप्त करने के लिए पुन: पैरामीट्रिज करना होगा। ऐसा करने के लिए हम चाप की लंबाई | बिंदु 1 ∈ '''R'''<sup>+</sup> पर विचार करें और x ∈ 'R' 1 पर स्पर्शरेखा स्थान का एक तत्व है। 1 से निकलने वाली सामान्य सीधी रेखा, अर्थात् y(t) = 1 + xt, जियोडेसिक के समान पथ को कवर करती है, अतिरिक्त इसके कि हमें निरंतर गति (निरंतर गति, याद रखें, सामान्य स्थिर गति नहीं होने वाली है, क्योंकि हम इस विचित्र मीट्रिक का उपयोग कर रहे हैं) के साथ एक वक्र प्राप्त करने के लिए पुन: पैरामीट्रिज करना होगा। ऐसा करने के लिए हम चाप की लंबाई (संशोधित मीट्रिक द्वारा प्रेरित मानक <math>|\cdot|_y</math> में स्पर्शरेखा सदिश की लंबाई का अभिन्न अंग) द्वारा पुन: पैरामीट्रिज करते हैं: | ||
<math display="block">s(t) = \int_0^t |x|_{y(\tau)} d\tau = \int_0^t \frac{|x|}{1 + \tau x} d\tau = |x| \int_0^t \frac{d\tau}{1 + \tau x} = \frac{|x|}{x} \ln|1 + tx|</math> | <math display="block">s(t) = \int_0^t |x|_{y(\tau)} d\tau = \int_0^t \frac{|x|}{1 + \tau x} d\tau = |x| \int_0^t \frac{d\tau}{1 + \tau x} = \frac{|x|}{x} \ln|1 + tx|</math> | ||
और {{mvar|t}} को s के फलन के रूप में प्राप्त करने के लिए फलन को व्युत्क्रम करने के | और {{mvar|t}} को s के फलन के रूप में प्राप्त करने के लिए फलन को व्युत्क्रम करने के पश्चात, हम प्रतिस्थापित करते हैं और प्राप्त करते हैं | ||
<math display="block">y(s) = e^{sx/|x|}</math> | <math display="block">y(s) = e^{sx/|x|}</math> | ||
अब इकाई गति परिभाषा का उपयोग करते हुए, हमारे पास है | अब इकाई गति परिभाषा का उपयोग करते हुए, हमारे पास है | ||
Line 41: | Line 40: | ||
इसके द्वारा परिभाषित रीमानियन दूरी सरल है | इसके द्वारा परिभाषित रीमानियन दूरी सरल है | ||
<math display="block">\operatorname{dist}(a, b) = \left|\ln\left(\frac b a\right)\right|.</math> | <math display="block">\operatorname{dist}(a, b) = \left|\ln\left(\frac b a\right)\right|.</math> | ||
== यह भी देखें == | == यह भी देखें == | ||
*घातांकीय विषयों की सूची | *घातांकीय विषयों की सूची |
Revision as of 11:07, 31 July 2023
रीमैनियन ज्यामिति में, एक घातांकीय मानचित्र एक रीमैनियन मैनिफोल्ड (या छद्म-रिमैनियन मैनिफोल्ड) M से M के स्पर्शरेखा स्थान टीपीएम के सबसेट से एक मानचित्र है। (छद्म) रीमैनियन मीट्रिक एक कैनोनिकल एफ़िन कनेक्शन निर्धारित करता है, और (छद्म) रीमैनियन मैनिफोल्ड का घातांक मानचित्र इस कनेक्शन के घातीय मानचित्र द्वारा दिया जाता है।
परिभाषा
मान लीजिए कि M एक अवकलनीय मैनिफोल्ड है और p, M का एक बिंदु है। M पर एक एफ़िन कनेक्शन व्यक्ति को बिंदु p के माध्यम से एक सीधी रेखा की धारणा को परिभाषित करने की अनुमति देता है।[1]
मान लीजिए v ∈ TpM, p पर मैनिफोल्ड का एक स्पर्शरेखा सदिश है। फिर एक अद्वितीय जियोडेसिक γv है जो प्रारंभिक स्पर्शरेखा सदिश γv(0) = p के साथ γ′v(0) = v को संतुष्ट करता है। संबंधित घातीय मानचित्र को expp(v) = γv(1) द्वारा परिभाषित किया गया है। सामान्य रूप से घातीय मानचित्र को केवल स्थानीय रूप से परिभाषित किया जाता है, अथार्त , यह केवल TpM
पर मूल के एक छोटे से नेबरहुड को मैनिफोल्ड में p के निकट तक ले जाता है। ऐसा इसलिए है क्योंकि यह सामान्य अंतर समीकरणों के लिए अस्तित्व और विशिष्टता के प्रमेय पर निर्भर करता है जो प्रकृति में स्थानीय है। यदि स्पर्शरेखा बंडल के प्रत्येक बिंदु पर घातीय मानचित्र सही प्रकार से परिभाषित है तो एक एफ़िन कनेक्शन को पूर्ण कहा जाता है।
गुण
सहज रूप से कहें तो, घातीय मानचित्र किसी दिए गए स्पर्शरेखा सदिश को अनेक गुना तक ले जाता है, उस बिंदु से प्रारंभ होने वाले जियोडेसिक के साथ चलता है और एक इकाई समय के लिए उस दिशा में जाता है। चूँकि v जियोडेसिक के वेग सदिश से मेल खाता है, यात्रा की गई वास्तविक (रीमैनियन) दूरी उस पर निर्भर होगी। हम जियोडेसिक्स को इकाई गति के रूप में पुन: पैरामीट्रिज भी कर सकते हैं, इसलिए समकक्ष रूप से हम expp(v) = β(|v|) को परिभाषित कर सकते हैं जहां β यूनिट-स्पीड जियोडेसिक (आर्क लंबाई द्वारा पैरामीटरयुक्त जियोडेसिक) है जो v की दिशा में जा रहा है। जैसे ही हम स्पर्शरेखा सदिश v को परिवर्तित करते हैं, हम expp प्रयुक्त करते समय प्राप्त करेंगे एम पर अलग-अलग बिंदु जो आधार बिंदु p से कुछ दूरी के अंदर हैं - यह संभवतः यह प्रदर्शित करने के अधिक ठोस विधि में से एक है कि मैनिफोल्ड के लिए स्पर्शरेखा स्थान मैनिफोल्ड का एक प्रकार का रैखिककरण है।
हॉपफ-रिनो प्रमेय का प्रमाण है कि पूरे स्पर्शरेखा स्थान पर घातीय मानचित्र को परिभाषित करना संभव है यदि और केवल तभी जब मैनिफोल्ड एक मीट्रिक स्थान के रूप में पूरा हो (जो इस गुण के साथ एक घातीय मानचित्र वाले मैनिफोल्ड के लिए सामान्य शब्द 'जियोडेसिकली पूर्ण' को उचित ठहराता है)। विशेष रूप से, सघन स्थान मैनिफ़ोल्ड्स भूगणितीय रूप से पूर्ण हैं। चूँकि तथापि expp संपूर्ण स्पर्शरेखा स्थान पर परिभाषित किया गया है, यह सामान्य रूप से वैश्विक भिन्नता नहीं होगी। चूँकि स्पर्शरेखा स्थान के मूल में इसका अंतर पहचान फलन है और इसलिए, व्युत्क्रम फलन प्रमेय द्वारा हम TpM की उत्पत्ति का पड़ोस पा सकते हैं जिस पर घातीय मानचित्र एक एम्बेडिंग है (अथार्त , घातांक मानचित्र एक स्थानीय भिन्नता है)। TpM में मूल बिंदु के बारे में सबसे बड़ी गेंद की त्रिज्या जिसे expp के माध्यम से अलग-अलग रूप से मैप किया जा सकता है p पर M की इंजेक्शन त्रिज्या कहलाती है। घातीय मानचित्र का कट लोकस (रीमानियन मैनिफोल्ड), समान्य रूप से, उन सभी बिंदुओं का समूह है जहां घातीय मानचित्र एक अद्वितीय न्यूनतम रखने में विफल रहता है।
घातीय मानचित्र की एक महत्वपूर्ण संपत्ति गॉस की निम्नलिखित लेम्मा (एक और गॉस की लेम्मा) है: expp की परिभाषा के क्षेत्र में किसी भी स्पर्शरेखा सदिश v को देखते हुए, और v की नोक पर आधारित एक और सदिश w (इसलिए w वास्तव में डबल-टेंजेंट स्पेस Tv(TpM)) में है और v के लिए ऑर्थोगोनल, घातीय मानचित्र के माध्यम से आगे बढ़ने पर v, w के लिए ऑर्थोगोनल रहता है। इसका अर्थ है, विशेष रूप से, कि TpM में मूल के बारे में एक छोटी सी गेंद का सीमा क्षेत्र उन सदिश द्वारा निर्धारित एम में जियोडेसिक्स के लिए ऑर्थोगोनल है (अथार्त , जियोडेसिक्स रेडियल हैं)। यह रीमैनियन मैनिफोल्ड पर जियोडेसिक सामान्य निर्देशांक की परिभाषा को प्रेरित करता है।
घातीय मानचित्र वक्रता की अमूर्त परिभाषा को इसके अधिक ठोस अनुभव से जोड़ने में भी उपयोगी है, जिसकी कल्पना मूल रूप से खुद रीमैन ने की थी - अनुभागीय वक्रता को सहज रूप से विचाराधीन बिंदु p के माध्यम से कुछ सतह के गॉसियन वक्रता (अथार्त , 2-आयामी सबमैनिफोल्ड द्वारा मैनिफोल्ड का एक टुकड़ा) के रूप में परिभाषित किया गया है। घातीय मानचित्र के माध्यम से, इसे अब टीपीएम के 2-आयामी उप-स्थान के expp के तहत छवि द्वारा निर्धारित p के माध्यम से सतह के गॉसियन वक्रता के रूप में स्पष्ट रूप से परिभाषित किया जा सकता है।
लाई सिद्धांत में घातीय मानचित्रों से संबंध
द्वि-अपरिवर्तनीय मीट्रिक वाले लाई समूहों के स्थिति में - बाएं और दाएं दोनों अनुवादों के अनुसार एक छद्म-रिमानियन मीट्रिक अपरिवर्तनीय - छद्म-रिमानियन संरचना के घातांक मानचित्र घातीय मानचित्र (लाई सिद्धांत) के समान हैं। सामान्य रूप से लाई समूहों में द्वि-अपरिवर्तनीय मीट्रिक नहीं होती है, चूँकि सभी जुड़े हुए अर्ध-सरल (या रिडक्टिव) लाई समूहों में होती है। एक द्वि-अपरिवर्तनीय रीमानियन मीट्रिक का अस्तित्व छद्म-रीमैनियन मीट्रिक की तुलना में अधिक शक्तिशाली है, और इसका तात्पर्य है कि लाई बीजगणित एक कॉम्पैक्ट लाई समूह का लाई बीजगणित है; इसके विपरीत, किसी भी कॉम्पैक्ट (या एबेलियन) लाई समूह में ऐसी रीमैनियन मीट्रिक होती है।
वह उदाहरण लें जो "निष्कपट" घातीय मानचित्र देता है। धनात्मक वास्तविक संख्याओं R+ पर विचार करें, जो सामान्य गुणन के अंतर्गत एक लाई समूह है। फिर प्रत्येक स्पर्शरेखा स्थान केवल R है। बिंदु y पर R की प्रत्येक प्रतिलिपि पर, हम संशोधित आंतरिक उत्पाद प्रस्तुत करते हैं
बिंदु 1 ∈ R+ पर विचार करें और x ∈ 'R' 1 पर स्पर्शरेखा स्थान का एक तत्व है। 1 से निकलने वाली सामान्य सीधी रेखा, अर्थात् y(t) = 1 + xt, जियोडेसिक के समान पथ को कवर करती है, अतिरिक्त इसके कि हमें निरंतर गति (निरंतर गति, याद रखें, सामान्य स्थिर गति नहीं होने वाली है, क्योंकि हम इस विचित्र मीट्रिक का उपयोग कर रहे हैं) के साथ एक वक्र प्राप्त करने के लिए पुन: पैरामीट्रिज करना होगा। ऐसा करने के लिए हम चाप की लंबाई (संशोधित मीट्रिक द्वारा प्रेरित मानक में स्पर्शरेखा सदिश की लंबाई का अभिन्न अंग) द्वारा पुन: पैरामीट्रिज करते हैं:
इसके द्वारा परिभाषित रीमानियन दूरी सरल है
यह भी देखें
- घातांकीय विषयों की सूची
टिप्पणियाँ
- ↑ A source for this section is Kobayashi & Nomizu (1996, §III.6), which uses the term "linear connection" where we use "affine connection" instead.
संदर्भ
- Cheeger, Jeff; Ebin, David G. (1975), Comparison Theorems in Riemannian Geometry, Elsevier. See Chapter 1, Sections 2 and 3.
- do Carmo, Manfredo P. (1992), Riemannian Geometry, Birkhäuser, ISBN 0-8176-3490-8. See Chapter 3.
- "Exponential mapping", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Helgason, Sigurdur (2001), Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-2848-9, MR 1834454.
- Kobayashi, Shoshichi; Nomizu, Katsumi (1996), Foundations of Differential Geometry, vol. 1 (New ed.), Wiley-Interscience, ISBN 0-471-15733-3.