महावीर: Difference between revisions
From Vigyanwiki
m (Content Modified) |
(content added) |
||
Line 22: | Line 22: | ||
: ''व्यापारस्तत्र सर्वत्र संख्यानमुपयुज्यते॥'' | : ''व्यापारस्तत्र सर्वत्र संख्यानमुपयुज्यते॥'' | ||
: अर्थ : जहां सांसारिक, वैदिक और समसामयिक में व्यापार होता है, वहां हर जगह अंकों का ही प्रयोग होता है। | : अर्थ : जहां सांसारिक, वैदिक और समसामयिक में व्यापार होता है, वहां हर जगह अंकों का ही प्रयोग होता है। | ||
:यह महावीर ही थे जिन्होंने सर्वप्रथम श्रृंखला को ज्यामितीय क्रमों में माना और उसमें आवश्यक लगभग सभी सूत्र दिए। | |||
:: ''गुणसङ्कलितान्त्यधनं विगतैकपदस्य गुणधनं भवति ।'' | |||
:: ''तद्गुणगुणं मुखोनं व्येकोत्तर भाजितं सारम् ॥'' | |||
:: ''अन्त्यधन'' - अंतिम अवधि का मूल्य। ''गुण'' - सामान्य अनुपात। | |||
:: पद कहता है कि <math>S_n =\frac{ar^{n-1} X \ { r-a } }{r-1} | |||
</math> | |||
:: <math>=\frac{a(r^n-1)}{r-1} | |||
</math>जहाँ a पहला पद है और r सार्व अनुपात है और S<sub>n</sub>, n पदों का योग है। | |||
:: महावीर के काम दूसरों की तुलना में विविध आंकड़ों की परिभाषा के संबंध में अलग है। उन्होंने त्रिभुज की परिभाषाएँ दी हैं- समबाहु, समद्विबाहु और विषमबाहु-एक वर्ग, एक आयत, समद्विबाहु समलम्ब, समलंब जिसकी तीन भुजाएँ बराबर हों, एक चतुर्भुज, एक वृत्त, एक अर्धवृत्त, एक दीर्घवृत्त, एक खोखला गोलार्द्ध और अर्द्धचन्द्र । यह सच है कि एक दीर्घवृत्त के क्षेत्रफल और एक दीर्घवृत्त के वक्र की लंबाई के संबंध में उन्होंने जो परिणाम निकाले, वे सटीक नहीं हैं, लेकिन इस रेखा में अग्रणी के रूप में उनका स्थान ऊँचा है। ब्रह्मगुप्त द्वारा प्रतिपादित चक्रीय चतुर्भुज के लगभग सभी गुणों की उनके द्वारा अधिक स्पष्ट रूप से व्याख्या की गई है। | |||
== बाहरी संपर्क == | == बाहरी संपर्क == |
Revision as of 20:09, 14 November 2022
महावीर या महावीराचार्य दक्षिण भारत में ,मैसूर, में पैदा हुए 9वीं शताब्दी के जैन गणितज्ञ थे। उनका जन्म वर्ष 815 ई.[1]
गणितसारसंग्रह की रचना महावीर ने की थी। वह राष्ट्रकूट वंश के राजा अमोघवर्ष के शाही दरबार में थे।
गणितसारसंग्रह में निम्नलिखित अध्याय हैं: [2]
- संज्ञाधिकार (शब्दावली)
- परिकर्मव्यवहार (अंकगणितीय संचालन)
- कलासवर्णव्यवहार (अंश)
- प्रकीर्णकव्यवहार (विविध समस्याएं)
- त्रैराशिकव्यवहार (तीन का नियम)
- मिश्रकव्यवहार (मिश्रित समस्याएं)
- क्षेत्रगणितव्यवहार (क्षेत्रों का मापन)
- खातव्यवहार ( उत्खनन के संबंध में गणना)
- छायाव्यवहार (छाया से संबंधित गणना)
गणितसारसंग्रह में महावीराचार्य ने गणित की प्रशंसा की है
- लौकिके वैदिके वापि तथा सामयिकेऽपि यः।
- व्यापारस्तत्र सर्वत्र संख्यानमुपयुज्यते॥
- अर्थ : जहां सांसारिक, वैदिक और समसामयिक में व्यापार होता है, वहां हर जगह अंकों का ही प्रयोग होता है।
- यह महावीर ही थे जिन्होंने सर्वप्रथम श्रृंखला को ज्यामितीय क्रमों में माना और उसमें आवश्यक लगभग सभी सूत्र दिए।
- गुणसङ्कलितान्त्यधनं विगतैकपदस्य गुणधनं भवति ।
- तद्गुणगुणं मुखोनं व्येकोत्तर भाजितं सारम् ॥
- अन्त्यधन - अंतिम अवधि का मूल्य। गुण - सामान्य अनुपात।
- पद कहता है कि
- जहाँ a पहला पद है और r सार्व अनुपात है और Sn, n पदों का योग है।
- महावीर के काम दूसरों की तुलना में विविध आंकड़ों की परिभाषा के संबंध में अलग है। उन्होंने त्रिभुज की परिभाषाएँ दी हैं- समबाहु, समद्विबाहु और विषमबाहु-एक वर्ग, एक आयत, समद्विबाहु समलम्ब, समलंब जिसकी तीन भुजाएँ बराबर हों, एक चतुर्भुज, एक वृत्त, एक अर्धवृत्त, एक दीर्घवृत्त, एक खोखला गोलार्द्ध और अर्द्धचन्द्र । यह सच है कि एक दीर्घवृत्त के क्षेत्रफल और एक दीर्घवृत्त के वक्र की लंबाई के संबंध में उन्होंने जो परिणाम निकाले, वे सटीक नहीं हैं, लेकिन इस रेखा में अग्रणी के रूप में उनका स्थान ऊँचा है। ब्रह्मगुप्त द्वारा प्रतिपादित चक्रीय चतुर्भुज के लगभग सभी गुणों की उनके द्वारा अधिक स्पष्ट रूप से व्याख्या की गई है।
बाहरी संपर्क
यह भी देखें
संदर्भ
- ↑ महावीर(Mahavira/)
- ↑ "गणितसारसंग्रह"("Ganitasarsangrah")