ध्वज (रैखिक बीजगणित): Difference between revisions

From Vigyanwiki
Line 65: Line 65:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 19/07/2023]]
[[Category:Created On 19/07/2023]]
[[Category:Vigyan Ready]]

Revision as of 11:26, 4 August 2023

गणित में, विशेष रूप से रैखिक बीजगणित में, एक ध्वज एक परिमित-आयामी सदिशस्थान V के उप-स्थानों का एक बढ़ता हुआ क्रम है। यहां बढ़ने का मतलब है कि प्रत्येक अगले का एक उचित उप-स्थान है (निस्यंदन देखें):

ध्वज शब्द ध्वज के सदृश एक विशेष उदाहरण से प्रेरित है: शून्य बिंदु, एक रेखा और एक तल एक कील, एक छड़ी और कपड़े की एक शीट से मेल खाता है।[1]

यदि हम वह dimV i =di लिखते हैं तो हमारे पास हैं

जहां n, V का आयाम (रैखिक बीजगणित) है (परिमित माना जाता है)। इसलिए, हमारे पास k ≤ n होना चाहिए। एक ध्वज को 'पूर्ण ध्वज' कहा जाता है यदि सभी i के लिए di = i हो, अन्यथा इसे आंशिक ध्वज कहा जाता है।

कुछ उप-स्थानों को हटाकर पूर्ण ध्वज से आंशिक ध्वज प्राप्त किया जा सकता है। इसके विपरीत, किसी भी आंशिक ध्वज को उपयुक्त उप-स्थान डालकर (कई अलग-अलग तरीकों से) पूरा किया जा सकता है।

ध्वज का 'हस्ताक्षर' (d1, ..., dk) अनुक्रम है।

आधार

V के लिए एक क्रमबद्ध आधार (रैखिक बीजगणित) को ध्वज V0 ⊂ V1 ⊂ ... ⊂ Vk के लिए 'अनुकूलित' कहा जाता है यदि पहला di आधार सदिश प्रत्येक 0 ≤ i ≤ k के लिए Vi के लिए आधार बनाते हैं । रैखिक बीजगणित के मानक तर्क दिखा सकते हैं कि किसी भी ध्वज का एक अनुकूलित आधार होता है।

कोई भी क्रमबद्ध आधार Vi देकर एक पूर्ण ध्वज को जन्म देता हैi पहले i आधार सदिशों का विस्तार बताकर एक पूर्ण ध्वज को जन्म देता है। उदाहरण के लिए, Rn में मानक ध्वज मानक आधार (e1, ..., en)से प्रेरित है जहां जहां ei, ith प्रविष्टि में 1 और अन्यत्र 0 के साथ सदिश को दर्शाता है।वस्तुतः, मानक ध्वज उप-स्थानों का अनुक्रम है::

एक अनुकूलित आधार लगभग कभी भी अद्वितीय नहीं होता (प्रति उदाहरण क्षुद्र होते हैं); नीचे देखें।

आंतरिक उत्पाद स्थान पर एक पूर्ण ध्वज में अनिवार्य रूप से अद्वितीय प्रसामान्य लांबिक आधार होता है:यह प्रत्येक सदिश को एक इकाई (इकाई लंबाई का अदिश, उदाहरण के लिए 1, −1, i) से गुणा करने तक अद्वितीय होता है। ऐसा आधार ग्राम-श्मिट प्रक्रिया का उपयोग करके बनाया जा सकता है। इकाइयों तक की विशिष्टता आगमनात्मक से अनुसरण करती है, इसे ध्यान में रखते हुए एक आयामी स्थान में निहित है।.

अधिक संक्षेप में, यह अधिकतम टोरस की कार्रवाई तक अद्वितीय है: ध्वज बोरेल समूह से मेल खाता है, और आंतरिक उत्पाद अधिकतम संक्षिप्त उपसमूह से मेल खाता है।[2]

स्थिरक

मानक ध्वज का स्थिरक उपसमूह उल्टे ऊपरी त्रिकोणीय मैट्रिक्स का समूह है।

सामान्यतः,एक ध्वज का स्थिरक (V पर रैखिक ऑपरेटर जैसे कि सभी i के लिए) मैट्रिक्स के संदर्भ में, ब्लॉक ऊपरी त्रिकोणीय मैट्रिक्स (अनुकूलित आधार के संबंध में) के एक क्षेत्र पर बीजगणित है, जहां ब्लॉक आकार । पूर्ण ध्वज का स्थिरक उपसमूह ध्वज के अनुकूल किसी भी आधार के संबंध में उल्टे ऊपरी त्रिकोणीय मैट्रिक्स का समुच्चय है। ऐसे आधार के संबंध में निचले त्रिकोणीय मैट्रिक्स का उपसमूह उस आधार पर निर्भर करता है, और इसलिए इसे केवल ध्वज के संदर्भ में चित्रित नहीं किया जा सकता है।

किसी भी पूर्ण ध्वज का स्थिरक उपसमूह एक बोरेल उपसमूह (सामान्य रैखिक समूह का) है, और किसी भी आंशिक झंडे का स्थिरक एक परवलयिक उपसमूह है।

ध्वज का स्थिरक उपसमूह ध्वज के लिए अनुकूलित आधारों पर बस परिवर्तनीय रूप से कार्य करता है, और इस प्रकार ये अद्वितीय नहीं होते हैं जब तक कि स्थिरक तुच्छ न हो। यह एक बहुत ही असाधारण परिस्थिति है: यह केवल आयाम 0 के सदिश समष्टि के लिए, या ऊपर के सदिश समष्टि के लिए होता है आयाम 1 का (सटीक रूप से ऐसे कारक जहां केवल एक ही आधार उपस्थित है, किसी भी ध्वज से स्वतंत्र है)।

उपसमष्‍टि स्थल

अनंत-आयामी अंतरिक्ष V में, जैसा कि कार्यात्मक विश्लेषण में उपयोग किया जाता है, ध्वज विचार एक 'उपस्थान घोंसले' के लिए सामान्यीकृत होता है, अर्थात् V के उपस्थानों का एक संग्रह जो समावेशन के लिए कुल क्रम है और जो आगे मनमाने ढंग से प्रतिच्छेदन (सेट सिद्धांत) और बंद रैखिक सीमा के अधीन बंद हो जाता है। स्थल बीजगणित देखें।

सेट-सैद्धांतिक एनालॉग्स

एक तत्व वाले क्षेत्र के दृष्टिकोण से, एक सेट को एक तत्व वाले क्षेत्र पर एक सदिश स्थान के रूप में देखा जा सकता है: यह विपरीत समूहों और बीजगणितीय समूहों के बीच विभिन्न समानताओं को औपचारिक बनाता है।

इस समानता के अंतर्गत, एक सेट पर एक क्रम एक अधिकतम ध्वज से मेल खाती है: एक क्रम एक सेट के अधिकतम निस्पंदन के बराबर है। उदाहरण के लिए, निस्पंदन (ध्वज) , आदेश के अनुरूप है।

यह भी देखें

संदर्भ

  1. Kostrikin, Alexei I. and Manin, Yuri I. (1997). Linear Algebra and Geometry, p. 13. Translated from the Russian by M. E. Alferieff. Gordon and Breach Science Publishers. ISBN 2-88124-683-4.
  2. Harris, Joe (1991). Representation Theory: A First Course, p. 95. Springer. ISBN 0387974954.