वर्गों का अवशिष्ट योग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Statistical measure of the discrepancy between data and an estimation model}}
{{Short description|Statistical measure of the discrepancy between data and an estimation model}}
आँकड़ों में वर्गों के अवशिष्ट [[योग]] (आरएसएस) को वर्ग अवशेषों के योग (एसएसआर) या त्रुटियों के वर्ग अनुमान के योग (एसएसई) के रूप में भी जाना जाता है। जो अवशिष्टों के [[वर्ग (अंकगणित)|वर्गों (अंकगणित)]] का योग है (डेटा के वास्तविक अनुभवजन्य मानो से अनुमानित विचलन)। यह डेटा और एक अनुमान आदर्श जैसे कि रैखिक प्रतिगमन के मध्य विसंगति का एक माप है। एक लघु आरएसएस डेटा के लिए आदर्श के उपयुक्त होने का संकेत देता है। इसका उपयोग पैरामीटर चयन और [[मॉडल चयन|आदर्श चयन]] में [[इष्टतमता मानदंड]] के रूप में किया जाता है।
आँकड़ों में वर्गों के अवशिष्ट [[योग]] (आरएसएस) को वर्ग अवशेषों के योग (एसएसआर) या त्रुटियों के वर्ग अनुमान के योग (एसएसई) के रूप में भी जाना जाता है। जो अवशिष्टों के [[वर्ग (अंकगणित)|वर्गों (अंकगणित)]] का योग है (डेटा के वास्तविक अनुभवजन्य मानो से अनुमानित विचलन)। यह डेटा और एक अनुमान आदर्श जैसे कि रैखिक प्रतिगमन के मध्य विसंगति का माप है। लघु आरएसएस डेटा के लिए आदर्श के उपयुक्त होने का संकेत देता है। इसका उपयोग पैरामीटर चयन और [[मॉडल चयन|आदर्श चयन]] में [[इष्टतमता मानदंड]] के रूप में किया जाता है।सामान्यतः [[वर्गों का कुल योग]] = वर्गों का स्पष्ट योग + वर्गों का अवशिष्ट योग है। बहुभिन्नरूपी साधारण न्यूनतम वर्ग (ओएलएस) स्थिति में इसके प्रमाण के लिए सामान्य साधारण न्यूनतम वर्ग आदर्श में वर्गों का स्पष्ट विभाजन देखें।
 
 
सामान्यतः, [[वर्गों का कुल योग]] = वर्गों का स्पष्ट योग + वर्गों का अवशिष्ट योग है। बहुभिन्नरूपी साधारण न्यूनतम वर्ग (ओएलएस) स्थिति में इसके प्रमाण के लिए, सामान्य साधारण न्यूनतम वर्ग आदर्श में वर्गों का स्पष्ट विभाजन देखें।
 
==एक व्याख्यात्मक परिवर्तनीय==
==एक व्याख्यात्मक परिवर्तनीय==


एकल व्याख्यात्मक परिवर्तनीय वाले आदर्श में, आरएसएस इस प्रकार दिया गया है:<ref>{{Cite book|title=Correlation and regression analysis : a historian's guide|last=Archdeacon, Thomas J.|date=1994|publisher=University of Wisconsin Press|isbn=0-299-13650-7|pages=161–162|oclc=27266095}}</ref>
एकल व्याख्यात्मक परिवर्तनीय वाले आदर्श में आरएसएस इस प्रकार दिया गया है:<ref>{{Cite book|title=Correlation and regression analysis : a historian's guide|last=Archdeacon, Thomas J.|date=1994|publisher=University of Wisconsin Press|isbn=0-299-13650-7|pages=161–162|oclc=27266095}}</ref>
:<math>\operatorname{RSS} = \sum_{i=1}^n (y_i - f(x_i))^2 </math>
:<math>\operatorname{RSS} = \sum_{i=1}^n (y_i - f(x_i))^2 </math>
जिस स्थान पर   ''y<sub>i</sub>'' पूर्वानुमानित किए जाने वाले परिवर्तनीय का ''i''<sup>th</sup> मान है ''x<sub>i</sub>'' व्याख्यात्मक परिवर्तनीय का ''i''<sup>th</sup> मान है और <math>f(x_i)</math> ''y<sub>i</sub>'' का अनुमानित मान है (जिसे <math>\hat{y_i}</math> भी कहा जाता है)। एक मानक रैखिक सरल प्रतिगमन आदर्श में, <math>y_i = \alpha + \beta x_i+\varepsilon_i\,</math>, जिस स्थान पर α और β गुणांक हैं, y और x क्रमशः प्रतिगमन और प्रतिगामी हैं, और ε त्रुटि पद है। अवशिष्टों के वर्गों का योग <math>\widehat{\varepsilon\,}_i</math> के वर्गों का योग है। अर्थात
जिस स्थान पर ''y<sub>i</sub>'' पूर्वानुमानित किए जाने वाले परिवर्तनीय का ''i''<sup>th</sup> मान है, ''x<sub>i</sub>'' व्याख्यात्मक परिवर्तनीय का ''i''<sup>th</sup> मान है और <math>f(x_i)</math> ''y<sub>i</sub>'' का अनुमानित मान है (जिसे <math>\hat{y_i}</math> भी कहा जाता है)। एक मानक रैखिक सरल प्रतिगमन आदर्श में, <math>y_i = \alpha + \beta x_i+\varepsilon_i\,</math>, जिस स्थान पर α और β गुणांक हैं, y और x क्रमशः प्रतिगमन और प्रतिगामी हैं, और ε त्रुटि पद है। अवशिष्टों के वर्गों का योग <math>\widehat{\varepsilon\,}_i</math> के वर्गों का योग है। अर्थात


:<math>\operatorname{RSS} = \sum_{i=1}^n (\widehat{\varepsilon\,}_i)^2 = \sum_{i=1}^n (y_i - (\widehat{\alpha\,} + \widehat{\beta\,} x_i))^2 </math>
:<math>\operatorname{RSS} = \sum_{i=1}^n (\widehat{\varepsilon\,}_i)^2 = \sum_{i=1}^n (y_i - (\widehat{\alpha\,} + \widehat{\beta\,} x_i))^2 </math>
जिस स्थान पर   <math>\widehat{\alpha\,}</math> स्थिर पद <math>\alpha</math> का अनुमानित मान है और <math>\widehat{\beta\,}</math> प्रवणता गुणांक <math>\beta</math> का अनुमानित मान है।
जिस स्थान पर <math>\widehat{\alpha\,}</math> स्थिर पद <math>\alpha</math> का अनुमानित मान है और <math>\widehat{\beta\,}</math> प्रवणता गुणांक <math>\beta</math> का अनुमानित मान है।


==ओएलएस वर्गों के अवशिष्ट योग के लिए आव्युह अभिव्यक्ति==
==ओएलएस वर्गों के अवशिष्ट योग के लिए आव्युह अभिव्यक्ति==


{{mvar|n}} अवलोकनों और {{mvar|k}} व्याख्याकारों के मध्य सामान्य प्रतिगमन आदर्श जिसमें से प्रथम एक स्थिर इकाई सदिश है जिसका गुणांक प्रतिगमन अवरोधन है
{{mvar|n}} अवलोकनों और {{mvar|k}} व्याख्याकारों के मध्य सामान्य प्रतिगमन आदर्श जिसमें से प्रथम स्थिर इकाई सदिश है, जिसका गुणांक प्रतिगमन अवरोधन है


:<math> y = X \beta + e</math>
:<math> y = X \beta + e</math>
जिस स्थान पर {{mvar|y}} निर्भर परिवर्तनीय अवलोकनों का एक n × 1 सदिश है, जो n × k आव्युह का प्रत्येक स्तंभ है, {{mvar|X}} एवं k व्याख्याकारों में से एक पर अवलोकनों का एक सदिश है, <math>\beta </math> वास्तविक गुणांकों का एक k × 1 सदिश है, और {{mvar|e}} वास्तविक अंतर्निहित त्रुटियों का एक n× 1 सदिश है। <math>\beta</math> के लिए सामान्य न्यूनतम वर्ग अनुमानक है
जिस स्थान पर {{mvar|y}} निर्भर परिवर्तनीय अवलोकनों का n × 1 सदिश है, जो n × k आव्युह का प्रत्येक स्तंभ है, {{mvar|X}} एवं k व्याख्याकारों में से एक पर अवलोकनों का सदिश है, <math>\beta </math> वास्तविक गुणांकों का एक k × 1 सदिश है, और {{mvar|e}} वास्तविक अंतर्निहित त्रुटियों का n× 1 सदिश है। <math>\beta</math> के लिए सामान्य न्यूनतम वर्ग अनुमानक है


:<math> X \hat \beta = y \iff</math>
:<math> X \hat \beta = y \iff</math>
:<math> X^\operatorname{T} X \hat \beta = X^\operatorname{T} y \iff</math>
:<math> X^\operatorname{T} X \hat \beta = X^\operatorname{T} y \iff</math>
:<math> \hat \beta = (X^\operatorname{T} X)^{-1}X^\operatorname{T} y.</math>
:<math> \hat \beta = (X^\operatorname{T} X)^{-1}X^\operatorname{T} y.</math>
अवशिष्ट सदिश <math>\hat e = y - X \hat \beta = y - X (X^\operatorname{T} X)^{-1}X^\operatorname{T} y</math> तो वर्गों का शेष योग है:
अवशिष्ट सदिश <math>\hat e = y - X \hat \beta = y - X (X^\operatorname{T} X)^{-1}X^\operatorname{T} y</math> तो वर्गों का शेष योग है:


:<math>\operatorname{RSS} = \hat e ^\operatorname{T} \hat e =  \| \hat e \|^2 </math>,
:<math>\operatorname{RSS} = \hat e ^\operatorname{T} \hat e =  \| \hat e \|^2 </math>,
Line 32: Line 28:
:<math>\operatorname{RSS} = y^\operatorname{T} y - y^\operatorname{T} X(X^\operatorname{T} X)^{-1} X^\operatorname{T} y = y^\operatorname{T} [I - X(X^\operatorname{T} X)^{-1} X^\operatorname{T}] y = y^\operatorname{T} [I - H] y</math>,
:<math>\operatorname{RSS} = y^\operatorname{T} y - y^\operatorname{T} X(X^\operatorname{T} X)^{-1} X^\operatorname{T} y = y^\operatorname{T} [I - X(X^\operatorname{T} X)^{-1} X^\operatorname{T}] y = y^\operatorname{T} [I - H] y</math>,


जिस स्थान पर   {{mvar|H}}   [[टोपी मैट्रिक्स|हैट आव्युह]] है, या रैखिक प्रतिगमन में प्रक्षेपण आव्युह है।
जिस स्थान पर {{mvar|H}} [[टोपी मैट्रिक्स|हैट आव्युह]] है, या रैखिक प्रतिगमन में प्रक्षेपण आव्युह है।


== पियर्सन के परिणाम-समय सहसंबंध के मध्य संबंध ==
== पियर्सन के परिणाम-समय सहसंबंध के मध्य संबंध ==
न्यूनतम-वर्ग प्रतिगमन रेखा के माध्यम से प्रस्तुत करी गई है
न्यूनतम-वर्ग प्रतिगमन रेखा के माध्यम से प्रस्तुत करी गई है:


:<math>y=ax+b</math>,
:<math>y=ax+b</math>,


जिस स्थान पर <math>b=\bar{y}-a\bar{x}</math> और <math>a=\frac{S_{xy}}{S_{xx}}</math>, जिस स्थान पर <math>S_{xy}=\sum_{i=1}^n(\bar{x}-x_i)(\bar{y}-y_i)</math> और <math>S_{xx}=\sum_{i=1}^n(\bar{x}-x_i)^2.</math>
जिस स्थान पर <math>b=\bar{y}-a\bar{x}</math> और <math>a=\frac{S_{xy}}{S_{xx}}</math>, जिस स्थान पर <math>S_{xy}=\sum_{i=1}^n(\bar{x}-x_i)(\bar{y}-y_i)</math> और <math>S_{xx}=\sum_{i=1}^n(\bar{x}-x_i)^2.</math>


इसलिए
इसलिए
Line 52: Line 48:




[[पियर्सन सहसंबंध गुणांक|पियर्सन परिणाम सहसंबंध गुणांक]] <math>r=\frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}; </math> के माध्यम से दिया गया है इसलिए <math>\operatorname{RSS}=S_{yy}(1-r^2). </math>।
[[पियर्सन सहसंबंध गुणांक|पियर्सन परिणाम सहसंबंध गुणांक]] <math>r=\frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}; </math> के माध्यम से दिया गया है इसलिए <math>\operatorname{RSS}=S_{yy}(1-r^2). </math>।
==यह भी देखें==
==यह भी देखें==
*अकाइक सूचना मानदंड-न्यूनतम वर्गों के मध्य तुलना
*अकाइक सूचना मानदंड-न्यूनतम वर्गों के मध्य तुलना
Line 60: Line 56:
*[[वर्गों के योग का अभाव]]
*[[वर्गों के योग का अभाव]]
*[[मतलब चुकता त्रुटि|मध्य वर्ग-फल त्रुटि]]
*[[मतलब चुकता त्रुटि|मध्य वर्ग-फल त्रुटि]]
*कमतर ची-स्क्वेर्ड आँकड़ा, स्वाधीनता की उपाधि के अनुसार आरएसएस
*कमतर ची-स्क्वेर्ड आँकड़ा, स्वाधीनता की उपाधि के अनुसार आरएसएस
*[[वर्ग विचलन]]
*[[वर्ग विचलन]]
*[[वर्गों का योग (सांख्यिकी)]]
*[[वर्गों का योग (सांख्यिकी)]]

Revision as of 17:56, 13 July 2023

आँकड़ों में वर्गों के अवशिष्ट योग (आरएसएस) को वर्ग अवशेषों के योग (एसएसआर) या त्रुटियों के वर्ग अनुमान के योग (एसएसई) के रूप में भी जाना जाता है। जो अवशिष्टों के वर्गों (अंकगणित) का योग है (डेटा के वास्तविक अनुभवजन्य मानो से अनुमानित विचलन)। यह डेटा और एक अनुमान आदर्श जैसे कि रैखिक प्रतिगमन के मध्य विसंगति का माप है। लघु आरएसएस डेटा के लिए आदर्श के उपयुक्त होने का संकेत देता है। इसका उपयोग पैरामीटर चयन और आदर्श चयन में इष्टतमता मानदंड के रूप में किया जाता है।सामान्यतः वर्गों का कुल योग = वर्गों का स्पष्ट योग + वर्गों का अवशिष्ट योग है। बहुभिन्नरूपी साधारण न्यूनतम वर्ग (ओएलएस) स्थिति में इसके प्रमाण के लिए सामान्य साधारण न्यूनतम वर्ग आदर्श में वर्गों का स्पष्ट विभाजन देखें।

एक व्याख्यात्मक परिवर्तनीय

एकल व्याख्यात्मक परिवर्तनीय वाले आदर्श में आरएसएस इस प्रकार दिया गया है:[1]

जिस स्थान पर yi पूर्वानुमानित किए जाने वाले परिवर्तनीय का ith मान है, xi व्याख्यात्मक परिवर्तनीय का ith मान है और yi का अनुमानित मान है (जिसे भी कहा जाता है)। एक मानक रैखिक सरल प्रतिगमन आदर्श में, , जिस स्थान पर α और β गुणांक हैं, y और x क्रमशः प्रतिगमन और प्रतिगामी हैं, और ε त्रुटि पद है। अवशिष्टों के वर्गों का योग के वर्गों का योग है। अर्थात

जिस स्थान पर स्थिर पद का अनुमानित मान है और प्रवणता गुणांक का अनुमानित मान है।

ओएलएस वर्गों के अवशिष्ट योग के लिए आव्युह अभिव्यक्ति

n अवलोकनों और k व्याख्याकारों के मध्य सामान्य प्रतिगमन आदर्श जिसमें से प्रथम स्थिर इकाई सदिश है, जिसका गुणांक प्रतिगमन अवरोधन है

जिस स्थान पर y निर्भर परिवर्तनीय अवलोकनों का n × 1 सदिश है, जो n × k आव्युह का प्रत्येक स्तंभ है, X एवं k व्याख्याकारों में से एक पर अवलोकनों का सदिश है, वास्तविक गुणांकों का एक k × 1 सदिश है, और e वास्तविक अंतर्निहित त्रुटियों का n× 1 सदिश है। के लिए सामान्य न्यूनतम वर्ग अनुमानक है

अवशिष्ट सदिश तो वर्गों का शेष योग है:

,

(अवशेषों के सदिश मानक के वर्ग के सामान्तर) पूर्णतः

,

जिस स्थान पर H हैट आव्युह है, या रैखिक प्रतिगमन में प्रक्षेपण आव्युह है।

पियर्सन के परिणाम-समय सहसंबंध के मध्य संबंध

न्यूनतम-वर्ग प्रतिगमन रेखा के माध्यम से प्रस्तुत करी गई है:

,

जिस स्थान पर और , जिस स्थान पर और

इसलिए

जिस स्थान पर


पियर्सन परिणाम सहसंबंध गुणांक के माध्यम से दिया गया है इसलिए

यह भी देखें

संदर्भ

  1. Archdeacon, Thomas J. (1994). Correlation and regression analysis : a historian's guide. University of Wisconsin Press. pp. 161–162. ISBN 0-299-13650-7. OCLC 27266095.
  • Draper, N.R.; Smith, H. (1998). Applied Regression Analysis (3rd ed.). John Wiley. ISBN 0-471-17082-8.